
M. Jarke, A. Oberweis (Eds.): CAiSE’99, LNCS 1626, pp. 349-363, 1999.
ª Springer-Verlag Berlin Heidelberg 1999

OTHY: Object To HYpermedia

Franck Barbeau1 and José Martinez2

1MAIF – Service Bureautique, 200, Av. Salvador Allende
79038 Niort Cedex 9 – France

Franck.Barbeau@irin.univ-nantes.fr
2IRIN – Université de Nantes, IRESTE – La Chantrerie – BP 60601

44306 Nantes Cedex 3 – France
Jose.Martinez@irin.univ-nantes.fr

Abstract. In this paper, we present a Web-based universal browser for hetero-
geneous and non federated databases. Recently appeared hypermedia methods
are at the core of this system. However, contrary to these methodologies, our
tool directly supports the conception, the navigation, and the presentation
phases without requiring any modification of the databases. It is mostly based
on the OTHY framework, which is a library of classes to develop different
kinds of presentation based on well-established hypertext concepts. The design
of our tool and a first implementation resulted in a prototype under the O2

OODBMS. This implementation was convincing. Consequently, a Java devel-
opment and two querying and relational database retro-engineering modules are
on the path to be added to this prototype.

1 Introduction

MAIF (Mutuelle Assurance des Instituteurs de France) is a French insurance com-
pany devoted to teachers. It is quite large with over one hundred agencies, approxi-
mately 4,500 employees and as many computers. In the short term, all the applica-
tions will use the Web technology. MAIF needs allow us to stress three important
characteristics required by users of an heterogeneous and non-federated information
system. These characteristics are (1) to navigate on the data, (2) to query them with an
intuitive, non formal interface, and (3) to present different views on the data for dif-
ferent users and even for a given user.

Hypertext [6] and more recently hypermedia [24], [10] are not isolated research
domains. Indeed, outside “classical” applications, like help, documentation, or work-
group, hypertext concepts have been adopted by many application areas. Thereby,
their flexibility is greatly enhanced. More precisely, Web user-friendliness is nowa-
days demanded by users. Conversely, a review of the proposed architectures, includ-
ing the seminal Dexter model [9], highlights the fact that hypermedia systems need
database functionalities. As an example, Hyperwave is an hypermedia system based
on an object-oriented database engine. In the field of databases mature methodologies
such as RMM, OOHDM, EORM, etc., have emerged [16].

In a way, our proposition merges these two complementary approaches by (1) of-
fering an hypertextual view of databases and (2) offering a customisable set of hy-
permedia tools and concepts. The basic aim of the work is to allow conventional data-

350 Franck Barbeau and José Martinez

base accesses with an hypermedia interface. This interface must not be intrusive, i. e.,
it must not impact the used databases.

This paper is organised as follows: First, we detail user needs at MAIF, but they
may be generalised to any important organisation. Then, we present related work:
methodologies and tools for navigating/querying databases. In section 4, we present
the first part of our proposal: the system architecture based both on hypermedia and
database concepts, in an Internet/Intranet-based platform. In section 5, we see in de-
tails the principal tool of this project: a Java applet. This applet is composed of four
modules, the most important of which is OTHY, a framework developed to present
information to the user by translating database instances into “pages.” Section 6 vali-
dates our approach by presenting our V0 prototype. In fact, in order to alleviate the
initial programming effort, OTHY was implemented under the O2 OODMBS [1]. The
conclusion points out important issues in the development of the on-going V1 opera-
tional prototype: (1) reverse engineering, (2) query possibilities, and (3) schema inte-
gration.

2 The Needs

The architecture synoptic of the information system of many organisations may be as
follow. A single desktop computer has to access a lot of independent sub-systems
(different databases, files, different kinds of database management systems), located
on different servers, sometimes physically distant. This is true at MAIF with contract
databases (textual data), precious object databases (with pictures and descriptions of
sold objects with their auction prices), etc.
A study of the users’ needs at MAIF highlighted three main requirements: The most
important need is the possibility to navigate easily among this information mass, with
the ease offered by the Web technology. This navigation must be possible not only in
one database, but also between databases with common or related elements. In other
words, users demand a single interface to the whole information system.

However, navigation alone is not sufficient; some techniques of database querying
must be added to the system. But experience demonstrated, through some old systems
based on classical querying, that too formal queries are supplanted by manual query-
ing, e. g., users preferred to access directly to the printed version of a textual data-
base! Queries are envisaged solely as a means to retrieve rapidly an entry point close
to the wanted information, therefore avoiding a lengthy and tortuous initial naviga-
tion.

