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Abstract. Process modeling and enacting concepts are at the center of work-
flow management. Support for heterogeneous processes, flexibility, reuse, and
distribution are great challenges for the design of the next generation process
modeling languages and their enactment mechanisms. Furthermore, flexible and
collaborative processes depend also on unpredictable changes and hence require
human intervention. Therefore, high-level process modeling constructs are
needed which allow for an easy, adequate, and participatory design of work-
flows. We present a process modeling language which covers these require-
ments and is based on object-oriented modeling and enacting techniques. In
particular, we outline how tasks and task nets are specified at a high level of ab-
straction, how flexible and user-adaptable control and data flow specifications
are supported, and how reuse of workflow models can be improved. The ap-
proach is characterized by the uniform and integrated modeling of workflow
schema and instance elements as objects and by the integration of flexible rule-
based techniques with the high-level constructs of task graphs. Finally, we pre-
sent our object-oriented approach for the distributed enactment of workflow
models: A workflow is directly enacted by task agents which may be treated as
reactive components, which interact by message passing, and whose execution
behavior is derived from the context-free and context-dependent behavior of the
tasks defined in the workflow schema.

1 Introduction

Workflow modeling and enacting concepts are at the center of workflow manage-
ment. Support for heterogeneous processes (human-centered and system-centered),
flexibility, reuse, and distribution are important challenges for the design of the next-
generation process modeling languages and their enactment mechanisms (cf. [8, 25]).
In particular, flexible and collaborative processes require human intervention. There-
fore, a process modeling language on a high level of abstraction is needed which is
easy to use and supports the visualization of its elements. In particular, the trade-off
between high-level formalisms, such as graph-based modeling approaches, and flexi-
ble and executable low-level mechanisms, such as rule-based specifications, has to be
resolved.

Based on these design goals and requirements, we have developed a process mod-
eling language which supports flexible and user-adaptable control and data flow
specifications, as well as dynamic modification of workflows. The approach aims at
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combining the flexibility of rule-based techniques with the high-level constructs of
task graphs. Our approach is characterized by the uniform and integrated representa-
tion of workflow schema and instance elements based on object-oriented technology.
Further characteristics are the separate definition of ‘what to do’ and ‘how to do’ in
the workflow schema, the versioning of the workflow schema, and the separate defi-
nition of context-free and context-dependent behavior of tasks within a workflow. All
these concepts improve the reusability of workflow models.

In this paper, we concentrate on the workflow modeling and enacting concepts for
heterogeneous processes under the given design goals. On a conceptual level, we
focus on the specification of complex user-defined control flow dependencies which
can be used at a high level of abstraction, which are reusable in different contexts, and
which allow for the definition of an adequate and flexible execution behavior in ad-
vance. On a technological level, we show how the modeled processes can be enacted
by interacting distributed task agents which behave according to the process specifi-
cation. Instead of interpreting and scheduling processes by a central and monolithic
workflow engine, our approach leads to a flexible and distributed architecture.

In section 2, we identify requirements for an advanced and comprehensive ap-
proach to workflow management. Section 3 gives an overview on our process mod-
eling approach, and section 4 introduces the basic enactment concepts. Section 5
explains the interplay between modeling and enacting and shows how the execution
behavior can be adapted and reused on schema level. Finally, section 6 discusses
related work, and section 7 gives a short conclusion.

2 Requirements for Advanced Workflow Management

2.1 Design Goals

In order to apply workflow technology to a broader range of processes and in par-

ticular to support dynamic, human-oriented, and distributed processes, we emphasize

the following requirements for a comprehensive and integrated process modeling and
enacting approach:

Adaptability to heterogeneous processes: Most business processes are rather hetero-
geneous entities consisting of well-structured and less-structured parts and en-
compassing transactional and non-transactional. All of them have to be integrated
within a single process model. Thus, for adequate process modeling support, dif-
ferent modeling paradigms (net-based and rule-based, proactive and reactive
control flow specification, etc.) have to be taken into account and have to be inte-
grated (cf. [20, 25]).

