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Abstract. Collaboration in cooperative information systems, like concurrent
design and engineering, exploits common work and information spaces. In this
paper we introduce the TOGA service (Transaction-Oriented Group and
Coordination Service for Data-Centric Applications), which offers group
management facilities and a push model for change propagation w.r.t. shared
data, thus allowing for group awareness. Through TOGA’s customizability and
its layered architecture the service can be adapted to a variety of different
collaboration scenarios. Multiple communication protocols (CORBA, UDP/IP,
TCP/IP) are supported as well as basic transaction properties. Our approach
enables the evolution of a set of separate applications to form a cooperative
information system, i.e., it provides a technique towards component-oriented
system engineering. In this paper we report on design issues, implementation
aspects, and first experiences gained with the TOGA prototype.

1. Introduction

Concurrent and simultaneous engineering (see [2], [3]) is perceived an enabling
technology to faster and better design of complex products as e.g. engineered artifacts.
From a system point of view this technology refers to a whole spectrum that ranges from
multiple and efficient communication protocols [29] to activity coordination (as e.g.
provided by workflow systems [17]) and to appropriate support for collaboration
techniques (as for example known as computer supported cooperative work [5]). 

In contrast to administration and business scenarios these concepts and techniques
are not directly applicable to the overly complex area of design, especially engineering
design. There, existing system structures, proven processing scenarios, and chosen
design methodologies have to be observed and effectively supported. The reason for
that is the complexity of the heterogeneous application environment (e.g. CAD systems
or FEM systems), its (often) proprietary data structures and data formats that obstruct
data exchange, and finally the applied proprietary design process and design
methodology itself. As a consequence, effective and practical support for concurrent
M. Jarke, A.Oberweis (Eds.): CAiSE’99, LNCS 1626, pp. 301-316, 1999.
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and simultaneous engineering has to act as a kind of glue to flexibly combine these
separate system components to form a cooperative information system, thereby still
supporting the existing and well-established design methodology.
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1.1 CAD Application Area

Divide and conquer is the underlying technique that allows to cope with the inherent
complexity of engineering design. As depicted in Figure 1, this strategy refers to a
decomposition of the artifact under design into separate design items and to the
delegation of design tasks to separate design teams, with each design team being
responsible for the design of the assigned design item.

To be able to concurrently work within a team on those partitions without interfering or
avoiding to interfere with other designers is a demanding task. Therefore it is necessary
to organize groups of designers who share a set of design items. Their work should be
coordinated automatically to avoid inconsistencies, even if users are spread all over the
world (using workstations connected through the Internet).

Unfortunately, current distributed CAD environments often suffer from a lack of
coordination among the ongoing design activities. Participants in design have to
cooperate mostly by other means than their current design environment; they often have
to resort to personal communication methods (like e-mail or telephone) or have to
follow certain external design guidelines in order to coordinate their work and to resolve
conflicts. Since these rules and design guidelines are specified outside the system,
integrity cannot be controlled automatically, leading to manual and error prone design
control. This scenario is depicted in Figure 2a. 

It is exactly the focus of our work to remedy these grievances. Though there are
already a lot of research activities considering similar scenarios, we are not aware of a
system that covers all of the properties listed below (see also Section 3). In this paper
we report on the design, implementation, and first experiences of our system approach
called TOGA. As depicted in Figure 2b, TOGA provides a number of necessary
services and system properties. Among the most important ones are: 

Fig. 1. Design Decomposition: Separate Design Groups and Associated Design Items
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• TOGA treats participating information systems, as e.g. CAD systems, as separate
components within a distributed, collaborative environment, i.e., it supports
component-oriented system engineering. 
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• TOGA is customizable in such a way that the system behaves according to the
given design guidelines. These guidelines cover the operations and undo-
operations, the object granules, the conflict situations and associated resolution
strategies that altogether make up the desired collaboration model. 

