
Categorical Models of Explicit Substitutions

Neil Ghani, Valeria de Paiva, and Eike Ritter

University of Birmingham, England

Abstract. Indexed categories provide models of cartesian calculi of ex-
plicit substitutions. However, these structures are inherently non-linear
and hence cannot be used to model linear calculi of explicit substitution.
This paper replaces indexed categories with pre-sheaves, thus provid-
ing a categorical semantics covering both the linear and cartesian cases.
We further justify our models by proving soundness and completeness
results.

1 Introduction

Functional programming languages are based on the �-calculus and model com-
putation by �-reduction (�x:t)u)t[u=x]. This process can duplicate the redexes
in u and hence is highly ine�cient from the implementational perspective. Ab-
stract machines avoid this problem by reducing terms in an environment | the
contraction of a �-redex creates a new substitution which is added to the existing
environment and only evaluated when needed. In order to study such machines,
calculi of explicit substitutions incorporate substitutions directly into the syntax
of the �-calculus rather than treating them as meta-theoretic operations.

Category theory aids the design of abstract machines [7, 16] by providing
a semantics for explicit substitutions based upon the Curry-Howard triangle
relating typed �-calculi, intuitionistic logic and their categorical models. The
best known example relates the simply typed �-calculus, the positive fragment of
intuitionistic propositional logic (IPL) and cartesian closed categories (CCC's).

CCC IPL-

�

	 R

Indexed categories seem to provide the correct semantic framework for carte-
sian calculi of explicit substitutions by interpreting substitutions in the base,
terms in the �bres and the application of a substitution to a term via re-indexing.
Indexed categories also arise in the semantics of dependent types [8] and also in
models of the simply-typed �-calculus where not all objects are exponentiable
[12]. Unfortunately indexed categories cannot be used as models of linear calculi
of explicit substitution as identities cannot be de�ned in the �bres. Dropping
the identities from our models leads to what we call E-categories and hence our
triangle now looks like:

W. Thomas (Ed.): FOSSACS’99, LNCS 1578, pp. 197-211, 1999.
c Springer-Verlag Berlin Heidelberg 1999

E-cat IPL-

��-calculus

	 R

where the ��-calculus [1](a simply-typed �-calculus with explicit substitution)
is derived as the internal language of E-categories | this ensures that we have a
Curry-Howard triangle. As we shall see, E-categories are essential in generalising
the monoidal adjunction semantics of linear logic to cover explicit substitutions.

Now we turn to linear logic. The Curry-Howard correspondence between the
linear �-calculus, the standard categorical models and intuitionistic linear logic is
described, for example, in [4]. These categorical models are essentially symmetric
monoidal closed categories (SMCCs) with extra structure to model the modality
!. However, categorical combinators based on SMCCs ([13] [14]) are not adequate
for modelling resource allocations, the idea behind linear functional languages.

Linear categorical abstract machines are designed to implement linear logic
and we require linear analogues of the modi�cations described above. In particu-
lar, we want a linear �-calculus extended with explicit substitutions, a categorical
model for the calculus and a Curry-Howard relationship between them. The cal-
culus appears in full in [10] and this paper concentrates on the more re�ned
categorical models for the linear �-calculus extended with explicit substitutions.

Indexed categories cannot be used as models of linear calculi of explicit sub-
stitution as they are an inherently non-linear structure. Asking that the �bres
form a category requires identities which in turn corresponds to weakening which
is not admissible in linear �-calculi. Hence we alter the notion of an indexed cat-
egory to a presheaf (i.e., a functor with Set as codomain rather than Cat), and
call this structure a linear context-handling category. Cartesian context-handling
categories analogously model cartesian calculi of explicit substitutions.

The tensor, unit and linear implication are then modelled by adding natural
isomorphisms to the \�bres" of linear context handling categories | we call
these structures L-categories. Modelling contexts by structure in the base and
the logical connectives by structure in the �bres distinguishes our models from
the usual SMCC's where the same semantic structure is used to model both
the behaviour of contexts and the tensor connective. Similarly, intuitionistic
implications and conjunctions are modelled by adding structure to the �bres of
a cartesian context handling category obtaining the previously mentioned E-
categories. The modalities of linear logic are modelled by a monoidal adjunction
between (the bases of) an L-category and an E-category.

2 Context Handling Categories

The traditional categorical semantics of explicit substitutions is based on in-
dexed categories, ie a base category B and a contravariant functor E:Bop!Cat.
The objects of B model the contexts, the morphisms of B interpret the explicit
substitutions and the �bres interpret the types and terms of the calculus. Un-
fortunately, indexed categories do not generalise to the linear setting as the

198 Neil Ghani et al.

identity on A in a �bre E(�) corresponds to the non-linear typing judgement
�; x:A ` x:A [16, 8]. This paper replaces indexed categories with pre-sheaves,
thus providing a categorical semantics covering both the linear and cartesian
cases. That is, we change the codomain of E from Cat to Set, thus removing
the identities from the �bres. As motivate for our de�nition, consider the most
primitive form of a linear or cartesian calculus of explicit substitutions. Such a
calculus has the following components:

{ Types: A set of types T .
{ Contexts: Contexts are obtained by \glueing", in a linear or cartesian man-
ner, variable-type pairs (x:A) together.