Flexibility: Flexibility of a WFMS comprises two fundamental aspects: (1) The speci-
fication of a flexible execution behavior to express an accurate and less restrictive
behavior in advance: flexible and adaptable control and data flow mechanisms
have to be taken into account in order to support ad hoc routing and cooperative
work at the workflow level (cf. [8, 15]). (2) The evolution of workflow models in
order to flexibly modify workflow specifications on the schema and instance
level due to process (re)engineering activities and dynamically changing situa-
tions of a real process (cf. [4]). Workflow evolution management is an important
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part of our approach, but it is out of the scope of this paper (see [17] for a detailed
overview).

Distribution: Distributed workflow enactment is a key requirement for a scalable and
fault-tolerant WFMS (cf. [11]). But distribution and dynamic modifications of
workflows cause contradicting architectural requirements. This trade-off has to
be resolved for a distributed and flexible WFMS.

Reusability: Increasing business value and complexity of process models require the
support of reuse of process specifications (cf. [9, 23]). Thus, a process modeling
language should provide abstraction and encapsulation mechanisms.

Ease of use: A very crucial design goal is, that the language is easy fo use, i.e., it
should allow for modeling of processes at a high level of abstraction, and it
should support the visualization of its elements (cf. [25, 6]) (this is naturally
given in a net-based approach; on the other hand, rule-based specifications are
hard to understand for people, but provide a great flexibility).

2.2 Advanced Control Flow Modeling

Based on the above presented requirements and design goals we refine the require-
ments for control flow modeling in order to support heterogeneous and flexible proc-
esses. For the representation of heterogeneous processes several fine-grained inter-
task dependencies have to be supported, which define control flow dependencies
between particular states of a task (cf. [1, 21]). Several dependencies of these are
well-known from transaction management, e.g., the two-phase commit protocol
shows different state-dependencies and also the need for reactive triggering mecha-
nisms in order to commit or abort the corresponding activities. There are many further
examples where advanced control flow modeling constructs are useful particularly in
order to define an accurate and a priori less prescriptive flow of work, a few of which
we are listing in the following (cf. [14, 24]): (1) Our first example is the SEQ-
operator which forces a set of activities to execute sequentially, but in any or-
der/permutation. In this case, the actor may determine ad hoc the ordering resulting in
an a priori more flexible workflow. (2) The so-called soft synchronization is useful for
dependencies between different branches. Here, an activity may start when the pre-
ceding activity is finished or will definitely not be executed. (3) The deadline operator
says that an activity A can be started only if activity B has not been started. (4) Si-
multaneous engineering is another good example which also shows the need for ad-
vanced data flow modeling capabilities (cf. [13, 15]): in this case, dependent activities
can overlap and an activity may pass intermediate results to subsequent activities.

In contrast to these requirements, several process modeling languages are based on
Petri Net-like or equivalent semantics: an activity is represented as one monolithic
block, which consumes all input information once it is started, and produces all out-
puts, when it has finished. In particular, since control flow dependencies cannot be
specified independently for the start and end point of an activity, only end-start de-
pendencies can be defined. Among parallel and conditional splits with corresponding
join operators sometimes some special control flow operators are provided. Such
approaches support modeling of workflows on a high level of abstraction and the
graphical visualization of both workflow schemata and running workflow instances.
However, there is no possibility to model fine-grained inter-task dependencies and to
define user-adaptable control flow constructs.
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On the other hand, the above listed advanced control flow dependencies can be ex-
pressed by more low-level, rule-based formalisms, e.g., by event-condition-action
(ECA) rules. Unfortunately, whereas the representation of a workflow model as a set
of rules is sufficient for enactment, it is inadequate for workflow design and hardly
understandable for people (cf. [2]). Furthermore, the reusability of complex control
flow dependency patterns is mostly weak since there is no encapsulation or abstrac-
tion mechanism (an exception are the rule patterns of [19]). Therefore, several ap-
proaches (e.g., [18, 3, 7, 29, 6]) provide high-level workflow modeling constructs
which are transformed into global ECA rules for enactment — in this way the flexibil-
ity and expressive power of ECA rules on the modeling level is lost.