• TOGA is group-oriented and data-centric as opposed to user- and process-oriented.
• TOGA delivers a synchronous collaboration approach combined with a

distributed, shared work and information space.
• TOGA synchronizes (by means of operation coordination) the state of all data

objects that are part of the shared information space. 
• TOGA automatically controls this integrity of shared data using a transaction-

oriented protocol.
• TOGA consists of an application-specific component for customization and a

generic (and thus reusable) middleware/server component.
• TOGA supports multiple communication protocols.

1.2 Overview of the Paper

In this paper we introduce the different layers of TOGA and discuss all aspects that have
to be decided upon for customization w.r.t. a certain collaboration model. Due to space
restrictions, we focus on the system approach, but not on a (formal) model or
methodology on how to map particular design processes and their design guidelines
onto our system. 

The following section covers the design issues of the layered architecture,
describing the interfaces of client layers as well as the underlying CORBA service.
Readers that are not familiar with CORBA at all should refer to [13], [19] or [25] first.
Section 3 contains a discussion on related work covering similar services as well as

Fig. 2. Introduction of TOGA
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workflow and CSCW technology. In Section 4 we present decisions and experiences
that are related to our prototype implementation. It consists of a generic, CORBA-based
TOGA Service as well as a simple test application. A discussion of more complex
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application scenarios our implementation might be adopted to, some conclusions and
an outlook to additional future work are given in Section 5.

2. Design

Our architecture enables the evolution of a set of separate applications to form a
cooperative information system. The cooperation concept is realized by a powerful
collaboration approach that exploits a common work and information space. The set of
applications that want to collaborate through a common information space have to
decide on a number of critical aspects in order to use TOGA effectively. First of all, the
contents, i.e. the shared data objects, of the common information space have to be
defined. Second, the object granule has to be decided upon, third, the relevant
operations (and corresponding undo operations) to change the information space are to
be defined as well, and fourth, strategies to decide on conflicts among these operations
have to be specified (conflicts are treated by aborts, see below). These decisions clearly
depend on the application scenario, but are necessary in order to determine the
particular collaboration support TOGA is asked for. For example, considering object
rotation in several dimensions, each rotation in a single dimension or only the final state
may be synchronized, or, creating a new module, the creation of each (partial) item or
only the creation of the (final) module may be synchronized. Choosing the right granule
of data objects and operations is the key issue in defining the appropriate level of
collaboration.

Once the common work and information space is defined, its consistency is
automatically controlled by transaction-oriented processing: Each operation that effects
the common information space is encoded into an event and sent to the TOGA server,
which utilizes a 2-Phase-Commit protocol (2PC, see [6]) to distribute this event to all
group members and to ensure that they all have performed the encoded operation
successfully. If an application is not able to perform such an operation, it votes “abort”
and TOGA notifies all group members to undo this operation.

In order to support various environments, our service has a layered architecture as
displayed in Figure 3. The top level interface is written in C++ (since most CAD
applications are written in C++)1 and offers the integrated functionality needed by the
application. It hides the underlying implementation, which may in principal consist of
one or several components that utilize other services and communicate via CORBA, or
directly via TCP/IP or UDP/IP etc. The prototype implementation described in this
paper is based upon a single, integrated CORBA service and several CORBA clients.

The application layer (Section 2.2) contains all information specific to a particular
application scenario and has to be developed as part of the customization process. E.g.,
it is responsible for the encoding of application-specific operations into generic events
(and vice versa). Next comes the session layer (Section 2.3), which has a slim, but
powerful interface. It will propagate (generic) event data received from the application
 

1 We are aware of the fact that not all CAD systems provide suitable APIs for their integration into a TOGA
environment, yet. Nevertheless, considering our experiences at DaimlerChrysler, we assume that the
vendors of such systems will offer those APIs once proof of concept is done and a strong demand for this
technology arises among participating enterprises. 
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layer to the actual communication layer (and vice versa). This layer is necessary since
we want to transparently support direct usage of low level communication protocols
like TCP/IP and UDP/IP, but also more powerful middleware like CORBA. The
underlying communication layer (Section 2.4) is split into three different modules with
specific interfaces. Since this paper is focussed on a CORBA-based server for TOGA,
we will not describe interfaces to the TCP/IP and UDP/IP modules in detail. The
interface of the group and notification layer (Section 2.5) is defined using the Interface
Definition Language (IDL) of CORBA. This enables a component-based architecture
and thus the integration of existing software (that is wrapped by specific CORBA
skeletons) or the development of new services (like the TOGA server described here). 