{ Substitutions: Given contexts � and �, there is a collection of explicit
substitutions which are judgements of the form � ` f : �

{ Terms: Given a context � and type B 2 T , there is a collection of terms
which are judgements � ` t : B. Applying a substitution � ` f : � to a
term � ` t : A results in another term � ` f � t:A.

These properties can be captured by a presheaf L:Bop �! SetT with addi-
tional structure to capture the formation and behaviour of explicit substitutions:

De�nition 1 Let B be a (symmetric) monoidal category with distinguished col-
lection of objects T � jBj. A linear context handling category is a functor
L:Bop!SetT such that for each A 2 T there exists a natural isomorphism

SubA:L(�)A �= HomB(�; A): TermA

Each component of De�nition 1 corresponds to part of the description of a
term assignment system given previously:

{ The Base B: The base B of a context handling category models contexts
as objects and substitutions as morphisms | types are treated semantically
as singleton contexts 1. That B forms a category means that substitutions
can be sequentially composed and there is an identity substitution. Contexts
and substitutions can be put into parallel and there is a an empty context
| these features are described by the monoidal structure on B.

{ The Functor L: The functor L associates to each context � and type A
a set, written L(�)A, which we think of as the terms of type A in context
� . Given a substitution f : � !�, and any type A, the contravariance of L
gives a function L(f)A:L(�)A!L(�)A. This re-indexing is exactly what is
used to model the application of a substitution to a term.

{ The Natural Transformations SubA and TermA: SubA describes the
formation of new substitutions by converting elements in the �bres to mor-
phisms in the base, ie taking a term t and constructing the substitution
ht=xi 2. By the Yoneda-Lemma, TermA can be replaced by elements VarA 2

1 although we simplify notation by sometimes writing A for x : A
2 where x is the variable associated to the singleton context A

199Categorical Models of Explicit Substitutions

L(A)A and TermA(f) is then given by f � VarA | thus TermA evaluates a
substitution at a variable. The condition that Sub and Term are natural
isomorphisms is then replaced by the equations

SubA(t) � VarA = t SubA(VarA) = Id

In order to model a calculus of cartesian contexts we use cartesian context
handling categories whose de�nition only di�ers in requiring the monoidal struc-
ture in the base is actually a product so that weakening and contraction can be
interpreted. This notion of a cartesian handling of contexts is implicit in most
of the work on categorical modelling of higher-order typed calculi [8] [11].

De�nition 2 Let B be a cartesian category with distinguished collection of ob-
jects T � jBj. A cartesian context handling category is a functor E:Bop!SetT

such that for each A 2 T there exists a natural isomorphism

SubA:E(�)A �= HomB(�; A): TermA

Notation: We use �;�; � � � as generic objects in B, f; g; : : : as generic mor-
phisms in B and A;B;C; : : : ; as generic elements of T . We write f�� for E(f)
(or L(f)) for the functor on morphisms. When B is monoidal the unit is denoted
[], the tensor product of objects �1; : : : ; �n is denoted (�1; : : : ; �n) and similarly
the tensor product of two morphisms f and g is written (f; g). In addition, if B
is cartesian, we write Fst and Snd for the two projections.

Should Sub and Term be isomorphisms? The equation SubA(t) � VarA =
t formalises our understanding that x[t=x] = t. However, the other equation,
namely that if f is a substitution for the variable x, then f = (f � x)=x, does
not carry the same force, and intensional de�nitions requiring only a retraction
TermA � SubA = Id could be considered. The situation would be analogous to
the intensionality of function spaces: In the same way as two functions are not
intensionally equal if they produce the same result when applied to the same
arguments, two substitutions are not intensionally equal if applied to the same
variable they produce the same result. The formal de�nition is

De�nition 3 An intensional (cartesian) context category consists of the same
data as a (cartesian) context handling category but the natural transformations
SubA and TermA need only form a retraction TermA � SubA = Id.

The next lemma proves that an intensional context handling category where
SubA(VarA) = Id is actually extensional. Since we think of SubA(VarA) as the
substitution [x=x], this is rather a mild condition and dropping it, as intensional
structures require, seems counter-intuitive.

Proposition 4 Let L be an intensional context handling category with types T .
If for all A 2 T , SubA(VarA) = IdA, then L is a linear context handling category.

Proof. If A 2 T , then we show SubA � TermA = Id. So let f : � !A. Then

f = f ; Id = f ; SubA(VarA) = Sub(f � VarA) = Sub � Term(f)

200 Neil Ghani et al.

where the �rst equality holds by de�nition, the second by assumption, the third
is the naturality of SubA and the fourth by de�nition.

