
Verification of Parameterized Systems by
Dynamic Induction on Diagrams ?

Zohar Manna and Henny B. Sipma

Computer Science Department
Stanford University

Stanford, CA. 94305-9045
{manna,sipma}@cs.stanford.edu

Abstract. In this paper we present a visual approach to proving pro-
gress properties of parameterized systems using induction on verification
diagrams. The inductive hypothesis is represented by an automaton and
is based on a state-dependent order on process indices, for increased flexi-
bility. This approach yields more intuitive proofs for progress properties
and simpler verification conditions that are more likely to be proved
automatically.

1 Introduction

Verification diagrams represent a proof that a reactive system satisfies its tem-
poral specification; they were proposed in [MP94] and generalized in [BMS95].
The purpose of a diagram is to provide a high-level proof outline that makes
explicit the difficult parts of the proof, while hiding the tedious details.

Parameterized systems are systems that consist of an unbounded number
of processes that differ only in their process identifiers (process indices). Pro-
ofs of safety properties over parameterized systems introduce universal force
quantifiers in the verification conditions. On the other hand, proofs of progress
properties for such systems usually introduce both universal force and existential
force quantifiers in the verification conditions, making these proofs considerably
harder.

The validity of a progress property usually relies on the fairness of certain
transitions. In the proof, these transitions must be identified, and they are repre-
sented explicitly in a verification diagram. However, for parameterized systems,
the validity of a progress property may depend on an unbounded number of
distinct fair transitions, so an alternative representation must be used.

One solution, proposed in [MP96], is to assert the existence of such transitions
in the diagram without explicitly identifying them. However, this partly defeats
? This research was supported in part by the National Science Foundation under

grant CCR-98-04100, ARO under grants DAAH04-95-1-0317, DAAH04-96-1-0122
and DAAG55-98-1-0471, ARO under MURI grant DAAH04-96-1-0341, and by Army
contract DABT63-96-C-0096 (DARPA).

N. Halbwachs and D. Peled (Eds.): CAV’99, LNCS 1633, pp. 25–43, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

26 Z. Manna and H.B. Sipma

the purpose of diagrams: the transitions now have to be identified at the theorem-
proving level, by instantiating the existential quantifiers. This usually requires a
substantial amount of user input at a level where intuition and insight into the
program are of little help.

In this paper, we suggest that progress properties can often be proven by
induction on the process identifier. In many programs, processes are waiting for
each other to achieve their goal in turn. A natural inductive hypothesis is thus
that processes with higher priority than the current process will achieve their
goal. In some cases, for example in the proof of progress properties for a leader
election algorithm presented in [BLM97], standard mathematical induction with
a fixed order on the process indices suffices. However, in many cases a more
flexible order is required.

The induction principle for diagrams proposed here extends the regular in-
duction principle over the natural numbers by allowing a state-dependent order
on the process indices. While in a proof of ϕ[i] by regular induction, ϕ[j] may
be assumed only if j ≺ i, in our diagram induction ϕ[j] may be assumed if for
every computation of the system eventually always j ≺ i holds. In a proof by
diagram induction, this condition is incorporated in an automaton for the induc-
tive hypothesis that constrains the set of computations for an arbitrary value of
the parameter; this automaton is then conjoined with the main diagram.

We illustrate the diagram induction principle by proving a progress property
for a very simple parameterized system. In the last section we demonstrate a
more complex application in the proof of accessibility for a fine-grained parame-
terized algorithm for mutual exclusion.

2 Preliminaries

2.1 Computational Model

Our computational model is that of fair transition systems [MP95]. A fair tran-
sition system (fts) S : 〈V,Θ, T ,J 〉 consists of

– V : A finite set of typed system variables. A state is a type-consistent in-
terpretation of the system variables. The set of all states is called the state
space and is designated by Σ. A first-order formula with free variables in V
is called an assertion. We write s |= p if s satisfies p.

– Θ: The initial condition, an assertion characterizing the initial states.
– T : A finite set of transitions. Each transition τ ∈ T is a function τ : Σ 7→ 2Σ

mapping each state s ∈ Σ into a (possibly empty) set of τ -successor states,
τ(s) ⊆ Σ. Each transition τ is defined by a transition relation ρτ (V, V ′),
a first-order formula in which the unprimed variables refer to the values
in the current state s, and the primed variables refer to the values in the
next state s′. Transitions may be parameterized, thus representing a possibly
unbounded set of transitions differring only in their parameter.

– J ⊆ T : A set of just (weakly fair) transitions1.
1 To simplify the presentation we omit compassion (strong fairness) in this paper.

Verification of Parameterized Systems by Dynamic Induction on Diagrams 27

A run of a fair transition system S : 〈V,Θ, T ,J 〉 is an infinite sequence
of states σ : s0, s1, s2, . . ., such that s0 |= Θ, and for each j ≥ 0, sj+1 is a τ -
successor of sj , that is, sj+1 ∈ τ(sj) for some τ ∈ T . If sj+1 is a τ -successor of
sj we say that transition τ is taken at position j. The set of runs of S is written
LR(S).

A computation of a fair transition system S is a run σ of S that satisfies
the fairness requirement: for each transition τ ∈ J it is not the case that τ is
continuously enabled beyond some position j in σ, but not taken beyond j. The
set of computations of a system S is denoted by L(S), called the language of S.
A state is called S-accessible if it appears in some computation of S.

Example 1
Figure 1 shows program simple, parameterized by M , written in the spl langu-
age of [MP95]. Its body is the parallel composition of M processes, indexed by i.
The program has a global array variable a that can be observed by all processes,
all of whose elements are initialized to false. In addition, each process has a local
variable j that cannot be observed by any other process.