A simple processing example is presented in the next subsection. It is followed by
a more detailed description of each layer, using this example to illustrate the realized
functionality. Finally two figures are presented that describe the flow of events through
all layers. Please note that these figures are specific to the example as well.

2.1 Overall Processing Example

Let us assume two applications working on the same set of data (e.g. the two
applications working on the “lighting system” in Figure 1). According to the design
decomposition, they shall become members of the same group. Furthermore,
application 1 wants to perform an object rotation that is, according to the customization,
an operation to be controlled by TOGA. How does it work?

In our approach, any kind of data and event processing has to be started by opening
a new session at the client site. We propose to attach this step to the initialization phase
of each application. The desired communication type (CORBA, TCP/IP, or UDP/IP)
has to be specified as a parameter. After that, the chosen protocol is not visible any
more. It is encapsulated by the session layer. Though each client chooses a single
communication protocol, a server might support multiple ones.

In a next step, the application will join a group. Since the application layer is
responsible for the relationship between data objects and group definitions (thus it can
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Fig. 3.:Overall Architecture of TOGA
decide which operation influences which groups’ information space), an application
may in principal be part of several groups. Defining our architecture, we decided that
an application has to be part of exactly one group, though. If it is necessary to access
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data objects that are related to different groups at the same time, the design could be
extended to hierarchical groups. 

By joining a group that is already controlled by TOGA, the session layer will
automatically forward the status of all data objects of the common information space to
the application layer of the new member. Once the application is a member of a group,
it may create, access or modify all data objects related to this group. Those actions are
typically encoded into events and forwarded to the session layer. All events are shared
between all members of an application group, guaranteeing consistency of the
information space. E.g., the rotation of a 3D object might be encoded in an event that
contains the object ID, the operation code and the angle to rotate. Afterwards, TOGA
ensures that either all or none of the group members have performed this operation.

2.2 Application Layer

The application layer realizes the customization. It has to bridge the gap between the
application and the generic TOGA components presented in this paper. Thus it has to
be aware of the current design decomposition, related data objects, operations and
corresponding undo operations. All this information is neither available to the TOGA
server nor to the session or communication layer (since these components have a
generic interface).

Knowing the design decomposition, the application layer defines groups and
related sets of data objects. In addition, it has to define which operations have to be
synchronized immediately and which (sequence of) operations can be performed
locally before the next synchronization step is necessary. 

Once the application has joined a group already known and controlled by the
TOGA server, or it has created (and implicitly joined) a new group using the session
layer’s operations2, the application layer realizes a (virtual) information space for that
particular group. Any changes to the information space are propagated to all group
members via TOGA.

Vice versa, the application layer has to decode each event received from the
session layer (method messageUp, see next section) and to check if the encoded
operation is in conflict with other operations that were already performed locally. In
case of no conflict, the application layer initiates the execution of the encoded operation
and sends a “vote commit” message to the session layer, otherwise the operation is not
performed and the application layer votes to abort. For each (sequence of) operation(s)
that is to be synchronized, the application layer has to define undo operations, which
have to be performed if any other group member initiates an abort.

Since all these tasks are very application-specific, they can not be moved to or
controlled by the TOGA server. Thus, all semantic aspects of the collaboration and its
customization are encapsulated within the application layer, whereas the underlying
client layers and the TOGA server offer technical, generic collaboration support (that is
 

2 The session layer can only be used to query for groups that are currently known to and processed by the
TOGA server, but the server does not know about the original design decomposition. Since the application
layer is aware of the design decomposition, it might initiate the activation of a group (within the TOGA
server) that is responsible for another design task.
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described in the following subsections). In order to exploit this support, it is very
important that each client application contains an application layer with the same (or a
compatible) customization model! Please keep in mind that a formal description of this
model is out of scope of this paper. However, for our test application (see Section 4.1)
we hand-crafted a particular customization. 