To summarize, among the general and well-known requirements of separated control
and data flow modeling and provision of multi-paradigmatic control flow mecha-
nisms, a flexible process modeling language should support the specification of fine-
grained control flow dependencies, but still provide mechanisms to abstract from
these detailed control flow specifications. In particular, an advanced workflow de-
signer should be able to define new control flow dependencies (cf. [14]).

3 Overview of the Processes Meta Model

Our approach to process modeling and enacting is based on object-oriented modeling
techniques (not to confuse with an OO process modeling method, where processes
would be defined in a product- or object-centered way). All relevant entities are mod-
eled as attributed, encapsulated, and interacting objects. Following the principle of
separation of concerns, we divide the overall model into sub-models for tasks and
workflows, documents and their versions, and organizational aspects in order to cap-
ture the different aspects of processes. We concentrate in the following on the mod-
eling and enacting of tasks and workflows and disregard the integration of document,
version, and workspace management capabilities in our approach (see [15, 16] for
details). Furthermore, all elements of the organizational sub-model are omitted in this
paper. We introduce our object model step by step starting with the definition of task

types:

3.1 Task Definition and Task Interface

First of all, a task definition (or task type) is separated into the definition of the rask
interface which specifies ‘what is to do’, and potentially several workflow definitions
(task body), which specify how the task may be accomplished (how to do) (see figure
1 and 2). Thus, the building block is the class TaskDefinition which may con-
tain several WorkflowDefinitions. The decision is taken at run-time, which
workflow definition of a task definition is used to perform a task (late binding). Every
workflow definition has a condition which acts as a guard and restricts the allowed
workflows according to the current case. Note, that when talking in the context of our
formal meta model, we use workflow definition in the more restricted sense of defin-
ing only how a task has to be done (the task body) and use workflow synonymously
to workflow definition when misunderstandings are excluded by the context.
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Fig. 1. Functional and behavioral aspects of the process meta model

The task interface of a task definition is defined by a set of parameter definitions, a
behavior definition, and a set of business rules which constrain the valid workflow
definitions (parameter definitions and business rules are omitted in figure 1). The
behavior definition specifies the external context-free behavior of a task by a state-
chart variant (e.g., transactional or non-transactional), whereas the context-dependent
behavior is defined by control flow dependencies within a workflow definition (see
below). A parameter definition specifies the kind of the parameter (in, out, inout), the
type of the parameter, an access type, and a condition, which defines the properties
the actual inputs and outputs have to comply with. The access type is based on our
integrated workspace management services (see [15] for details).

3.2 Workflow Definition

The basic elements of modeling the control and data flow on a high level of abstrac-
tion are well-known from several process modeling languages. Usually, a workflow is
modeled in terms of tasks or activities, specific control and data flow dependencies,
and branching and synchronization operators. The execution semantics of these
workflow-specific terms is mostly defined in workflow-independent terms like Petri
Nets, statecharts, or ECA rules. We will follow such an approach, which is based on
the high-level constructs of task graphs briefly introduced in this sub-section. In the
next sections, we then show how the execution semantics of the control flow depend-
encies are defined and how user-defined and complex control flow constructs are
supported.

A workflow definition may be atomic or complex. An atomic workflow consists
only of a process description. A complex workflow is defined in a process-oriented
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manner by a task graph which consists of task components, start and end nodes, and
data inlets and outlets, which are linked by control and data flow dependencies:

Components: A task component is an applied occurrence of a task definition repre-
senting the invocation hierarchy. If a task definition is applicable only in a certain
context, it can be locally declared within another task definition, restricting their visi-
bility to this task type. Thus, the declaration and invocation hierarchy of task defini-
tions are separated (as it is well-known from programming languages). For every task
component a split and join type can be specified. AND- and OR-splits realize total
and conditional branching, respectively. The corresponding join types synchronize the
activated branches. In order to provide connectors independently of a task component,
connector components are predefined which just realize splits and joins. Furthermore,
a task graph consists of a start and end node which provide only syntactic sugar.