The natural isomorphism between Hom(�; A) and E(�)A (or L(�)A in the
linear setting) has several consequences. Firstly, the �bres of a context handling
category are determined up to isomorphism by the base of the category. Secondly,
all substitutions are extensional, ie morphisms are determined by their e�ects
on terms: f = g i� for all terms t, f � t = g � t. Finally, models of �-calculi based
on context handling categories can be compared with the standard categorical
models by constructing an \internal category" from the �bres. The objects of
this category are the elements of T and the set of morphisms from A to B is
the �bre E(A)B . The identity on A is the term VarA and the composition of
two morphisms t 2 E(A)B and s 2 E(B)C is given by Sub(t) � s. Clearly this
internal category is isomorphic to the full subcategory of B whose objects are T .

3 The Cartesian Model

Context handling categories model the basic features of explicit substitutions,
namely the ability to form substitutions from terms, put them in parallel and
apply them to terms. This structure is insu�cient to model a calculus of explicit
substitutions as no mention is made of the connectives. We now consider a
canonical extension of the simply typed �-calculus with explicit substitutions
and the extra structure required to model it. Our presentation varies slightly
from the original [1], eg we use names rather than De Bruijn numbers.

3.1 The ��-calculus

The types of the ��-calculus are ground types, the unit type 1, function types
A!B and product types A�B. The raw expressions of �� are:

t ::= x j �x:A:t j tt j ht; ti j �it j � j f � t

f ::= hi j hf; t=xi j f ; f

where x is a variable. The term f � t represents the application of the explicit
substitution f to the term t and � represents the canonical element of the unit
type. The substitution hi should be thought of as a substitution of variables for
themselves, while hf; t=xi represents the parallel composition of the substitution
f with the substitution of the term t for the variable x. Finally, f ; g represents
the composition of the substitutions f and g and models iterated substitution.

Contexts are lists x1:A1; : : : xn:An where the x's are distinct variables and
the A's are types | the domain of the context is fx1; : : : ; xng and we write
� � � 0 if the domain of � is contained in the domain of � 0. The ��-calculus
has term judgements � ` t : A and substitution judgements � ` f : � | these
judgements are generated by the inference rules of Table 1. The inference rules
for declaring variables and the introduction and elimination rules for function
spaces and conjunctions are standard. All the free variables of t are bound in f �t
and similarly all the free variables of g are bound in f ; g. For a full presentation
of the meta-theory of �� see [1, 15].

201Categorical Models of Explicit Substitutions

Table 1. Typing Judgements for the ��-calculus

{ Term Judgements

x:A declared in �
� ` x:A

� ` f : � � ` t : A
� ` f � t : A

�; x:A ` t:B
� ` �x:A:t:A!B

� ` t:A!B � ` u:A
� ` tu:B

� ` t : A � ` u : B
� ` ht; ui : A�B

� ` t : A1 �A2

� ` �i(t) : Ai � ` � : 1

{ Substitution Judgements

� 0 � �
� ` hi : � 0

� ` f :� � ` t :A
� ` hf; t=xi : �; x : A

� ` f :� � ` g :	
� ` f ; g : 	

where in the second rule x is not in the domain of �.

3.2 Modelling the ��-calculus in an E-category

Cartesian context handling categories model the behaviour of explicit substitu-
tions, eg their formation from terms and their application to other terms. We
now add extra structure to cartesian context handling categories to model the
types of the ��-calculus. Since these types de�ne new terms, and terms are
interpreted in the �bres, this extra structure is de�ned on the �bres:

De�nition 5 An E-category is a cartesian handling category E:Bop!SetT

with a distinguished type 1 2 T and such that for two types A;B 2 T , there
are types A) B;A�B 2 T . In addition 1 is terminal in B, and there are iso-
morphisms, natural in � between E((�;A))B and E(�)A)B as well as between
E(�)A �E(�)B and E(�)A�B.

De�nition 5 implies that A � B is isomorphic to the product of A and B in B,
namely (A;B) | this is consistent with our philosophy that the semantics of
context concatenation and the connective � are, although related, conceptually
distinct. Similarly the type 1 is isomorphic to the empty context []. E-categories
also provide a theory of equality judgements for the ��-calculus which are of
the form � ` t = t0 and � ` f = f 0 | these are given in Table 2 and used in
proving soundness and completeness.

Similar structures to our E-categories have been considered in the literature.
Jacobs [12] de�nes a �1-category as an indexed category Bop!Cat such that B
has �nite products; morphisms in the �bre from A to B are morphisms � �A to
B in the base category together with the condition that the �bration de�ned by
the indexed category has T -products. Such a �1-category is an extensional E-
category where the �bres are categories and not sets and where the isomorphism
between substitutions and terms is the identity.

202 Neil Ghani et al.

Table 2. Equality Judgements for the ��-calculus

(1) hi; f = f (2) hi � t = t
(3) (f ; g);h = f ; (g;h) (4) (f ; g) � t = f � (g � t)
(5) hf; t=xi � x = t (6) hf; t=xi � y = f � y

(7)
� ` f :
� ` f = hi

(8) f ; hg; t=xi = hf ; g; (f � t)=xi

(9)
� ` t : 1
� ` t = �

(10)
� ` hi : � 0 � 0 = x1:X1; : : : ; xn:Xn

� ` hi = hx1=x1; : : : ; xn=xni

(11) t = �x:A:tx (12) (�x:A:t)u = hhi; u=xi � t
(13) f � (tu) = (f � t)(f � u) (14) f � �x:A:t = �y:A:hf; y=xi � t

where in equation 2, x 62 FV(t)

E-categories and CCC's Since the ��-calculus contains the �-calculus, every
model of the ��-calculus should contain a model of the �-calculus, ie every E-
category should contain an underlying CCC. In addition, one of the key-meta-
theoretic properties of the ��-calculus is that every ��-term is provably equal
to a �-term. The semantic counterpart to this is that every CCC should extend
to an E-category. The following theorem makes this relationship clear.

