
M. Jarke, A. Oberweis (Eds.): CAiSE’99, LNCS 1626, pp. 429-433, 1999.
ª Springer-Verlag Berlin Heidelberg 1999

Modelling Method Heuristics for Better Quality
Products

Naveen Prakash and Ritu Sibal

Division of Computer Engineering
Netaji Subhas Institute of Technology (Formerly DIT)

Kashmere gate, Delhi –110003, India
email : [ritusib, praknav]@hotmail.com

Abstract. Development methods contain heuristics and constraints that help in
producing good quality products. Whereas CASE tools enforce method
constraints, they rarely support heuristic checking. This paper develops a
generic quality model, capable of handling both method constraints and
heuristics, which forms the basis of a uniform mechanism for building quality
products. The model is metric based, hierarchical in nature, and links metrics to
the developmental decisions that are available in a method. The use of this
model and the associated quality assessment process is demonstrated through
an example of the Yourdon method.

1 Introduction

Broadly speaking, methods provide three features for quality (a) guidelines, (b)
method constraints and (c) method heuristics. In supporting the use of methods,
CASE tools have particularly looked after method constraint satisfaction. However, it
is more difficult to find CASE tools that support heuristic checking. Thus, application
engineers are expected to examine products manually and determine whether method
heuristics are satisfied or not. The purpose of this paper is to remove this deficiency
of CASE tools.

 Our approach is based on two assumptions. The first is that a generic solution to
the problem of assuring product quality should be found. This genericity is in the
sense that both, constraint enforcement as well as heuristic satisfaction can be
handled in a uniform manner. The second assumption is that product quality should
be metric-based.

 A number of metric based quality models [1, 2, 3, 4] have been developed in the
area of Software Engineering.These models deal with a given, fixed set of quality
factors whereas others [5, 6] cater to only one quality factor. All these models
decompose quality factors into quality criteria with which quality metrics are directly
associated. In the area of Information Systems also, attempts have been made to
develop quality models [7,8]. The former also relies on the decomposition approach.
The latter proposes a framework within which quality issues affecting information
systems can be formulated and discussed. However, this work is not directly
concerned with quality assessment of information system products.

It can be seen that aside from dealing with a model-defined set of quality factors
these models do not relate quality factors/criteria to the development process. Thus, it
is not known what development decisions affect which factors/criteria in what way.

430 Naveen Prakash and Ritu Sibal

As a result, these quality models are stand-alone and divorced from the development
activity. Further, none of these models deal with issues of method constraint
enforcement, heuristic satisfaction etc. which are interesting in methods.

Thus, the generic quality model developed here must (a) handle different types of
quality factors and decompositions and (b) relate development decisions with quality
factors/criteria. In [9,10] a method has been viewed as a set of decisions and
dependencies between them. The set of decisions has been partitioned into product
manipulation and fixed structure enforcement decisions. Product manipulation
decisions affect quality factors/criteria whereas fixed structure enforcement decisions
determine metric values. Thus, as the product is manipulated, its quality changes and
the new product quality can be determined by using fixed structure enforcement
decisions. We propose to use this view of decisions in our quality model.

In the next section, we consider heuristics in detail and identify the manner in which
we shall represent them. Thereafter, in section III, we present our generic quality
model. In section IV the manner in which quality is assured using heuristics is shown
through a Data Flow Diagram (DFD) design example.

2 Method Heuristics

When application engineers use heuristics then they may decide that heuristic
satisfaction in the product is not mandatory. Thus for example, the number of levels
in the specialisation hierarchy in an OMT product may be 4 whereas the
corresponding OMT heuristic on specialisation hierarchy suggests that this should be
less than 3. Even though the product violates the OMT heuristic, an application
engineer may choose to accept this product. This situation is quite different from that
in method constraint enforcement where the satisfaction of method constraints in the
product is mandatory.

Now, the form of a method heuristic is textual. This is a descriptive statement and
therefore, neither amenable to metric based quality calculations nor adequate to form
a basis of computer based guidance. In accordance with our interest in metric based
quality, we recast a method heuristic as a heuristic function .To do so ,we start by
express a method heuristic as

 (method concept, metric, operation, value)
where method concept refers to the concept on which the heuristic is defined, metric
is the metric used to assess heuristic satisfaction, operation is relational operator and
value is the bound within which the metric value should lie. For instance, a design
heuristic in the Yourdon method[11] states :
„Avoid Processes that have inputs but no outputs“. This means that a process should
produce at least one output. This is expressed as

(Process, outpt _cnt, >, 0)
This form is then converted to a heuristic function, F(H). F(H) has two parts to it, a
header and a function body. Inside the function body, metric is related to the value
through the operation and a Boolean value is returned. This value is checked to
ascertain for the satisfaction of the method heuristic.

 Modelling Method Heuristics for Better Quality Products 431

3 The Generic Quality Model

The central notion (see Fig. 1) of our model is that of a quality requirement. We
associate an attribute, satisfaction, with the quality requirement which takes the value
from the domain {mandatory,optional}. For example, if the quality requirement is a
method constraint then its satisfaction attribute has the value mandatory whereas for a
heuristic this value is optional.

 A quality requirement can be of two kinds, simple or complex. A simple quality
requirement cannot be decomposed into simpler requirements whereas a complex
quality requirement can be decomposed into simpler ones. Quality requirements are
related to one another. One requirement may support another or may be in opposition
to it. Thus, when computing the extent to which a requirement has been satisfied, it is
necessary to add/subtract the effect of requirements which support/oppose it
respectively. This computation is based on the notion of quality metrics.