Control flow dependencies: Task components (and start and end node) are linked
by control flow dependencies. Iterations within this task graph are modeled by a spe-
cial predefined feedback relationship. A condition can be associated to every depend-
ency to support conditional branches (by default, this condition is set to true). We
allow to define different control flow dependency types which can be applied and
reused within several workflow definitions. The semantics of a control flow depend-
ency type is defined by ECA rules as introduced in the next section. Figure 4 illus-
trates an example with an end-start dependency and a deadline dependency.

Groups and blocks: Similar to the definition of control flow dependencies we sup-
port the definition of groups and block relationship types. A group relationship is used
within a workflow definition in order to group arbitrary task components of a task
graph; it applies the behavior defined by the group relationship to its components
(e.g., to realize mutual exclusion). A block is a group, which contains a subtask-graph
with exactly one start and end component (omitted in figure 1). Blocks can be nested.
This mechanism is particularly useful for exception handling.

Dataflow relationships: Finally, task components can be linked by dataflow rela-
tionships according to the input and output parameters of their task definitions. Fur-
thermore, a data inlet (or outlet) is used in a task graph as a data source (or sink) in
order to realize a vertical dataflow between the parameters of the task definition and
their use within the workflow.

4 Distributed Enactment by Reactive Components

4.1 Overview on Distributed Workflow Enactment by Reactive Components

This section sketches the basic execution model of our approach which is the basis for
the detailed consideration of the definition of the execution behavior of a task in the
next section. We follow the idea of treating tasks as reactive components (cf. [13, 5,
27, 26]): instead of interpreting a workflow instance by a (centralized) workflow
engine, a workflow is directly enacted by distributed task instance agents which inter-
act by event passing.
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Fig. 2. Example of process definition and enactment

A task has several built-in operations/transitions, which can be categorized into
state transition operations, actor assignment operations, operations for handling of
(versioned) inputs and outputs, and workflow change operations. For every operation,
the task has the knowledge about when to trigger the transition, a condition that must
hold for executing the transition, and a list of receivers to which events are passed.
Furthermore, the task knows its related tasks (the context of the task, i.e., predeces-
sors, successors, sub-tasks, super-task, supplier of inputs, and consumer of outputs).
Thus, workflow enactment is distributed to task agents, which correspond to the com-
ponents of a workflow definition and behave as defined in the schema. We denote this
approach as light-weight agent-oriented, since the knowledge of how to react on
events is explicitly represented and decoupled from the built-in operations (corre-
sponding to [10]). On the other hand, task agents lack properties which characterize
fully-fledged agents as defined by [28].

Example: A typical workflow enactment with traditional control flows is as fol-
lows (see figure 2B): A task is started and in most cases a workflow is selected auto-
matically creating sub-tasks in the case of a complex workflow. An event is passed to
the first tasks of this workflow, triggering the evaluation of the 'enable' transition.
When a task is enabled, the role resolution is activated if no actor has yet been as-
signed explicitly. In the case of automatic tasks, the start transition will be directly
triggered by the enable event (by the trigger ‘on enabled by self’). When a task is
terminated, a corresponding event is sent to all successor tasks. This again results in
the evaluation of the 'enable' transition. Furthermore, for all tasks which are connected
to the end node, the finish event is also sent to the super-task, triggering the termina-
tion of the super-task, when all sub-tasks have been terminated.