Finally, the system should offer to the user the possibility to customise his or her
view of the information, an extension of the well-known concept in relational database
management systems.

3 Related Work

Some authors claim that an hypertext is not a database [22]. On the one hand, they are
right, because data managed by hypertext are often poorly structured, if not at all. On
the other hand, the use of the database approach is still the best means to organise a

 OTHY: Object To HYpermedia 351

collection of data as far as we are concerned. A database stores information with rela-
tionships between them. Data and relationships are modelled by conceptual schemas
presenting common concepts. These concepts may be network, relational, entity-
relationship, semantics or object-oriented notions like aggregation, generalisation, etc.
[2]. An hypertext model is a complicated model that needs high level tools. [29] rec-
ommend the use of an OODBMS as the more rational solution to store hypertext data.
An underlying structure to the hypertext exists and it is usually clearly translated by
the interface. The real difficulty is the intensive use of texts, i. e., semi-structured
data, which are badly managed by DBMS. This lack is emphasised by the current
growth of the forms of semi-structured data: images, videos, and audio. However, this
pitfall is being solved thanks to meta-modelling, e. g., SGML (Standard Generalized
Mark-up Language) for texts [30], MULTOS for office documents [20], HyTime for
multimedia documents [23].

We shall detail some methodologies and tools that influenced are design and tool.

3.1 RMM (Relationship Management Methodology)

RMM [11], [3] is a conceptual method for the design and construction of hypermedia
applications. It is based on the entity-relationship conceptual model. It introduces
hypertextual navigation concepts during the logical description step of a database
schema.

To simplify, each entity type has a corresponding page model, or sometimes sev-
eral pages (slices) if the number of information is too large. Each entity instantiates
the page model with its attribute values.

relation s hip
s o urc e pag e

the re la tio ns hip
d es tin atio n p ag es

Fig. 1. A guided tour

th e re la t io n s h ip
in d ex pag e

th e r e la tio ns h ip
des tin at io n p ages

th e r ela tion s h ip
s o u rc e pag e

Fig. 2. An indexed tour

Each relationship role has zero, one or more anchors according to its cardinality. A
zero-valued cardinality is translated into a text indicating the role absence. A one-
valued cardinality is translated into an anchor representing the relationship nature. A
multi-valued cardinality can give rise to different presentation of the relationships,
namely a guided tour, an indexed tour, or a guided indexed tour. A guided tour (Fig.
1), unidirectional or bi-directional, allows the user to follow sequentially all the re-
lated (and linked) instances of the source object, possibly with a direct return to the
initial object. An indexed tour (Fig. 2) needs a discriminating element, e. g., at the
best a foreign key in relational terms. A multiple but limited cardinality can be trans-
lated into a page containing all the accesses to the linked elements. Too large a cardi-
nality would give rise to a separate page. Moreover, a very important cardinality

352 Franck Barbeau and José Martinez

would give birth to a hierarchical index. Finally, it is possible to combine guided tours
and indexed tours (Fig. 3)

th e re la tio n s h ip
d es t in atio n p ag e s

p r im ar y in d e x
p a g e

th e r e la tio n s h ip
s o u r c e p ag e

s ec o n d ar y in d e x
p ag e s

Fig. 3. The most complicated case of navigation between a source and related destinations

The slice concept avoids scrolling in windows. One slice is selected as the entry
point of the object (in general, it is the slice containing the key.) (Notice that index
pages may be considered as object slices.)

A relationship may itself be viewed as an object. Therefore, it is possible to create
pages for relationship instances. These pages are composed of main slices of each
object participating in the relationship. (Furthermore, that if we encompass sets of
relationships instances in the definition, we merely obtain the classical tabular view in
relational databases.)

3.2 OOHDM (Object-Oriented Hypermedia Design Model)

OOHDM [27], [28] is a direct descendant of HDM [8]. It differs from HDM both in
its object-oriented nature, and in its integration of special purpose modelling primi-
tives for navigational and interface design.

With OOHDM, a hypermedia application is built in a four-step process.
In the conceptual phase, an application model is built using object-oriented model-

ling principles. The main concern is to capture the domain semantics, hence, any
object-oriented method may be used, in practice OMT has been chosen [25]. The
single extension is the possibility to offer several types for one attribute [28].