There are two kinds of metrics, simple and complex. A simple metric is one which
can be directly measured in the product whereas a complex metric can only be
computed from simpler ones. Clearly, simple metrics supply the ‘base’ values from
which the value of any complex metric is calculated. A metric is associated with
every quality requirement.

The value of the metric can be changed by product manipulation decisions.
Further, the value of a metric can be checked by a quality enforcement decision
which, as defined in [10] returns a value. Based on this value, the application
engineer decides which product manipulation decision is to be executed next.

Fig. 1. The Quality Model

 Quality Requirement

Complex Quality Requirement

Simple Quality Requirement

Composed of
Support/Oppose

(1,n) (0,n)

(0,n)

(1,1) (1,1)

Metric

 Has

 Complex Metric

Composed of

(1,n)

(1,n)
(1,n)

changed
by

Product manipulation decision

suggests

Simple
checked
by

Quality enforcement
decision

432 Naveen Prakash and Ritu Sibal

4 Using the Quality Model : An Example

In this section, the notions developed in the previous sections will be illustrated
through an example. Let us say that we wish to build a DFD. The design heuristics,
for DFDs [11] and the function headers are as follows :
1. (PRODUCT, P_cnt, < , 7) Process_count(PRODUCT, P_cnt, 7)
2. (Process, outpt_cnt, > , 0) Output_count(Process, outpt_cnt, 0)
3. (Process, inpt_cnt, >, 0) Input_count(Process, inpt_cnt, 0)

Consider the following product manipulation and heuristic enforcement decisions:

Product manipulation
<Process, create>, <Input, create>, <Output, create>
< Process, Input, couple>, < Process, Output, couple>

Heuristic enforcement
<PRODUCT, Process_count(PRODUCT,P_cnt,7), enforce_Process_count, 7)>
<Process, Output, Output_count(Process, outpt_cnt, 0), enforce_Output_count>
<Process, Input, Input_count(Process, inpt_cnt, 0), enforce_Input_count>

The requirement dependencies between these are as follows:
1.<Process, create>----REQ----<PRODUCT, Process_count(PRODUCT, P_cnt, 7),
enforce_Process_count>
2.<Process, Input, couple>---REQ----<Process, Input, Input_count(Process,
inpt_cnt, 0), enforce_Input_count>
1. < Process, Output, couple>---REQ---<Process, Output, Output_count(Process,

outpt_cnt, 0), enforce_Output_count>

Let the sequence of product manipulation decisions to build a DFD be as follows:
1.<Input(Cash withdrawal request), create>
2.<Process(Verify account no.), create>
3. <Output(Valid accnt. no.), create>
4.<Process(Verify account no.), Input(Cash withdrawal request), couple>
5.<Process(Verify accnt. no.), Output(Valid accnt. no.), couple>

After the execution of the first decision the Input, Cash withdrawal request, is
created. There is no heuristic applicable to this concept. However, when the second
decision is executed and a Process is created then the first requirement dependency
shown above comes into play. The metric P_cnt is computed as unity.If the
application engineer were to use the first heuristic enforcement decision above then
the value true would be returned. However, the application engineer has chosen to
execute another product manipulation decision (the third one) to create an output.
This again does not involve any heuristic. After the fourth decision is executed, the
second requirement dependency also comes into play, inpt_cnt is now incremented by
one. It can be seen that the application engineer can obtain product quality
information while the product is under development.

 Modelling Method Heuristics for Better Quality Products 433

5 Conclusion

The proposed quality model is generic enough to handle both constraints and
heuristics. A prototypical version of the quality enforcement mechanism developed in
this paper which shall handle both, constraints and heuristics is under development.
The difficult part of our proposals is the generation of method heuristics. We treat this
as a part of the method engineering problem and will, in future follow the rule based
approach[12] to address it.

References

1. Boehm B., Brown J., Kaspar J., Lipow M., MacCleod G., & Merrit M., „Characteristics
of Software Quality“. North Holland.

2. McCall J., Richards P., & Walters G., „Factors in Software Quality“. Vols I, II, III, US
Rome Air Development Center Reports NTIS AD/A-049 014, 015, 055.

3. Gilb T., „Principles of Software Engineering Management“, (addison wesley, 1988).
4. Kitchenham B., „Software quality assurance“, Microprocessors and Microcomputers, vol

13, no. 6, 373-381.
5. Inglis J., „Standard Software Quality Metrics“, AT&T Technical Journal, 1986, vol 65,

(2), pp 113-118.
6. Daskalantonakis, MK: „ a Practical View of software Measurement and Implementation

experiences Within Motorola“ IEEE Transaction on Software Engineering, 1992, vol 18,
(11), pp 998-1010.

7. Delen, GPAJ, Rijsenbrij, DBB: „The Specification Engineering, and Measurement of
Information Systems Quality“, Journal of systems and Software, 1992, Vol 17, (3), pp
205-217.

8. Krogstie J., Lindland O., Sindre G., „Towards a deeper understanding of Quality in
Requirements Engineering“, in „Advanced Information Systems Engineering“, Springer
1995.

9. Prakash N., „Towards a Formal Definition of Methods“, Requirements Engineering
Journal, Springer.

10. Prakash N., & Sibal R., „Computer Assisted Quality Engineering : A CASE for Building
Quality Products“, in First International Workshop on the Many Facets of Process
Engineering, Tunis, September, 1997.

11. Yourdon E., „Modern Structured Analysis“, Prentice-Hall.
12. Prakash N., & Daya Gupta., „An Architecture for a CAME TOOL“, in Proceedings of

the 8th European-Japanese Conference on Information Modelling and Knowledge Bases,
pp 147-179.