Theorem 6 (i) Let E:Bop!SetT be an extensional E-category. Then the full
subcategory of B generated by T is a CCC.

(ii) Let C be a CCC and T be the set of objects of C. De�ne a functor E: Cop!SetT

by E()� = HomC(; �), then E is an extensional E-category.
(iii) If E:Bop!SetT is an extensional E-category, then the E-category con-

structed in (ii) from the CCC constructed in (i) is isomorphic to the re-
striction of E to the full subcategory of B generated by T .

Soundness and Completeness We now prove that we can model the ��-
calculus in any E-category.

Theorem 7 Let E:Bop!SetT be any E-category. Then there is a canonical
interpretation map [[]] which assigns to any term of the ��-calculus with set T
of base types an element of a �bre and assigns to every substitution a morphism.

Proof. The types of the �-calculus are interpreted as elements of T and, using the
product structure of B, this extends to an interpretation of contexts as objects
of B. We now de�ne [[t]] by induction over the structure of t:

{ Variable are interpreted by � � VarA where � is a projection in the base
{ �-abstraction, application, product and projections are interpreted via the
natural transformations occurring in de�nition 5. Finally the application of
a substitution to a term is modelled by re-indexing.

{ The substitution hi is interpreted as a projection in B and [[f ; g]] is the
composition of [[f]] and [[g]]. Finally, [[hf; t=xi]] = h[[f]]; Sub([[t]])i, where the
right-hand side uses pairing in B.

203Categorical Models of Explicit Substitutions

That [[:]] respects the equality judgements of the ��-calculus relies on proving
by induction on t that [[t[s=x]]] = hSub([[s1]]); : : : ; Sub([[sn]])i � [[t]].

E-categories form a complete class of models for the ��-calculus.

Theorem 8 Let � ` f : � 0 and � ` f 0 : � 0 be ��-substitution judgements
and [[]] be the interpretation function of Theorem 7. If for every E-category,
[[f]] = [[f 0]], then � ` f = f 0:� 0 is provable.

Proof. The proof is by the standard term-model construction. We sketch this in
three stages: (i) �rst we construct the base; (ii) next we construct the pre-sheaf
structure; and (iii) we �nally describe the natural transformations Term and Sub.

{ The Base Category B: In the term model, the base has as objects contexts
and equivalence classes of substitutions as morphisms. The identity will be
hi while composition is given by ;. Equations (1), (3) and (10) ensure that
this structure does indeed de�ne a category.

{ Cartesian Structure on B: By equation (7), the empty context is terminal
in B. On objects, the product structure is context concatenation while pairing
is de�ned via the hi-combinator. Universality follows from equation (10).

{ The Pre-sheaf: The functor E maps a context � and singleton context
(x : A) to the set of equivalence classes of terms of type A in context � . On
morphisms E(f) maps a term t to the term f � t and E is a functor, ie E
preserves identities and composition, by equations (2) and (4)

{ The Natural Transformations Term and Sub: The natural transforma-
tion Term maps f : � !(x : A) to f � x, while Sub maps an element of
E(�)x:A, ie a term t, to the substitution ht=xi. Naturality of Term follows
from equation (4), while naturality of Sub is implicit in equation (8). Equa-
tions (5) and (10) imply Term and Sub are isomorphisms.

4 The Multiplicative Structure

What extra structure must be added to a linear context handling category to
model the (I;
;��) connectives from linear logic? Following the de�nition of E-
categories, we may try adding natural isomorphisms to the �bres of linear context
handling categories. While this works for the linear function space, there is a
complication for the tensor and unit. Recall from section 3 that the structure
used to interpret product types is de�ned on the �bres and then induces an
isomorphism in the base between the contexts z : A�B and x : A; y : B.
However, imposing structure on the �bres of linear context handling category
does not induce such an isomorphism and hence we require one explicitly.

Formally, a L-category requires an object I 2 T to model the unit and
binary operations
 and �� to model the tensor and linear implication. As
argued before, I will be isomorphic to the unit [] of the monoidal structure of B.
Similarly,
 will not be equal to the tensor of B but will be isomorphic to it.

De�nition 9 An L-category is a linear context-handling category (B; T) st:

204 Neil Ghani et al.

(i) There is a type I 2T , and given A;B 2T , there are types A
B and A��B.
(ii) For every type A and B, there are isomorphisms nI : [] �= I :n�1

I and
n
: (A;B)

�= A
B:n�1

 .

(iii) Given types A;B and C, there is a � -natural isomorphism between L((�;A))B
and L(�)A��B.