2.3 Session Layer

The session layer has a slim interface that covers three different issues: The propagation
of event data (received from the application layer) to the communication layer,
processing and forwarding of group operations, and upcalls (to the application layer)
due to event data received from the communication layer. The session layer’s interface
comprises the C++ class Session and two global methods makeSession and
destroySession to start and end a session of work. The class Session defines
generic data structures and methods for sending events (sendData), propagating
context information (sendAllData), group administration (AddToNewGroup,
addToGroup), voting (voteAbort, voteCommit), receiving events by upcalls
(messageUp, see below), and additional convenience functions. makeSession
initializes a global context (see Section 2.1) whereas destroySession ensures that
the application will be removed from its group. In addition, it notifies the
communication layer to cancel all connections in a consistent manner. Since our
architecture focuses on a generic approach that should also support low-level protocols,
there is no need for a more complex object-oriented design. Even more, the introduction
of additional classes might lead to additional IDL interfaces at the CORBA level that
will reduce performance of communication [24]. 

Since the session layer realizes only a pure push model for events (see e.g. [14]),
there is only a single (asynchronously called) method messageUp for forwarding
events and related data. Though this method is declared as part of the session layer’s
interface, it has to be defined (and thus implemented) by the application layer. Actually,
it is only called by the session layer to forward events to the application layer.
Considering the application scenario mentioned above, we do not expect that there is a
need for a pull model. More precisely, we assume that an application will not wait for
an event, but it will perform operations that initiate events (using the push model).

If the application layer generates a new event due to an operation of the application,
it will call the method sendData to forward this event to all other group members.
Thereby it will pass all necessary data (e.g. the operation ID for object rotation, the
object ID and the rotation angle - see Section 2.1) encoded in an instance of dataType.

2.4 Communication Layer

The communication layer consists of three modules that establish a connection to the
server component based on the actual protocol (CORBA, TCP/IP, or UDP/IP) selected.
All modules have the same interface that is very similar to the session layer’s (and is
therefore omitted here). During an open session, only one communication module is

active at a time (as specified in Section 2.1). 

The CORBA module consists of a CORBA client stub for propagating events to
the TOGA server (based upon interface c2s of Figure 4), a CORBA server object
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to receive events from the TOGA server (implementing interface s2c of Figure 4)
and some methods that map between those objects’ interfaces and the interface of the
communication layer. E.g. the methods sendData, sendAllData, voteCommit and
voteAbort are mapped to the single method sendData of the TOGA server.

2.5 TOGA Server

The TOGA server (Transaction-Oriented Group and Coordination Service for Data-
Centric Applications) is an integrated CORBA service that manages transaction-
oriented event processing as well as related group administration. Its interface is
presented in Figure 4. The server itself implements interface c2s (client to server),
whereas interface s2c (server to client) is implemented by the communication layer
of each participating application.

Data structures presented in Figure 4 are used in both components. Since the
TOGA server is a CORBA-based service (see Figure 3), we can assume reliable
communication. The other modules will have more complex protocols. 

Interface c2s is very slim and reflects the generic architecture: It has only one
method for event propagation and three methods for group management. We decided to
define only a single, generic method for event operations since the main part of
processing will be the same for all kind of events. Thus it is much easier to handle
threads of control and related transaction processing within the service.

// Data Structures used by TOGA

typedef string<20> string20;

enum flagMap{ SHORT_TAG, USHORT_TAG, 
INT_TAG, UINT_TAG,

LONG_TAG, ULONG_TAG,

CHAR_TAG, FLOAT_TAG,
DOUBLE_TAG };

union partMap switch (flagMap) {

case SHORT_TAG : short dataShort;
case USHORT_TAG : unsigned short

dataUShort;

case INT_TAG : short dataInt;
case UINT_TAG : unsigned short

dataUInt;

case LONG_TAG : long dataLong;
case ULONG_TAG : unsigned long

dataULong;

case CHAR_TAG : char dataChar;
case FLOAT_TAG : float dataFloat;