Towards Flexible and High-Level Modeling and Enacting of Processes 95

4.2 Representation of Task Instances

For instantiation, neither a copy of a task definition is created (e.g., as it is done in the
Petri Net-based approaches) and enriched by execution-relevant information (e.g.,
assignment of start tokens) nor a compilation into another formalism is used (e.g., as
in IBM FlowMark [22], METEOR, [5]). We rather follow a tightly integrated ap-
proach, where a task instance is related to the relevant schema elements and where
these interrelationships are explicitly maintained (as illustrated in figure 1 and 2).
First of all, a task instance is related to its task definition. Next, when a workflow was
chosen for execution at run-time, a ‘performed by’ relationship is inserted, the sub-
tasks are created according to the chosen workflow definition, and for every subtask
the corresponding component within the workflow definition is identified. Thus, the
dynamic task hierarchy is created step-by-step and all execution-relevant information
of a workflow schema can be accessed by the instances. Only the execution state of a
task instance, the dynamic invocation hierarchy, and the actual dataflow are persis-
tently covered at instance level. The execution behavior, i.e., the ECA rules and the
context of a task is cached within the task object, but is not made persistent. The be-
havior is derived from the context-free behavior of the task definition and the context-
dependent behavior of the component that the task plays within a workflow definition.
The tight coupling of schema and instances is also reflected by our architecture,
which does not distinguish build- and run-time environments. This is the basis to
support dynamic workflow changes (see [17] for details).

4.3 Representation and Semantics of the Task Execution Behavior

The execution behavior of tasks is defined by a statechart variant by means of states,
transitions, and event handling rules. Event-condition-action (ECA) rules determine
when an operation/transition is invoked, and when it is applicable. We adopt the con-
cept of ECA rules as follows:

Syntax of ECA rules: First of all, an ECA rule is always associated with an opera-
tion/transition, which defines the action part of the rule. Furthermore, there is exactly
one ECA rule for every transition. Thus, ECA rules are structured according to the
task's transitions, and therefore the transition name is listed at the top of a rule (see
BNF of an ECA rule below). Additionally, an ECA rule consists of a list of event
captures, a condition, and a receiver expression.

ECArule ::= "DO" <transitions
"ON" <event captures> { "," <event captures }
"IF" <transition_condition>
"SEND TO" receiver expr

event_capture ::= <event name> ["BY" <event producer names>]

["WHEN" <trigger conditions]

Semantics of event handling: Events define when an operation is to be triggered:
when a task receives an event that matches an event capture in the event capture list,
and when the task is in the source state of the corresponding transition, the event is
consumed and the task tries to perform the transition. The invocation of a transition
causes the evaluation of the transition condition defined by the ECA rule. This transi-
tion acts as a guard, i.e., the transition is performed only when the condition holds
(otherwise nothing is done). We allow only the definition of atomic events, which are
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used only for triggering the evaluation of the transition condition. These state-based
semantics avoid the difficulties of defining complex event-based semantics. Moreo-
ver, user controllable operations can be invoked externally. In this case, the condition
still ensures that the operation is applicable. Thus, invocation and applicability of a
transition are strictly separated.

Event capture: The matching of an event with an event capture can be qualified to
the causing task, e.g., this allows a task to react differently on the event finished,
depending on whether the event was received from a predecessor or from a sub-task
(triggering the enable or finish transition, respectively; see figure 2). Furthermore, a
trigger condition can be specified within an event capture which must hold for a valid
event capture. Otherwise, the next event capture which matches the event is searched.

Event generation and propagation: After an operation is executed, an event is
automatically generated for that operation. In contrast to statecharts [12], we use
events for inter-object communication and hence do not prescribe a broadcast of
events to all tasks in order to avoid communication overhead (note, that a broadcast
would not change the execution semantics; therefore and for the sake of readability,
we omit the receiver expressions in all examples). The receivers of an event are rather
defined by the receiver expression of an ECA rule, taking into account the workflow
structure, i.e., passing events horizontally to related tasks as well as vertically among
super- and sub-tasks.

5 Behavior Definition and Adaptation

So far, we have introduced how workflows are modeled in terms of a task graph and
how tasks are enacted on the basis of event handling mechanisms. But we have not
yet presented the interplay of the high-level modeling constructs with the flexible
rule-based enacting techniques. In this section, we therefore show how the execution
behavior of tasks can be defined and adapted on schema level, how user-definable
control flow dependency types and fine-grained state dependencies are represented,
and how the execution behavior of a task is configured from this specifications.