Theorem 6 generalises to the linear setting, ie every L-category has an underlying
SMCC and every SMCC generates an L-category. This reects the fact that a
linear calculus of explicit substitutions contains an underlying linear �-calculus
and every term is equal to a term of the underlying linear �-calculus.

Theorem 10 (i) Let L:Bop!SetT be an L-category. Then the full subcate-
gory of B generated by T is a symmetric monoidal closed category.

(ii) Let C be any symmetric monoidal closed category with objects T . The func-
tor L: Cop!SetT de�ned by L()� = HomC(; �), is an L-category.

(iii) If L:Bop!SetT is an L-category, then the L-category constructed in (ii)
from the underlying SMC de�ned in (i) is naturally isomorphic to the re-
striction of L to the full subcategory of B generated by T .

Proof. The same proof as for Theorem 6 works.

L-categories provide models for a linear �-calculus with the (
; I;��)-type
structure extended with explicit substitutions | we call this calculus the monoidal
��-calculus. Formally, the raw expressions are

t ::= x j �x:A:t j tu j t
 t j � j f � t j let t be p in t
f ::= hi j hf; t=xi j f ; f j let t be p in f

where x is a variable and p is of the form �; x
y. The calculus contains the usual
terms of the linear �-calculus, substitution constructs we have already seen and
�nally there are two new forms of substitution given by let-expressions. That is,
not only do we have terms of the form let t be p in u (where u is a term) but also
substitutions of the form let t be p in f (where f is a substitution). These let-
expressions ensure the context z : A
B is isomorphic to the context x : A; y : B
as required by the de�nition of an L-category. Formally, the typing judgements
are of the form � ` t : A and � ` f : � 0 and are given in Table 3, while the
equality judgements for the calculus are given in Table 4. The �-equations are
derived from Ghani's adjoint rewriting [9].

Theorem 11 Let L:Bop!SetT be a L-category. Then there is an interpreta-
tion map [[:]] sending terms of the monoidal ��-calculus with ground types T to
elements of the �bres and substitutions to morphisms.

Proof. The proof is similar to that of Theorem 7. Variables are interpreted by
the elements VarA, while hi is interpreted via the identity in the base, parallel
composition via the tensor on B and sequential composition via composition in
the base. The isomorphism A
B !(A;B) is used to interpret both the term

205Categorical Models of Explicit Substitutions

Table 3. Typing Judgements of the Monoidal ��-calculus

The term judgements of are

x:A ` x:A
�; x:A ` t:B

� ` �x:A:t:A��B
�1 ` t:A��B �2 ` u:A

� ` tu:B

�1 ` f :�2 �2 ` t:A
�1 ` f � t:A ` �: I

�1 ` t: I �2 ` u:A
� ` let t be � in u:A

�1 ` t:A �2 ` u:B
� ` t
u:A
B

�1 ` u:A
B �2; x:A; y:B ` t:C
� ` let u be x
y in t:C

The substitution judgements are

� ` hi : �
�1 ` f :�2 �2 ` g:�3

�1 ` f ; g:�3

�1 ` f : � 0 �2 ` t:A
� ` hf; t=xi:� 0; x:A

�1 ` t: I �2 ` f :� 0

� ` let t be � in f :� 0

�1 ` u:A
B �2; x:A; y:B ` f :� 0

� ` let u be x
y in f :� 0

The rules for substitutions assume x; y are fresh and, where applicable, �1, �2 are
disjoint and � is any permutation of �1; �2.

let u be x
 y in t and the substitution let u be x
 y in f . Similarly
the corresponding isomorphism for the unit is used to interpret the other let-
expression. The veri�cation that the map [[t]] respects equality judgements relies
on a substitution lemma similar to that of Theorem 7.

Theorem 12 L-categories form a complete class of models for the monoidal
��-calculus.

Proof. A term model is constructed with contexts as objects and equivalence
classes of substitutions as morphisms. The pre-sheaf structure is added as in
Theorem 8 and, �nally, we get an L-category from the inverse morphisms

x : X; y : Y ` h(x
 y)=zi : z : A
B

z : A
B ` let z be x
 y in hx=x; y=yi : (x:X; y:Y)

Similarly, I is isomorphic to the empty context.

5 The Modalities

The standard categorical model of the modalities of linear logic is via a co-
Kleisli construction [17] [6]. Benton [5] proposes the equivalent LNL-categories
consisting of a monoidal adjunction between a cartesian closed category (CCC)
and a symmetric monoidal closed category (SMCC). The adaptation of this
approach to our framework is more succinct and hence used here.

De�nition 13 An !L-category is an L-category L:Bop!SetT together with an
E-category E : Cop!SetS and monoidal adjunction F a G : C!B such that if
A 2 S, then FA 2 T , and conversely, if B 2 T , then GB 2 S.

206 Neil Ghani et al.

Table 4. Equality Judgements of the Monoidal ��-calculus

Let @ be either ; or � depending whether h is a term or a substitution.