case DOUBLE_TAG : double dataDouble; };

typedef sequence<partMap> dataMap;

struct memberMap{ short id;

string20 name; };
typedef sequence<memberMap> memberList;

struct groupMap { short id;

string20 name; 
memberList members; };

interface c2s {
short addToNewGroup(in long commNr,

in short groupId,

in string20 groupName,
 in short memberId,

in string20 memberName);

short addToGroup( in long commNr,
in short groupId,

in string20 groupName,

in short memberId,
in string20 memberName);

void removeFromGroup( in long commNr,

in short memberId);
short sendData( in long commNr,

in long msgNr,

in dataMap data);
// ... additional methods for initialization

};

interface s2c {
void addNewGroup ( in short groupId,

in string20 groupName,

in short memberId,

in string20 memberName);
void addToGroup ( in short groupId,

in short memberId,

in string20 memberName);
void removeFromGroup ( in short memberId);

short sendData ( in long commNr,

in long msgNr,
 

typedef sequence<groupMap> groupList;

Fig. 4. IDL Interface of the TOGA Service (server and client components)

in dataMap data);

};
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Interface s2c is similar to c2s since events will be directly propagated from the
communication layer to the application layer, except for group events (related to
changes of a group composition) that will be processed within the session layer.

The overall architecture of TOGA ensures that participating applications will act
as event supplier and event consumer. Thus it realizes a symmetric event model.
Furthermore, from a logical point of view, the TOGA server is a central server that is
responsible for all known applications based upon the architecture displayed in Figure
3. Nevertheless, the actual implementation may consist of several, distributed servers
that use additional protocols to achieve consistency of operations (i.e. defining a global
state of group compositions).

2.6 Processing Example

A processing example of a possible initialization phase is presented in Figure 5:
Application 1 (see left hand side) initializes its session (thereby choosing the TOGA
communication module), retrieves all information describing current groups and
members and requests to become a member of one group. Processing this request, the
TOGA server retrieves all data related to this group from application 2 (which is already
a member of that group), propagates it to application 1, notifies all members of that
group (including the new member) that the group composition has changed and replies
that the operation has succeeded.
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AALSLCLA AL SL CL
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Fig. 5. Processing example of the initialization phase

blocked task



310 Jürgen Sellentin, Aiko Frank, and Bernhard Mitschang

Figure 5 contains also a request for a rotation operation of application 2 (see right
hand side). Since the request of application 1 refers to the same group, the operation
request of application 2 is automatically deferred until the first request is processed. If
both operations would have been processed in parallel, and the rotation would have
been executed by application 2 before it replies to the request for all data, and
application 1 would have received the rotation request after having received all data,
then the rotation would have been performed twice on the data of application 1, but only
once on the data of application 2. Of course, more detailed synchronization protocols
(preventing this problem) are possible within our architecture. E.g. the TOGA server
might “know” that the rotation has already been performed on the data, and therefore
the rotation event must not be propagated to application 1. As one can see, the
granularity of shared data has to be well-defined in order to ensure a scalable
architecture.

Another example describing the overall processing for a successful rotation
operation is presented in Figure 6. Any operation is performed due to a received event,
even within the initiating application process. First, this enables the usage of multicast
protocols instead of multiple operation invocations. Second, it simplifies the application
(otherwise the application code would have to distinguish between user-requests and
events).

Considering a third application that could not perform the requested operation, and
thus votes abort, application 1 and 2 would have to undo the already performed
operation. This would happen instead of the “no operation” displayed in the lower right
part of Figure 6. 
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Fig. 6. Processing example of a successful rotation operation
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3. Relationship to Existing Technology

TOGA was developed since other approaches don’t fulfil the full set of requirements
that are associated with a consistent and distributed collaboration in a heterogeneous
environment by means of common information spaces, especially for concurrent
engineering (see Section 1). TOGA can manage shared data objects consistently among
the possibly heterogeneous applications that belong to a group. This leads to a
component-based approach showing tight coupling, high group awareness, and
consistent work data. Nevertheless, since there exist many different mechanisms for
communication and collaboration in distributed environments, we want to show how
they relate to our approach.