During the navigational design step, the structure of an hypermedia application is
described in terms of navigational context (classes such as nodes, links, indexed tours,
guided tours.) Different navigational models may be built for the same conceptual
schema to express different views on the same domain. Nodes are defined as object-
oriented views of conceptual classes, links reflect relationships intended to be ex-
plored by the final user and are considered as views on relationships.

The abstract interface model is built by defining perceptible objects (picture, city
map ...) in terms of interface classes. These interface classes are built as aggregations
of primitive classes (text fields, buttons.) The aim of this step is to define the way in
which different navigational objects are going to appear.

The last step maps interface objects to implementation objects. This step may im-
plement interface objects in different platforms like Director, HTML, etc.

RMM and OOHDM are methodologies, i. e., they give guidelines. Our tool takes into
consideration the general rules of these methods but introduces a great deal of free-

 OTHY: Object To HYpermedia 353

dom through extensibility of the OTHY object-oriented framework. The framework
that is to be presented in the sequel supports the well-established concepts of hyper-
text design, but can be customised for very special requirements too.

3.3 HyperWave

HyperWave [19] is an hypermedia system, conceived to be a distributed Web-server,
that is based on the principle of recursive collections. A collection is a composite
object, and may contain objects or other collections [14], [15]. To further improve
navigation tools in a HyperWave site, the notions of clusters and sequences were
added. Clusters permit to partition documents of a given collection with respect to
some attribute value, e. g., presenting either the French, or the English pages of a
large multi-lingual document. Sequences organise documents as doubly linked list,
thereby offering guided tours.

Each object of HyperWave has system-specific attributes (title, author, keywords,
creation and modification dates ...) These attributes or meta-information are used to
perform more accurate queries. Links between documents are stored in a document
independent database. They are bi-directional, i. e., they allow to find document
sources from document destinations.

HyperWave is based on the principle that users may be contribute to the server life.
This involves that the system is multi-users, multi-developers. This allows registered
users to own a personal collection where they may store bookmarks, history, etc.

In our opinion, the problem with HyperWave is that the schema model has been fixed.
We believe that the system must adapt to the initial organisation of the data rather
than the reverse. OTHY relies on this hypothesis.

3.4 PESTO (Portable Explorer of Structured Objects)

PESTO is a user interface that supports browsing and querying of object databases [4]
1. It allows users to browse classes of objects and to navigate across the relationship
that exist among them.

All attributes of a given class are shown in the same window: simple attributes are
presented as being contained in the object window, reference attributes are presented
as buttons that bring up new windows for displaying the referenced objects.

In addition, users may formulate complex object queries through an integrated
query paradigm (Query in Place) that presents querying as an extension of browsing.

With PESTO, all the objects are presented according to a default presentation: a win-
dow with lists of attribute/value pairs. Contrary to our system, PESTO does not afford
views, which is a severe limitation for end-users who do not want to deal with the
totality of the information stored in a database.

As a consequence, PESTO querying capabilities are much like conventional data-
base ones, i. e., formal though graphical. In addition, PESTO works in a single envi-

1 This paper gives a nice (short) survey of the history of querying/browsing tools since the

seminal QBE (Query By Example) system.

354 Franck Barbeau and José Martinez

ronment. We plan a more intuitive way to query an heterogeneous set of databases,
based on information retrieval techniques.

4 System Architecture

Our proposition is based on the architecture presented in Fig. 5. The possibility for
desktop computers in one organisation to access to different conceptual and physical
sources of information, requires the use of a “universal client.” Therefore, we use a
Java applet to obtain this uniqueness. A side effect, and an important advantage of
using a Java-enabled browser is that there is no software deployment during the sys-
tem installation step, nor the forthcoming modification, nor the progressive integra-
tion of new information sub-systems. At the very most, only the browser needs some
upgrades from time to time. At MAIF, this is undoubtedly a desirable feature.

For reasons that will become clear in the sequel, we adopted object orientation [21].
In contrast, the information sub-systems are heterogeneous and certainly not based on
a single conceptual, nor physical model. Therefore, specific integration modules are
responsible for reverse engineering of the underlying database meta-schemas. Cur-
rently, we are working on two such integration modules. Since relational database
management systems (RDBMS) are wide-spread, it is an important issue to access
them with our tool. Fortunately, all of them conform to the JDBC/ODBC standard.
Therefore, any vendor-specific RDBMS is now accessible as a standard and unique
model. But, this module is always required since it must translate meta-schemas from
first normal form relations to non-normalised classes. This module will implement an
algorithm developed by our research team [26].