5.1 Definition of the Context-Free Behavior of a Task

The context-free behavior of a task is defined by a statechart variant, which is encap-
sulated by the class BehaviorDefinition. The statechart defines the states and
the operations/transitions, which can be invoked in that state. We allow for the com-
position of states into complex states (OR-states), but we disallow concurrent states
(AND-states). Furthermore, one context-free ECA rule can be defined for every tran-
sition. Further ECA rules can be added by the definition of control flow dependencies
types and group relationship types, which we will introduce below.

A task definition can inherit from an abstract task definition, i.e., a task definition
which has neither parameter definitions nor workflow definitions. Thus, the is_a hier-
archy is used to define the behavior classes of tasks (e.g., non-transactional, transac-
tional, etc.; cf. [21, 27] for detailed examples). Within an inherited statechart, new
states can be added and atomic states can be refined. Also, transitions can be added
and redefined by redefining the source state, refining the target state, and by redefin-
ing and adding ECA rules. Every task definition inherits from a predefined task defi-
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(A) Predefined state transition diagram (B) Predefined context free ECA rules
add_supplier, remove_supplier,
add_predecessor, remove_predecessor FOR enable DEFINE:
ON resumed,
created iterated BY self
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[]

Fig. 3. Predefined context-free execution behavior

nition, which consists of a statechart that defines the basic states, transitions, and
context-free ECA rules as illustrated in figure 3. In particular, the activation and ter-
mination condition of a task is associated with the enable and finish transition, re-
spectively. The ready state is needed for worklist handling and the truncated state is
used to handle the synchronization of dynamically determined parallel branches.

5.2 Definition of Control Flow Types

Different control flow dependency types and group relationship types can be defined
by a process engineer. They are defined by a label, an informal description, and a set
of ECA rules, which give the semantics of the dependency type. Within the task
graph, the control flow dependencies or group relationship can be used by their labels
abstracting from the detailed definition and reusing complex control flow schemes.
Thus, the ECA rules defined by a control flow type define how to react on events
dependent on the context. This leads to a combined approach which integrates the
flexibility of rule-based techniques with the high-level constructs of task graphs.

As a first example and omitting the details of defining ECA rules on the schema
level, we briefly explain the definition of the standard end-start dependency, which
consists of several rules shown in figure 4. We concentrate on the first rule, which
defines that the enable transition is triggered 'on finished by predecessor', and that the
condition 'source.state=done' must hold. The application of this dependency type in
the example of figure 4 results in the following behavior: when 'CloseRegistration'
terminates, the corresponding event is sent to the successor tasks (here 'SendPro-
gram'), triggering the evaluation of the enable condition (which requires 'CloseRegis-
tration.state=done’, but also that all mandatory inputs are available and that the su-
pertask is active as defined by the context-free behavior), and probably performing
the enable transition. Thus, the rules are associated with the target component of a
dependency and are merged with other defined rules as introduced below. In a similar
way, a soft synchronization dependency can be realized with the relaxed enabling
condition 'source.state=done OR source.state=not_executed'.
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(A) Workflow with different dependency types (B) Definition of control flow dependency types

Program

Close standard

Registration

CONTROL FLOW DEPENDENCY standard

FOR enable OF target DEFINE:
ON finished BY predecessor standard WHEN dependency_condition
IF source.state=done AND dependency_condition

FOR truncate OF target DEFINE: /* for dead path elimination */
ON truncated BY predecessor standard,

finished BY predecessor WHEN NOT dependency_condition

IF NOT dependency_condition OR source.state=not_executed

deadline

A 4

II Register I

_________________________________________ ' FOR iterate OF target DEFINE: /* for re-activation of a path */
(C) Cutout of the derived ECA rules for task ,Register‘: ON iterated BY predecessor standard
finished BY predecessor standard WHEN dependency_condition
DO enable
ON workflow_selected BY supertask, CONTROL FLOW DEPENDENCY iterate  /* predefined feedback dep. */

iterated BY { Register },
finished BY { } /* can be removed ¥/
IF CloseRegistration.state=waiting AND
supertask.state=active AND mandatory_inputs_available