3.1 Comparison to Existing Communication Services

The simplest approach of communication is defined by the primitives send/receive [29].
It can be used to build higher level communication systems, as e.g. the TOGA service.

Messaging and queuing systems offer functionality to handle messages between
two parties in a distributed environment, without being linked by a private, dedicated,
logical connection [18]. Thus this approach enables asynchronous communication as
used for e.g. bulk message processing or mobile computing. In contrast, our approach
ensures communication for synchronous work among a given set of parties and in
dedicated Intranets.

Persistent queues (usually) offer reliable asynchronous message exchange and
sometimes they can also ensure the order in which messages are received (FIFO, etc.,
see e.g. JPMQ [26]). This is actually more closely related to our approach which offers
guarantees in event and data handling as well as synchronization of events. Message
queues could be one way to implement TOGA, with high level functionality like event
and group management still to be added.

Since TOGA was implemented using CORBA, we want to show how it relates to
existing CORBA Common Object Services. The CORBA Event Service offers event
channels to suppliers and consumers of events. Both can subscribe to such a channel in
order to receive or initiate events, either using the push or the pull model. Since the pull
model is somehow comparable to polling, and thus inappropriate for our application
scenario, we will look only at the push-based event channels. There are generic events
which have to be interpreted by the application, and typed events which are defined via
IDL. A generic event channel with push consumers and suppliers is similar to our
approach. However, in TOGA the group composition is known and accessible to all
group members and additional group functionality is available (see Section 2), which is
not the case for the CORBA Event Service, where suppliers and consumers are
connected to the event channel without knowing of each others existence [14], [19].
Furthermore TOGA clients are both suppliers and consumers (per definition), whereas
clients connected to an event channel can be suppliers, consumer, or both. Last but not
least, it would take considerably more effort to implement a comparable service with

event channels, since more service logic has to be implemented. In particular, it is
necessary to provide implementations for PushConsumer, ProxyPushConsumer,
ConsumerAdmin, EventChannel, PushSupplier, and SupplierAdmin. All in all
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the Event Service shows less transparency of event processing and much more
administration overhead. Finally, the Event Service doesn’t (necessarily) support
transaction-like behavior, order of events, and lacks further guarantees (see e.g. [19]). 

Transaction-like handling of objects in a CORBA environment could be achieved
by deploying the CORBA Event, Object Transaction and Concurrency Control
Services. One major drawback is that the objects to be handled, have to be first class
CORBA objects, which causes a lot of overhead (see [19], [24]). In addition, the
relationship between applications, events, event channels and transactions is difficult to
model. We prefer TOGA as a low level service, which might be used to build an
advanced object model adapted to a particular design scenario on top of it.

3.2 Comparison to CSCW Technologies

Since we aim at supporting distributed collaborative work environments, it is obvious
that we offer functionality that can be found in CSCW (Computer Supported
Cooperative Work).

Workflow Management Systems realize process coordination and enactment
especially for asynchronous work. Our approach enacts (ad hoc) coordination of
synchronous work on shared data objects, but not directly the flow of work activities,
since it is not process-oriented.

TOGA more closely resembles a CSCW service for synchronous distributed
applications such as e.g. multi-user editors ([11], [22]). CSCW focuses on issues like
groups, group awareness, human interaction and common information spaces in order
to support cooperation. TOGA does not include support for groups of people like a
generic group service would, but groups of applications, where one group is
characterized by sharing a common set of data objects. This is due to the data-centric
approach of this service and thus it is not user-centric. So we clearly focus on common
work and information spaces. In doing 2PC combined with a push model, we also allow
for an accurate group awareness, since all actions of a member are directly reflected in
all group member applications (see Section 2). This is one of the major points where we
differ from approaches like [10] and [27], which support cooperation of asynchronously
and possibly disconnected users. To support these users, techniques like versioning,
replication, inconsistency detection, and merging are being applied. Since we support
synchronous work, such mechanisms become obsolete. We have to cope only with short
periods of inconsistency while a commit phase is going on. Afterwards all common data
objects are again synchronized, which is the so-called quiescent phase as described in
[4]. But in contrast to TOGA, the algorithm presented in [4] relies on transforming
conflicting operations to reach the convergence of the shared objects, while TOGA
shows a more generic and transaction-oriented behavior. There exist other approaches,
which developed formal models to handle concurrency control in synchronous
applications (mainly multi user editors), e.g. [16],[21]. Especially [28] seems to be a
very comprising work. Numerous criteria have been defined and corresponding
algorithms presented in order to support controlled concurrent work. TOGA only offers
 