O O D BM SR D BM S

O D BC / J D BC O 2 J av a

D atab as es

Ac c es s
m o d u les

R ev er s e
en g in eer in g

In teg ra tio n
m o d u les

J av a A p p le t

M eta- s c h em a In s tan c es

O T HY

Fig. 4. System architecture

The major alternative to relational technology is object-orientation (equivalently,
object-relational.) We hope that the progressive adoption of the ODMG standard [5]
will make this module unnecessary in the future. In the first version of the applet, only
the O2 OODBMS and its O2Java binding module are to be used, which facilitates our
work.

 OTHY: Object To HYpermedia 355

Finally, the “Java applet”, i. e., the run-time intensive part of the whole architecture,
is still a complex module. It is composed of four sub-modules. First, the meta-schema
is in charge of loading the database meta-schemas, and to federate them in order to
allow for inter-database navigation.

The accessed instances have to be interpreted by the applet, i. e., they will be split
up into their very basic components: basic data types (integer, boolean, char ...), type
constructors (list, set, tuple …), as well as simple methods (observers, which return a
view of the object without modifying it.)

Then, the OTHY module, which is at the core of our proposition, is responsible for
translating instances into “pages.”

Lastly, the user interface presents “pages” as visual components (widgets), and
constitutes the visible part of the iceberg.

5 The Applet Architecture

Now, let us detail two sensitive aspects of the applet architecture to develop: (1) the
meta-schema and (2) the OTHY framework. Our tool works at the meta-level; it has
to manipulate instance components, hence it has to know about their structure and
relationships. We rely on an object-oriented meta-schema. Then, the OTHY frame-
work uses this information, as well as the hypermedia concepts that it incorporates, to
translate database objects into “pages.”

5.1 The Meta-schema

Fig. 5 presents the proposed meta-schema. It is relatively usual but it contains some
interesting details: The first important notion is the use of simple inheritance, which is
easier to understand and to implement. With simple inheritance, we do not care about
attribute and method conflicts. Contrary to the last proposal of the ODMG, neither is
the interface concept retained at that time.
Next, we use an external object identifier, i. e., a key in the relational world. The
identifier is a set of particular attributes that permits naturally to distinguish an object
from other objects on the same class hierarchy. More loosely, this identifier can be
only a local key, i. e., a value differentiating instances that are related to a given in-
stance. In the worst case where no key exists, this “identifier” is still useful: it allows
our application to present a significant anchor to the user rather than the mere instance
class name. However, this default behaviour can be overridden for special application
needs.
Then, this meta-schema stresses the relationship and role concepts. More precisely,
we are interested in the cardinalities of the roles. Knowing their values makes it pos-
sible to choose between different kinds of navigation detailed in section 5.2 (guided
tour, indexed tour, direct access; separated pages or anchor incorporation in the
source object.)

356 Franck Barbeau and José Martinez

AT T R IBUT E

P R O P ER T Y

N am e : S tr ing C LAS S

R ELAT IO N S HIP

P AR AM ET ER

N am e : S tr in g

T YP E

N am e : S tr in g

M ET HO D
R O LE

N am e : S tr in g
C ard in a lity M ax .
C ard in a lity M in .

R et urn t y p e

Su b-clas s

Sup er-clas s

Sim p le
in her it an ce

2+
Id ent ifier

C o m p os ed of

˝

Fig. 5. An object-oriented meta-schema model

The applet meta-schema will contain several separated schemas. A long-term idea is
to create relationships between these different schemas. For instance, the system may
retrieve identifiers with the same name and may consider that this information comes
from the same source, but is replicated in different databases. Such obvious situations
arise with the employee number, or his or her first and last names. This is part of the
issues to be explored in order to improve navigation and thereby to reduce the re-
course to querying.

5.2 The OTHY Framework

OTHY, the core of our proposal, can be seen as a framework [12], [13], [7], [17] for
translating objects into hyper-linked components. The aim of OTHY is to create a
presentation “page” (with information and anchors to navigate) from a specific in-
stance.

The OTHY framework implements prominent points of the RMM and OOHDM
methodologies: (1) guided tours, indexed tours from RMM, and (2) the use of the
objet-orientation, and the concept of views from OOHDM (See Sect. 3.) The philoso-
phy of RMM is to construct hypermedia applications on top of a database conceptual
model. We saw in section 2 that we are typically in this application case. Neverthe-
less, this method is too rigid, because it is impossible to express external views of a
database application. Nevertheless, this point is taken into account by OOHDM which
introduces navigational models on top of the conceptual schema. From a schema,
several views may be defined.