FOR iterate OF target DEFINE:
ON finished BY predecessor iterate WHEN dependency_condition

DO truncate CONTROL FLOW DEPENDENCY deadline
ON started BY {CloseRegistration } FOR truncate OF target DEFINE: /* skip restricted activity if */
IF CloseRegistration.state<>waiting ON started BY predecessor deadline /* restricting activity starts */

DO iterate IF source.state<>waiting
ON iterated BY { }, /*can be removed */ FOR enable OF target DEFINE:

finished BY { Register }, IF source.state=waiting

IF true

Fig. 4. Examples of the definition and use of control flow dependency types

Furthermore, we extend our approach of modeling task graphs by supporting the
association of ECA rules directly to a task component. By this mechanism, local ad-
aptations as well as reactions to externally generated events of application systems
can be defined within a workflow.

5.3 Definition of ECA Rules on Schema Level

As illustrated in the examples, ECA rules can be partially defined on the schema level
by an event capture, a transition condition, or a receiver expression. In the case of
dependency types, it is further defined whether the ECA rule is associated with the
source or target component of the application of the dependency in a task graph. In
addition to the keywords 'source' and 'target', relationships of the workflow structure
can be used in the specification of an ECA rule (e.g., to the super- and subtasks, to
predecessor and successor task (possibly qualified by a specific dependency type), to
task related by the feedback relationship ('iterators'), to consumer and supplier of
outputs, to all tasks of a complex workflow or a group). This is essential for reusabil-
ity since it avoids context-dependent definitions (such as 'on X.done do ..."). Finally,
the keyword 'dependency condition' refers to the control flow dependency condition
defined in a task graph, and the keyword 'condition_of refers to the condition of an-
other transition.

5.4 Configuration of the Execution Behavior of a Task

The (partially) defined ECA rules of the context-free and context-dependent behavior

definitions are joined together defining the behavior of a task instance. An ECA rule

is relevant for a task T, if

o the ECA rule is defined by the statechart of the task definition of T (context-free
ECA rule), or
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e T refers to a source (target) component of a control flow dependency of type C in
a task graph, and the ECA rule is defined by C for the source (target) component,
or

e T refers to a component in a task graph, which is part of a group relationship of
type G, and the ECA rule is defined by G (thus, the ECA rules of a group rela-
tionship are associated with all members of the group), or

o T refers to a component of a task graph, for which the ECA rule is locally de-
fined.

One ECA rule for every transition is combined from all relevant ECA rules by

e creating the union of the event capture lists of the ECA rules (two event captures
are identical, if and only if their event name, event producer, and trig-
ger_condition are identical),

e creating the union of the tasks represented by the receiver expressions,

e generating a transition condition as follows (where G is the set of ECA rules
which are defined for the transition and which are derived from group relation-
ships, C is correspondingly the set of ECA rules derived from control flow de-
pendencies, ® € {A, v } depending on the join type of the task):

contextfree.condition A /\ g.condition A @ c.condition
VgeG VeeC

Finally, the relative statements within the ECA rules are resolved according to the
structure of the performed workflow. Figure 4 gives an example of this behavior con-
figuration for the 'Register' task (illustrating only the most relevant ECA rules and
event captures for this example) and shows an additional dependency type, the dead-
line dependency.

We finish this section by giving some more examples which show the usage of group
relationships: task components that are part of a parallel branch can be related by a
SEQ group which declares an enable condition 'forall members: state!=running', and
hence guarantees mutual exclusion. Another example is a two-phase commit. First,
we have to specify a behavior definition with a new state ‘prepared’ and redefined
transitions for transactional tasks supporting a 2PC protocol. Next, we may group the
components of a workflow which are 2PC dependent. For this, we define a 2PC group
relationship which ensures by two rules that an abort will cause the abort of all mem-
bers of the group, and that the final commit is enabled when all members are in the
state prepared. Note, that once defined, the workflow modeler can use this complex
behavior by grouping task components according to the defined 2PC grouping rela-
tionship.