the basic services to couple different applications by customizing information spaces
and the necessary operations. Though it would be a good idea to implement the before-
mentioned algorithms into the application layer. For example, one could implement the
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functionality of the ORESTE-Algorithm (Optimal RESponse TimE, [1]), which is used
in synchronous groupware tools (i.e. GroupDesign, [1]).

Another service for distributed collaborative work is realized by the Corona Server
[9] and the DistView [20] package. DistView is a toolkit for synchronizing views at the
granule of single GUI windows, which is generally coarser than what can be achieved
with our architecture. The Corona server was built to support publish/subscribe (P/S)
and peer group (PG) communication. The P/S paradigm is related to the CORBA event
channel notion (see above). The PG functionality supports group communication and
can distinguish between different roles for users (principals and observers), whereas
there is no difference for application users in TOGA, since it focuses on symmetrically
propagating work activities which are relevant to all applications and doesn’t
implement direct inter-person communication support (e.g. for email or chat).
Furthermore in [9], P/S and PG can be distinguished by means of anonymous versus
named communication. TOGA lies in between because the TOGA protocols allow to
access and propagate group (composition) information, but on the other hand it
broadcasts all events regarding the shared data.

At last we want to point out some differences to GroupKit ([8], [23]), which is a
Tcl/Tk-based toolkit offering core technology for implementing synchronous and
distributed conferencing systems. In contrast, TOGA is a service for already existing
applications. One of the GroupKit core technologies is the support for shared data.
Concurrency control is only rudimentarily implemented, since it has to support a wide
range of applications (see also [7]). Thus it might be necessary to implement a
transactional protocol, like the one of TOGA, for GroupKit. Data sharing and
synchronized views are enabled through the choice between three abstractions:
multicast RPC, events, and environments. The environment concept is closest to the
information space aspect of TOGA. It uses a structured model for name/value pairs.
Users can register, to be notified when any changes have been made. However, there is
no voting phase as in TOGA to ensure the validity of the modifications.

Because TOGA centers on shared, distributed data it might be interesting to
compare it to federated database technology. However, TOGA does not provide a
common data storage facility. Instead, it synchronizes (by means of coordination of the
operations) the state of only those data objects that are part of the common information
space. 

4. Prototype Implementation

A prototype implementation has been built to prove the concepts presented in Section
2. It consists of a single TOGA server and several clients that include a simple test
application as described in Section 4.1. All components are written in C++ and have
been tested on a cluster of SUN Ultra 1 workstations, connected via a 10 MBit Ethernet.
The underlying CORBA system is IONA’s Orbix, version 2.3MT.
4.1 Test Application

A simple application has been developed to test the functionality and performance of
the TOGA server as well as its related client layers. Collaborative work is simulated by
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5 coins that can be moved on a fixed desktop. If a single user performs a move operation
(using the mouse), our system ensures that this operation will be propagated to all other
applications which belong to the same group. If this move operation is in conflict with
an operation performed by other group members, it will be undone. Please note that our
desktop with the 5 coins symbolizes the common information space and the movements
resemble the design operations to simulate a collaborative work scenario on shared data
objects. For example, in the real world scenario of Figure 1, the information space for
the “engine construction” comprises objects like transmission (as depicted), gear, and
motor. 