{ �- and �-equality:

(�x:A:t)u = hu=xi � t �x : A:tx = x
let v
u be x
y in h = hv=x; u=yi � h let � be � in h = h

�1 ` u :I �2; z : I ` f : � 0

� ` f [u=z] = let u be � in h�=zi; f
�1 ` u : A
B �2; z : A
B ` f : � 0

� ` f [u=z] = let u be x
y in h(x
y)=zi; f

{ Application of Substitutions:

hi; f = f hi � t = t (f ; g);h = f ; (g;h)
hf; t=xi � x = t hf; t=yi � x = f � x (f ; g) � t = f � (g � t)

� ` f : �
� ` f = hi

� ` hi : � � = xi:Xi

� ` hi = hxi=xii

{ If f = ht1=x1; : : : ; tn=xni then ft is f restricted to the free variables of t.

f ; hg; t=xi = hfg; g; (ft � t)=xi
f � (u
 v) = (fu � u)
 (fv � v) f � � = �
f � �y:A:u = �z:A:hf; z=yi � u f � uv = (fu � u)(fv � v)

f@let t be p in h = let (ft � t) be p in fh@h

As in Theorem 6 LNL-categories embed into !L-categories and vice versa.

Theorem 14 (i) If (L:Bop!SetT ; E: Cop!SetS) is a !L-category, the full
subcategory of B de�ned by T and of C de�ned by S is a LNL-category.

(ii) Let F a G : C!B be a monoidal adjunction between a cartesian closed
category C with objects S and a symmetric monoidal closed category B with
objects T . If we de�ne functors E: Cop!SetS by E()� = HomC(; �) and
L:Bop!SetT by L()� = HomB(; �) then (L;E) is an !L-category.

(iii) If (L:Bop!SetT ; E: Cop!SetS) be a !L-category, then the !L-category con-
structed in (ii) from the monoidal adjunction constructed in (i) is isomor-
phic 3 to the original L-category.

5.1 xDILL - A Linear Calculus of Explicit Substitutions

We now extend the monoidal ��-calculus with !-types and prove that !L-categories
form a sound and complete class of models for this calculus. Underlying our ex-
tended calculus is Barber's DILL [3] | hence we call our calculus xDILL [10].
We use DILL because it incorporates the semantic separation of linear and non-
linear contexts directly within the syntax although we could have started from
Bierman's linear �-calculus. Formally, the types of xDILL are base types, unit,
function, tensor and !-types and the raw expressions are

t ::= x j �x:A:t j tu j t
 t j � j !t j f � t j let t be p in t
f ::= hi j hf; t=xIi j hf; t=xLi j f ; f j let t be p in f

3 in the obvious component-wise sense

207Categorical Models of Explicit Substitutions

where x is a variable and p is of the form �; x
 y or !x. Like DILL, xDILL
contains both linear and intuitionistic variables and hence has zoned contexts
of the form � j�. Weakening and contraction are only permitted for variables
declared in � and the !-type constructor controls the interaction between the
intuitionistic and linear zones of a context, thus allowing terms of !-type to be
copied and discarded. As in section 4, the let-expressions must be generalised
to substitutions as well as terms. Formally, the typing judgements of xDILL are
of the form � j� ` t : A and � j� ` f : � 0j�0 and are given in Table 5, while the
equality judgements of xDILL as presented in Table 6.

Proposition 15 There is a canonical interpretation [[]] of xDILL with base
types in T in a !L-category (L:Bop!SetT ; E: Cop!SetS) with monoidal ad-
junction F a G : C!B.

Proof. Firstly interpret the types in T | for !-types set [[!A]] = FG[[A]]. This
gives an interpretation of xDILL contexts using the monoidal structure of B

[[� j�]] = (FG([[A1]]); � � � ; FG([[An]]); [[B1]]; � � � ; [[Bm]])

where � = x1:A1; : : : ; xn:An and � = y1:B1; : : : ; ym:Bm. Now any xDILL
term judgement � j� ` t : A is interpreted as an element of L([[� j�]])[[A]] and
any xDILL substitution judgement � j� ` f : � 0j�0 is interpreted as a B-map
[[f]] : [[� j�]]![[� 0j�0]]. This map [[]] is de�ned inductively, eg

[[!t]] = �� �m� � FG(Sub(t)) � VarA

[[let t be !x in u]] = (Id; Sub([[t]]); Id) � [[u]]

[[let t be !x in f]] = (Id; Sub([[t]]); Id); [[f]]

where �� : (!X1; : : : ; !Xn)!(!!X1; : : : ; !!Xn) is derived via the co-multiplication
of the comonad on B and m� : (!!X1; : : : ; !!Xn)!!(!X1; : : : ; !Xn) is derived from
the monoidal transformation !X; !Y !!(X;Y).

Completeness of !L-categories as models of xDILL is proven by constructing
a term model. We only de�ne the structure involved and (mostly) omit the
(lengthy, but routine) veri�cation that the structure has the required properties.
First the functor L:Bop!SetT is de�ned. The objects of B are contexts � j�
and morphisms are substitution judgements � j� ` f : � 0j�0. Context union
makes B monoidal. Next de�ne T to be the set of xDILL types, L(� j�)A to
be the judgements � ` j� ` t : A, L(f)(t) to be f � t, VarA to be a canonical
variable and set Sub(t) to be the substitution ht=xi. This makes L a linear context
handling category. Section 4 shows how to turn L into a L-category.