6 Related Work

With respect to the adaptability to heterogeneous processes, flexibility, and modeling
of workflows at a high-level of abstraction, APEL and JIL are worth mentioning. JIL
[25] provides a rich set of control flow modeling concepts and it combines in par-
ticular proactive and reactive mechanisms. APEL [6] is based on object-oriented
modeling concepts, provides a graphical process modeling language, and uses state
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transition diagrams and event-trigger rules for the specification of flexible workflows.
However, the specification of user-adaptable control flow dependencies, dynamic
modifications of workflows, and distributed enactment of workflows are not ad-
dressed by these approaches.

User-defined control flow constructs have been discussed by [14] (MOBILE). The
semantics of different control flow constructs are defined by Petri Nets, but without
considering the definition of control flow dependencies in the context of a distributed
workflow enactment. Furthermore, it is not possible to define fine-grained state-
dependencies since the control flow constructs are specified as execution state-
ments/predicates which are independently defined of the execution state of an activity
(e.g., deadline(A, and(B,C)) where A, B, and C are elementary/complex workflows).

The idea of treating tasks as reactive components is influenced by our previous
work on the DYNAMITE approach [13]. But significant revisions and extensions of
the underlying concepts and their integration into a coherent object-oriented frame-
work have been made in our current approach.

With respect to distributed enactment, METEOR, [5], WASA [27], and EVE [26]
follow similar approaches. In contrast to METEOR,, we do not compile the workflow
schema into executable code, but we follow an integrated approach for the represen-
tation of workflow schemata and instances which supports dynamic modifications of
workflow schemata. METEOR, provides no high-level modeling constructs but sup-
ports modeling of fine-grained state dependencies by constructs similar to ECA rules.
The WASA model is based on a less complex workflow modeling approach, so that
only end-start dependencies have to be synchronized. Both approaches do not support
late binding of workflows. Finally, EVE provides a framework for distributed
workflow enactment based on distributed event-handling by reactive components, but
it is not intended for workflow modeling on a high-level of abstraction. Furthermore,
in contrast to our state-based semantics, EVE follows a purely event-based approach.

Finally, ECA rules are used by several WFMS for workflow execution. In those ap-
proaches, a workflow specification which is defined in a more high-level workflow
modeling language, is transformed into a global set of ECA rules (e.g., WIDE [3],
TriGSflow [18], Panta Rhei [7], Waterloo [29], APEL [6]). Thus, different concepts
are used for modeling and enacting. The workflow engine is mostly realized using a
centralized active database. In our approach, ECA rules can be used on the modeling
level in a structured way in order to adapt control flow dependencies and to enhance
the flexibility of the WFMS. The rules are encapsulated and hence can be applied at a
high level of abstraction for workflow definition. Finally, in contrast to the centralized
and transformation-based approaches, we follow a distributed and configuration-
based approach, where the ECA rules are derived from the specification for every task
instance object and hence define the inter-object communication of the distributed
object system.

7 Conclusion

In this paper, we have proposed an object-oriented approach to modeling and enacting
of heterogeneous processes that deals with the challenging requirements of flexibility,
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reuse, distribution, and provision a process modeling language at a high level of ab-
straction. The encapsulation of a workflow definition by the task interface, the defini-
tion of different behavior classes, and the definition of user-adaptable control flow
types characterize our modeling formalism and enhance reusability of process models.
Furthermore, the combination of rule-based techniques with the high-level constructs
of task graphs results in a great flexibility without losing the ability of high-level
workflow modeling. The tight integration of schema and instance elements and
schema versioning concepts are the basis for supporting dynamic workflow changes.
Finally, based on the introduced modeling concepts, distributed enactment is realized
in a natural way by distributed and interacting task objects. The presented concepts
have been prototypically implemented using CORBA. The architecture of the system
will be addressed in subsequent papers.
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