4.2 Client Layers

The application layer as described in Section 2 has been integrated into the application
code. The session and communication layer are realized by a class hierarchy that omits
unnecessary method implementations. More precisely, the session layer contains only
declarations of virtual methods that are implemented by the communication layer.
Upcalls from the TOGA server are processed by the communication layer and either
directly propagated to the application layer (events due to application operations) or
further processed within the session layer (caching of group data). 

4.3 TOGA Server

Implementing the prototype, we decided to build a single, central TOGA server only.
Though this might reduce scalability, it omits additional protocols for synchronization
and distributed event handling. Parallel processing of events can be enabled by
choosing the appropriate thread mode of the TOGA server: Using mode 1, the entire
server process is single threaded. Mode 2 shows one thread per group and mode 3 refers
to one thread per event. 

4.4 Experiences

In addition to the graphical application described in Section 4.1, we have developed a
script-based client. It has been used to initiate a well defined number of events for
measurements. Since a workstation has only a single mouse and keyboard, each
graphical application has been run on a separate host (guaranteeing a realistic scenario).
The TOGA server and script-based clients have been run on other hosts.

In a first test, we have determined differences between thread modes, thereby using
three groups with three applications3. In theory, assuming linear scalability, the
throughput of each mode should be three times higher than before. In practice, we
measured a slightly lower factor (appr. 2.5). Since the server has been run on
workstations with a single CPU, threads can only be used for parallel communication,
but not for parallel execution of code within the TOGA server. Thus we conclude that
the different thread modes achieved very positive and acceptable results.

The next test has been set up to measure scalability related to the number of
 

applications per group (using thread mode 3). It turned out that the throughput

3 One script-based application to initiate events and two passive, graphical applications that receive events.
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decreased by 10-15% for a group that had five instead of a single member. Once again,
we think that this is a promising result.

Finally, please keep in mind that pure system measurements do not provide a
comprehensive assessment of TOGA. In real-world scenarios it is not expected that
applications initiate events every millisecond. The main factors comprise thinking time
of the user, processing time for operations and undo operations, as well as the amount
of conflicting actions that result into conflicting events. The acceptance discussion of
TOGA will not be decided w.r.t. the performance at the event level (as e.g. number of
events processed per second), but w.r.t. the effectiveness and appropriateness of the
semantical support for collaboration.

5. Summary and Outlook

TOGA has been developed in order to meet the demand for coupling existing
engineering applications. Thus the TOGA service provides a particular technique
towards component-oriented system engineering. It offers customizable group
management and collaboration facilities to stand-alone application systems in order to
set up a cooperative information system. Our collaboration approach is characterized by
the coordination of synchronous work on a common information space. The
collaboration model can be adapted to application needs by specifying first, the shared
data objects that comprise the common information space, second, the operations that
manipulate these data, and third, the conflict as well as conflict-resolution scenarios (i.e.
undo algorithms). This conceptual flexibility is further enhanced by its layered and
modular architecture that enables implementation flexibility as multiple
communication protocols and basic transaction properties can be easily supported.
Furthermore, these flexibility issues are the primitives towards extensibility. As
discussed in Section 3 it is a platform to implement sophisticated algorithms for
concurrent work as needed for certain environments.

We are currently investigating into several directions. One refers to extensions to
the collaboration model. We view TOGA as a basic layer that provides the necessary
functionality to build higher-level collaboration features as e.g. hierarchical groups
referring to hierarchically organized information spaces, or more sophisticated conflict
management functionality. Another direction of further work concentrates on
implementation issues like multi-protocol communication, multi-threading, and other
performance enhancing measures. The third direction of current and future research
deals with questions on how to efficiently integrate the TOGA service and its
enhancements into different kinds of application systems. Here we want to gain more
knowledge on how to customize TOGA and how to integrate it via its application layer
to existing application systems. So far, we concentrated on a modular and extensible
architecture and therefore only hand-crafted this customization, but in the long run a
methodology and clear model seems to be useful or even necessary. Last but not least,
we want to employ TOGA within typical application areas of workflow and CSCW

systems as for example business process applications or multi-user editors. Therewith,
we want to investigate whether a system like TOGA can be used as a basis to a new
generation of systems that integrate workflow and CSCW issues.
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