In mathematical terms, the main function of OTHY consists in translating an in-
stance into a “page,” with respect to a given view:

OTHY : DB · View · Object fi Page (1)

Fig. 6 presents the needed framework skeleton to perform this transformation! This
framework integrates most of the concepts of RMM and OOHDM. But, above all, it
realises all the steps from navigation to implementation without requiring any modifi-
cation of the database, nor development of code in the framework, except for very
specific needs.

 OTHY: Object To HYpermedia 357

D ir e c t o r y
v a lue : li st (t up le (c la s s : s t r in g ,

t r a n sduc e r : T r a n sduc e r))

m a p (c la ssN a m e : st r in g) : T r a n s duc e r
in (c la ssN a m e : st r in g) : bo o le a n

T r a n sduc e r

t r a n sduc e (i: O bje c t) : P a ge

C o m p o n e n t

O T H Y

C o m p le x C o m p o n e n t

C o lle c t io n C o ur s e

v a lue : li st (O bje c t)
p o si t io n : in t e ge r
b id ir e c t io n a l : bo o le a n
e n dR e t ur n : bo o le a n
a l lR e t ur n : b o o le a n
go N e x t ()
go P r e v io us()
go F ir st ()
go F a t h e r ()

Guide dT o ur I n de x e dT o ur

A n c h o rSt r in g T e x tP h o t o

C o lle c t io n A n c h o r

P r e v io us A n c h o r
 p o si t io n : in t e ge r

p r e s e n t ()
f o l lo w ()

N e x t A n c h o r
 p o s it io n : in t e ge r

F i r st A n c h o r

R e t ur n A n c h o r

Sim p le C o m p o n e n t

H ist o r y

P a ge

disp la y ()

Fig. 6. The OTHY framework

Navigational Views
The class Transducer is the essential support of the transformation function. This
class is a generic class and allows to transform any object into a page. It is the root of
a concrete and/or abstract class hierarchy. This is very useful for extensibility and
adaptability; each class may own a specific transducer. To go ahead, the system is
able to manage several transducers for each class: specific, generic or parametric
transducers.

The relationship between the transducer and the application class is made via the
Directory class, which manages an associative relationship between class types
(or, more precisely, the names of the class instances in the meta-schema) and trans-
ducer instances. Each known class name in the meta-schema is linked with a trans-
ducer reference. Each (kind of) user may obtain a distinct directory, where he or she
may use both different transducers for the same instances, and different presentations
or navigation according to his needs. This is the way we implemented view and user
profile concepts.

Interfaces
The most important hierarchy, in terms of number of classes only, is for the hyperme-
dia presentation of data. There are usual page concepts, anchors, guided tours, in-
dexed tours and different kinds of media (text, string, picture …) Instances of these
classes are the result of applying a transducer to a data instance. This result is pre-
sented to the user for browsing. Properties extracted from an object can be attributes
or observers without parameters. (In the case of query extension, we should take into
account other observers to allow users to provide parameters at run-time.)

358 Franck Barbeau and José Martinez

In this hierarchy, we find the class Page with the method display(). This class
is the only one having this method. This page amalgamates Components which may
be SimpleComponent or ComplexComponent.

Among simple components, we have the usual items: Text, String, Photo,
Anchor, etc. A complex component may be a collection of objects to browse. The
tours may be guided tours or indexed tours. Objects Collection and Anchor are
closely linked because three kinds of anchors over four are specific to collections
(PreviousAnchor to return to the previous object in a guided tour, NextAnchor
to go to the next object, FirstAnchor to go to the first object of the collection to
browse).

The class History is a common tool, for the implementation step. It allows to
return to a previously visited page. At that time, it is only a stack. But it is possible to
extend this historic concept in order to browse it like a graph.

6 The V0 Prototype

A first implementation of our model was realised under the O2 OODBMS. The major
advantage of this choice is in the simplification of the implementation. This was done
to validate our approach before the development of the full tool. More precisely, ad-
vantages are three-fold: (1) homogeneity, (2) direct use of the O2 meta-schema, and
(3) less need to interpret the instances. Using a single environment eliminates con-
nections and the “impedance mismatch” between a host language and the database.
The implementation was achieved with the native O2 meta-schema, though it does not
have all the needed characteristics. More precisely, the notion of natural key is still
absent and we choose to use the value of the first attribute as the anchor value in a
page. Also, the development was easier because instances are directly accessible as
objects. In the final version, we will have to decompose objects as they contain com-
ponents (attributes and methods.)
A simple application was coded. There are five classes (Author, Publication,
Book, Magazine and Publisher) linked by two relationships (Wrote and Pub-
lished) or by inheritance. Note that the O2 classes do not reference OTHY, as im-
plied by the principle of total independence that we impose to ourselves (See Table 1)

OTHY is already a usable framework but –and this is one advantage of the object-
oriented approach– it is possible to extend it. This is really true for the instance pres-
entation definition. Consequently, we added some subclasses for Publication.
Relationships between these classes and application classes are notified to OTHY
through a directory.