Now we turn to the modalities. The category C has as objects contexts �
and morphisms C(�;�) are tuples of judgements � j ` t : Ai where � is the
context x1 : A1; : : : ; xn : An. Note that in C there are no let-substitutions |
this corresponds exactly to the syntactic restrictions on term substitutions that
arise in the meta-theory of xDILL [10]. Composition in C is given by substitution
with tuples of variables forming the identities. S is the set of types and de�ne

208 Neil Ghani et al.

Table 5. xDILL Typing Judgements

The term judgements of xDILL are

�; x:A; � 0j ` x:A
�1j�1 ` f :�2j�2 �2j�2 ` t:A

�1j�1 ` f � t:A

� jx:A ` x:A
� j�; x:A ` t:B

� j� ` �x:A:t:A��B
� j�1 ` t:A��B � j�2 ` u:A

� j� ` tu:B

� j ` �: I
� j�1 ` t: I � j�2 ` u:A
� j� ` let t be � in u:A

� j�1 ` t:A � j�2 ` u:B
� j� ` t
u:A
B

� j�1 ` u:A
B � j�2; x:A; y:B ` t:C
� j� ` let u be x
y in t:C

� j ` t:A
� j `!t: !A

� j�1 ` t: !A �; x:Aj�2 ` u:B
� j� ` let t be !x in u:B

The substitution judgements of xDILL are

� 0 � �
� j� ` hi : � 0j�

�1j�1 ` f :�2j�2 �2j�2 ` g:�3j�3

�1j�1 ` f ; g:�3j�3

� j� ` f : � 0j�0 � j ` t:A
� j� ` hf; t=xIi:�

0; x:Aj�0

� j�1 ` f : � 0j�0 � j�2 ` t:A
� j� ` hf; t=xLi:�

0j�0; x:A

� j�1 ` t: I � j�2 ` f :� 0j�0

� j� ` let t be � in f :� 0j�0

� j�1 ` t: !A �; x:Aj�2 ` f :� 0j�0

� j� ` let t be !x in f :� 0j�0

� j�1 ` u:A
B � j�2; x:A; y:B ` f :� 0j�0

� j� ` let u be x
y in f :� 0j�0

The rules for substitutions assume x; y are fresh and, where applicable, �1, �2 are
disjoint and � is a permutation of �1; �2.

E: Cop!SetT by setting E(�)A to be the set of typing judgements � j ` t : A.
This makes E a cartesian context handling category. E can be made into an
E-category using Girard's decomposition of intuitionistic function spaces A!B
into linear function spaces !A��B.

Finally we construct a !L-category. This is greatly simpli�ed by observing
that B is naturally isomorphic to the full subcategory B0 whose objects are
jx : A| again these isomorphisms use the let-substitutions of xDILL. Thus we
de�ne a monoidal adjunction F a G : C !B0 which then extends to a monoidal
adjunction on B. The functor F is given by F (�) = jz : (!X1
� � �
!Xn),
where � = x1 : X1; : : : ; xn : Xn and z is some canonical choice of variable. To
de�ne F on morphisms, let � j ` tj : Yj . Then since there is an isomorphism
��1 : F (�)!� , there are judgements F (�) ` ��1; !tj :!Yj . Hence F (t1; : : : tn) =
h(��1; !t1
 � � �
��1; !tm)=xi. We de�ne G on objects by G(jx : A) = z : A |
this makes G right-adjoint to F as the required natural isomorphism on sets of
derivations follows from the isomorphism in B between � and F (�). Moreover
one can show that we have the required additional data to form a !L-category.
Hence we have shown the following Theorem:

Theorem 16 The term model is a !L-category.

209Categorical Models of Explicit Substitutions

Table 6. Equality Judgements for xDILL

Let @ be either ; or � depending whether h is a term or a substitution.

{ �- and �-equality:

(�x:A:t)u = hu=xi � t �x : A:tx = x
let v
u be x
y in h = hv=x; u=yi � h let � be � in h = h
� j�1 ` u : A
B � j�2; z : A
B ` f : � 0j�0

� j� ` f [u=z] = let u be x
y in h(x
y)=zi; f
let !u be !x in t = hu=xi � t

� j�1 ` u :I � j�2; z : I ` f : � 0j�0

� j� ` f [u=z] = let u be � in h�=zi; f
� j�1 ` u :!A � j�2z :!A ` f : � 0j�0

� j� ` f [u=z] = let u be !x in h!x=zi; f

{ Application of Substitutions:

hi; f = f hi � t = t (f ; g);h = f ; (g;h)
hf; t=xi � x = t hf; t=yi � x = f � x (f ; g) � t = f � (g � t)

� j� ` f : �j�
� j� ` f = hi

� j� ` hi : � 0j�0 � 0 = xi:Xi �0 = yi:Yj
� j� ` hi = hxi=xi; yj=yji

{ If f is of the form ht1=x1; : : : ; tn=xni and ft is f restricted to the
free variables of t.

f ; hg; t=xi = hfg; g; (ft � t)=xi f�!u =!(f � u)
f � (u
 v) = (fu � u)
 (fv � v) f � � = �
f � �y:A:u = �z:A:hf; z=yi � u f � uv = (fu � u)(fv � v)

f@let t be p in h = let (ft � t) be p in fh@h

6 Summary and Discussion

We have modularly de�ned new categorical models for �-calculi extended with
explicit substitutions. We took our intuitions from indexed category theory
but had to make alterations so as to accommodate linear calculi in the same
framework as cartesian calculi. We have also related these models to the well-
established categorical models for their underlying �-calculi and proved appro-
priate soundness and completeness results.