At run-time, link between an application instance and the instance of an OTHY trans-
ducer is made via the directory associative memory. There are two input points: the
instance of the directory used (function of the user connected) and an application
object. First, from this object, thanks to a generic O2 method named title that re-
turns the instance class name, we obtain the string “Author.” Secondly, this name is
transferred from the application domain to the OTHY framework. This step uses a
Directory object . It is an associative memory that is able to retrieve the instance
of Transducer that has been previously associated by the user (or a default one if

 OTHY: Object To HYpermedia 359

such an association has not been specified.) Thirdly, the retrieved transducer is ap-
plied to the initial instance. This returns a page, using either a generic, or a specific
layout, by instantiating standard components (labels, drawings …) and using values
from the object (attributes or method results.) The sub-object Asimov-Books al-
lows the user to perform a guided tour of all the books of this author. Notice that it is
allowed to manipulate references from the OTHY domain to the application domain.
Anchors and references allow us to launch the same process for one book if the user
desired so.

Table 1. Some O2 classes of our example

class Author
private type tuple(
 read FirstName: string,
 read LastName: string,
 dateB: Date,
 dateD: Date,
 read Photo: Image,
 read Biography: Text)
method
 public BirthDate: string
 public DeathDate: string
 public Wrote:
 unique set(Book)
end;

class Publication
Private type tuple(
 read Title: string,
 dateP: Date,
 read WrittenBy:
 unique set(Author),
read EditedBy:
 unique set(Publisher))
end;

class Book
 inherit Publication
private type tuple(
 read Cover: Image,
end;

Fig. 7 gives an example of standard presentation with the O2 browser (dis-
play(Asimov) or Asimov->display()). This is to be compared to a presenta-
tion obtained by using our framework, in Fig. 8. The presentation is obtained by a call
to OTHY(BibliograhicDirectory, Asimov)->display()2. The code of
this function consists of a single line of code, as follows:

function body OTHY(dir: Directory, inst: Object): Page
{ return (dir->map(inst->title)->transduce(inst)); }

The function signature conforms to the mathematical one of section 5.2 except for the
DB parameter which is implicit. Though the current presentation is not yet really
attractive, its use to navigate in a database is really eloquent. First, the O2 browser
forces to open a new window for each sub-object. All opened windows are stacked
and must be closed in reverse order. In contrast, OTHY manages automatically the
erasure of windows and allows a return to the previous windows (the history), like a
Web browser. This decreases considerably the user concentration, and increases the
freedom of move around the objects of the database.

2 Another version of this function uses a default directory, set for the user session in a global

variable (named a root of persistence in O2.)

360 Franck Barbeau and José Martinez

Fig. 7. The standard presentation with the O2 browser

(a) (b)

Fig. 8. The OTHY presentation of (a) an author and (b) a book

Note that taking into account methods allows cross navigation between related ob-
jects. The O2 browser relies only on attributes; therefore it is possible to go from a
book to its authors but not the reverse way because this role has been implemented by
a method.
Another difference is that each attribute is presented in a separate panel with the O2

browser whereas we are free to mix labels and values in OTHY, e. g., the name fol-
lowed by constant strings and dates in Fig. 8(a).

Guided tours (Fig. 1) are represented by a next and a previous button (respectively
“Livre précédent” and “Livre suivant” in Fig. 8(b) that allow to browse Asimov’s
books.

Indexed tours (Fig. 2) are not implemented in our example, but they are repre-
sented by one (or several) index page(s.) In turn, these pages access to the desired
pieces of information. In the case of Authors, if one author is very prolix, it is very
interesting to group his or her books according to different criteria (date of publica-
tion, alphabetic order …) Also not presented here is the possibility to incorporate

 OTHY: Object To HYpermedia 361

parts of the related objects into the currently displayed instance page. In fact, since
transducers can be derived for very specific needs, their result can be composed of
anything that is reachable from the instance parameter3.