Recapitulating from the introduction, the reason for describing these models
is our goal of designing an abstract machine based on the linear lambda-calculus
that is conceptually clean (and easy to prove correct!). These models have already
been used to derive a linear lambda-calculus with explicit substitutions [10] and
an abstract machine, which has been implemented by Alberti [2].

However there are two questions which remain unresolved and require further
research. Firstly we have been unable to �nd concrete instances of our proposed
models. Secondly, and perhaps more importantly, our de�nition of a context han-
dling category L:Bop!SetT distinguishes between isomorphic entities, eg the
functor L(A) and the hom-functor HomB(�; A). This goes somewhat against the
grain of category theory which tends to regard isomorphic structures as being
indistinguishable. However, were we to take the alternative approach of identify-
ing the functor L with the hom-functors and dropping the transformations Sub

210 Neil Ghani et al.

and Term, while maintaining a Curry-Howard correspondence, this would entail
dropping the crucial combinator which forms substitutions from terms from the
associated calculus of explicit substitutions. Hence we keep the functor L and
the natural isomorphisms Sub and Term in De�nition 1.

We would like to thank Peter Dybjer, Martin Hofmann, Andrea Schalk and
Martin Hyland for discussions on the subject of this paper.

References

1. Martin Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jaques L�evy. Explicit
substitutions. Journal of Functional Programming, 1(4):375{416, 1991.

2. F.J Alberti. An abstract machine based on linear logic and explicit substitutions.
Master's thesis, School of Computer Science, University of Birmingham, 1997.

3. A. Barber and G. Plotkin. Dual intuitionistic linear logic. Technical report, LFCS,
University of Edinburgh, 1997.

4. N. Benton, G. Bierman, V. de Paiva, and M. Hyland. A term calculus for intuition-
istic linear logic. In M. Bezem and J. F. Groote, editors, Typed Lambda Calculi

and Applications, volume 664 of Lecture Notes in Computer Science, pages 75{90.
Springer Verlag, 1993.

5. Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models. In
Proceedings of Computer Science Logic '94, Kazimierz, Poland. Lecture Notes in
Computer Science No. 933, Berlin, Heidelberg, New York, 1995.

6. Gavin Bierman. On Intuitionistic Linear Logic. Phd-thesis, University of Cam-
bridge, 1994. Also available as Technical Report No. 346.

7. Guy Cousineau, Pierre-Louis Curien, and Michel Mauny. The categorical abstract
machine. Science of Computer Programming, 8:173{202, 1987.

8. Thomas Ehrhard. A categorical semantics of constructions. In Third Annual

Symposium on Logic in Computer Science, pages 264{273. IEEE, 1988.
9. N. Ghani. Adjoint Rewriting. PhD thesis, University of Edinburgh, 1995.
10. N. Ghani, V. de Paiva, and E. Ritter. Linear explicit substitutions. In Proc. of

Westapp'98, 1998. Full version submitted for publication.
11. J. M. E. Hyland and A. M. Pitts. The theory of constructions: Categorical seman-

tics and topos theoretic models. Contemporary Mathematics, 92:137{198, 1989.
12. Bart Jacobs. Simply typed and untyped lambda calculus revisited. In Michael

Fourman, Peter Johnstone, and Andrew Pitts, editors, Applications of Categories
in Computer Science, LMS Lecture Note Series 177, pages 119{142. CUP, 1992.

13. Yves Lafont. The linear abstract machine. Theoretical Computer Science, 59:157{
180, 1988.

14. Ian Mackie. Lilac: A functional programming language based on linear logic. Jour-
nal of Functional Programming, 4(4):395{433, 1994.

15. E. Ritter and V. de Paiva. On explicit substitution and names (extended abstract).
In Proc. of ICALP'97, LNCS 1256, pages 248{258, 1997.

16. Eike Ritter. Categorical abstract machines for higher-order lambda calculi. Theo-
retical Computer Science, 136(1):125{162, 1994.

17. R. A. G. Seely. Linear logic, *-autonomous categories and cofree algebras. Con-

temporary Mathematics, 92, 1989.

211Categorical Models of Explicit Substitutions

	Introduction
	Context Handling Categories
	The Cartesian Model
	The lambdasigma-calculus
	Modelling the lambdasigma-calculus in an E-category

	The Multiplicative Structure
	The Modalities
	xDILL - A Linear Calculus of Explicit Substitutions

	Summary and Discussion