7 Conclusion and Future Work

We saw that there exist needs for large organisations to browse through their hetero-
geneous information system. Browsing has to be independent both of localisation and
of the kind of storage and retrieval systems (object, relational, or object-relational
databases, specific systems, even simple files.) Other demands have been made by the
users but are not addressed by this paper.

We decided to develop a framework to display objects contained in several data-
bases in the manner of an hypermedia application. This framework is totally inde-
pendent from the storage sub-systems and from the data models. Localisation inde-
pendence and hypermedia conviviality is to be achieved through the use of a Web
browser.

A first prototype allowed us to validate our approach. Indeed, it is now possible to
create an application without taking care of how this application will be browsed.
This is very important to decrease the time devoted to the user interface construction
(thanks to a default transducer, it can even be reduced to zero.) The OTHY frame-
work integrates the main concepts of hypermedia design (consistency of the presenta-
tion, links and anchors, guided and/or indexed tours, history.) However, it is possible
to customise our framework by providing additional transducers up to particularising
each object presentation. Furthermore, users may choose themselves convenient pres-
entations to obtain particular “views.”

We are on the path to develop the V1 prototype. This tool is a Java applet integrating
the access layers described in Section 4. It must manage the additional problems of
instance interpretation (splitting them into their basic components), user identification
and loading of his or her profile. Moreover, a graphical tool to describe pages has to
be developed to allow users to customise themselves their views of the information
system.

From the theoretical point of view, at least three issues have to be investigated: re-
verse engineering, querying, and integration. First, our framework is object-oriented
whereas the information sub-systems are heterogeneous. Therefore, reverse engi-
neering is mandatory to be able to use the framework for any kind of data. This is
currently being added, based on previous works of our research team [26].

The second issue is to incorporate query capabilities. They will be based on infor-
mation retrieval concepts and techniques, rather than on (almost) formal queries,
which were rejected by the end-users in past experiences. In the long term, it is envis-
aged to integrate also multimedia retrieval capabilities, since they are being studied in
our research team [18].

3 In another application, the visualisation of a class with a single attribute and a recursive rela-

tionship leads to the extreme case where the value of the object and the values of all the re-
lated objects (used as anchors) were presented in a single window.

362 Franck Barbeau and José Martinez

The last envisaged issue is schema integration. Effectively, considering the differ-
ent databases as isolated islands of information is poor practice. The system has to
find implicit relationships between the different databases that belong to the informa-
tion system of the same organisation because they necessarily share common sub-
schemas, objects, or simply attributes. Integration would greatly improve browsing
and postpone the moment when user is obliged to query the system.

8 Acknowledgements

We would like to thank Cyril Tiollier, and more particularly Pejman Parandi, engineer
students at IRESTE, who implemented part of the V0 OTHY framework in the con-
text of a second year student project. The example of “Asimov” is theirs.

9 References

1. Bancilhon, F., Delobel, C., Kannelakis, P.; Building an Object-Oriented Database Sys-
tem: The Story of O2; Morgan-Kaufmann, 1992

2. Batini, C., Ceri, S., Navathe, S.B.; Conceptual Database Design: An Entity-Relationship
Approach; The Benjamin/Cummings Publishing Company, Inc., 1992, 470 p.

3. Bleber, M., Isakowitz, T.; Designing Hypermedia Applications; Communications of the
ACM, August 1995, Vol. 38, No. 8, pp. 26-29

4. Carey, M., Haas, L., Maganty, V., Williams, J.; PESTO: An Integrated Query/Browser for
Object Databases; Proc. of the 22nd Int’l Conf. On Very Large Data Bases (VLDB’96),
Mumbai (Bombay), India, 1996, pp. 203-214

5. Cattel, R. G. G., Barry, D., Bartels, D., Berler, M., Eastman, J., Gamerman, S., Jordan, D.,
Springer, A., Strickland, H., Wade, D.; The Object Database Standard: ODMG 2.0; Morgan
Kaufmann Publishers, Inc., San Francisco, California, 1997, 270 p.

6. Conklin, J.; Hypertext: An Introduction and Survey; IEEE Computer, September 1987, pp.
17-41

7. Fayad, M. E.; Schmidt, D. C.; Object-Oriented Application Frameworks; Communications of
the ACM, October 1997, Vol. 40, No. 10, pp. 32-38

8. Garzotto, F., Paolini, P., Schwabe, D.; HDM – A Model-Based Approach to Hypertext Ap-
plication Design; ACM Transaction on Information Systems, Vol. 11, N° 1, January 1993,
pp. 1-26

9. Halasz, F., Schwartz, M.; The Dexter Hypertext Reference Model; Communications of the
ACM, February 1994, Vol. 37, No. 2, pp. 30-39

10.Hardman, L., Bulterman, D.C.A., Van Rossum, G.; The Amsterdam Hypermedia
Model: Adding Time and Context to the Dexter Model; Communications of the ACM,
February 1994, Vol. 37, No. 2, pp. 50-62

11.Isakowitz, T., Stohr, E. ; Balasubramanian, P. ; RMM: A Methodology for Structured Hy-
permedia Design; Communications of the ACM, August 1995, Vol. 38, No. 8, pp. 34-44

12.Johnson, R.E., Foote, B.; Designing Reusable Classes; JOOP, Vol. 1, n° 2, June/July 1998,
pp. 22-35

13.Johnson, R.E.; Frameworks = (Components + Patterns); Communications of the ACM,
October 1997, Vol. 40, No. 10, pp. 39-42

14.Kim, W., Banerjee, J., Chou, H.-T., Garza, J. F., Woelk, D.; Composite Object Support in
an Object-Oriented Database; Proc. of the ACM Int’l Conf. on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA’87), 1987, pp. 118-125

 OTHY: Object To HYpermedia 363

15.Kim, W., Bertino, E., Garza, J. F.; Composite Objects Revisited; Proc. of the ACM SIG Int’l
Conf. On the Management of Data (SIGMOD’89), Portland, Oregon, 1989, pp. 337-347

16.Losada, B., Lopistéguy, P., Dagorret, P.; Etude de la Conception d’Applications Hyper-
médias (in french); Actes du XVe Congrès INFORSID, June 1997, Toulouse, France, pp.
133-146

17.Manhes, S.; La réutilisabilité: Patterns et Frameworks (in french); M. Sc. Thesis, IRIN,
University of Nantes, 1998

18.Martinez, J., Marchand, S.; Towards Intelligent Retrieval in Image Databases; Proc. of the
Int’l Workshop on Multi-Media Data Base Management Systems (MMDBMS’98), Dayton,
Ohio, August 1998, pp. 38-45

19.Maurer, H. (ed.); HyperG is now HyperWave: The Next Generation Web Solution;
Addison-Wesley Publishing Company, 1996

20.Meghini, C., Rabitti, F., Thanos, C.; Conceptual Modeling of Multimedia Documents; IEEE
Computer, October 1991, pp. 23-30

21.Meyer, B.; Object-Oriented Software Construction; Prentice Hall, 1988
22.Nanard, J., Nanard, M.; Hypertext Design Environments and the Hypertext Design Process;

Communications of the ACM, Vol. 38, No. 8, August 1995, pp. 49-56
23.Newcomb, S.R., Kipp, N.A., Newcomb, V.T.; “HyTime”: The Hypermedia/Time-based

Document Structuring Language; Communications of the ACM, November 1991, Vol. 34,
No. 11, pp. 67-83

24.Nielsen, J.; HyperText and HyperMedia; Academic Press, Inc., San Diego, California,
USA, 268 p.

25.Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.; Object-Oriented Mod-
eling and Design; Prentice Hall, 1991

26.Saoudi, A.; Une approche terminologique pour l’interopérabilité sémantique des systèmes
de bases de données hétérogènes; Ph. D. Thesis, November 1997, IRIN, University of Nan-
tes

27.Schwabe, D., Rossi, G., Barbosa, S.D.J.; Abstraction, Composition and Lay-Out Definition
Mechanisms in OOHDM; Proc. of the ACM Workshop on Effective Abstractions in Multi-
media, San Francisco, California, November 4, 1995

28.Schwabe, D., Rossi, G., Barbosa, S.D.J.; Systematic Hypermedia Application Design with
OOHDM; Proc. of The 7th ACM Conf. on Hypertext, Washington D.C., March 16-20, 1996,
pp. 116-128.

29.Smith, K.E., Zdonik, S.B.; InterMedia: A Case Study of the Differences between Rela-
tional and Object-Oriented Database Systems; Proc. of the Int’l Conf. on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’87), Orlando, Florida, Oc-
tober 1987

30.Van Herwijnen, E.; Practical SGML; Kluwer Academic, 1994

	Introduction
	The Needs
	Related Work
	System Architecture
	The Applet Architecture
	The V0 Prototype
	Conclusion and Future Work
	Acknowledgements
	References