It is straightforward to translate this program into an fts. The system va-
riables are an integer M , a boolean array a, an integer array j, containing the
value of the local variable j of each process, and an array π, containing the
label, π[i] ∈ {`0, `1, `2, `3}, of the current statement of each process. Each pro-
gram statement can be represented by a parameterized transition. For example,
the statement labeled by `1 is represented by the parameterized transition with
transition relation

ρ`1 [i] : π[i] = `1 ∧ π′[i] = `0 ∧ (a[j[i]] ∨ i ≤ j[i]) ∧ a′ = a ∧ j′ = j

The objective of this simple program is for each process i to set a[i] to true, but

in M : integer where M > 0
local a : array [1..M] of boolean where a = false

||Mi=1P [i] ::

local j : integer where j = 1

`0: for j = 1 to M do

`1: await a[j] ∨ i ≤ j
`2: a[i] := true
`3:

Fig. 1. Program simple

only after all processes with smaller process indices have done so. We will prove
that eventually each process completes its mission.

28 Z. Manna and H.B. Sipma

2.2 Specification Language

As specification language we use linear-time temporal logic (ltl). ltl formulas
are interpreted over infinite sequences of states. A temporal formula [MP95] is
constructed out of state formulas and temporal operators. Below we only give
the semantics of those operators used in our examples.

For an infinite sequence of states σ : s0, s1, . . ., an assertion p, and temporal
formulas φ and ψ,

(σ, j) |= p iff sj |= p that is, p holds on state sj
(σ, j) |= 0 φ iff (σ, i) |= φ for all i ≥ j
(σ, j) |= 1 φ iff (σ, i) |= φ for some i ≥ j

An infinite sequence of states σ satisfies a temporal formula φ, written σ |= φ,
if (σ, 0) |= φ. Given an fts S, we say that an ltl formula ϕ is S-valid, written
S |= ϕ, if every computation of S satisfies ϕ.

The safety closure[AL90] of a temporal formula ϕ, is the smallest safety
property, ϕS such that ϕ implies ϕS . For example (0 ϕ)S = 0 ϕ and (1 ϕ)S =
true.

Example 2
The temporal formula

ψ[i] : 0 1 ¬`1[i] → 1 0 a[i] ,

parameterized by i, states that if process i is not in location `1 infinitely often,
then array element a[i] will eventually become true and stay true.

3 Verification Diagrams

A verification diagram G represents a proof that a possibly infinite-state system
S satisfies a property ϕ if it can be shown that G is both an overapproximation
of the system and an underapproximation of the property. In other words,

L(S) ⊆ L(G) ⊆ L(ϕ)

where L(S), L(G), and L(ϕ) denote the languages of the system, diagram and
property, respectively, each of which is a set of infinite sequences of states.

The language inclusion L(S) ⊆ L(G), which states that every computation
of S is a model of the diagram G, is justified by proving a set of first-order
verification conditions, using deductive techniques. On the other hand, the in-
clusion L(G) ⊆ L(ϕ), which states that every model of the diagram satisfies the
property, is a decidable language inclusion check that can be established auto-
matically using language-inclusion algorithms for ω-automata. Thus, verification
diagrams reduce the proof of an arbitrary temporal property over a system to
the proof of a set of first-order verification conditions and an algorithmic check.

Verification of Parameterized Systems by Dynamic Induction on Diagrams 29

3.1 Definition

Verification diagrams are ω-automata [Tho90] augmented with an additional
node labeling µ, to establish their relation with the fts that they verify. The
diagrams used in this paper are a modified version of those presented in [BMS95]
and are described in detail in [MBSU98].

A diagram G : 〈N,N0, E, µ, ν,F〉 over an fts S : 〈V,Θ, T ,J 〉 and a property
ϕ consists of the following components:

– N : a finite set of nodes;
– N0 ⊆ N : a set of initial nodes;
– E ⊆ N ×N : a set of edges connecting nodes;
– µ: a node labeling function that assigns to each node an assertion over V ;
– ν: a node labeling function, called the property labeling, that assigns to each

node a boolean combination of the atomic assertions appearing in ϕ;
– F ⊆ 22N : a (Müller) acceptance condition given by a set of set of nodes.

A path of a diagram is an infinite sequence of nodes π : n0, n1, . . ., such that
n0 ∈ N0 and for each i ≥ 0, 〈ni, ni+1〉 ∈ E. Given a path π, its limit set , written
inf (π), is the set of nodes that occur infinitely often in π. Note that the limit
set of an infinite path must be nonempty since the diagram is finite, and that
it must be a strongly connected subgraph (SCS) of the diagram. A path π of a
diagram is accepting if inf (π) ∈ F .

Given an infinite sequence of states σ : s0, s1, . . ., a path π : n0, n1, . . . is
called a trail of σ in the diagram if si |= µ(ni) for all i ≥ 0. A sequence of states
σ is a run of a diagram if there exists a trail of σ in the diagram. The set of runs
of a diagram G is written LR(G). A sequence of states σ : s0, s1, . . . is a model
of a diagram if there exists an accepting trail of σ in the diagram. The set of
models of a diagram G is written L(G).

3.2 Verification Conditions

Associated with a diagram is a set of first-order verification conditions that, if
valid, prove

L(S) ⊆ L(G) .

In this case we say that G is S-valid. We use the following notation:
For a set of nodes M = {n0, . . . , nk}, we define

µ(M) def= µ(n0) ∨ . . . ∨ µ(nk)

where µ({}) = false. For a node n, the set of successor nodes of n is succ(n). We
use Hoare triple notation to state that a parameterized transition τ leads from
a state satisfying ϕ to a state satisfying ψ:

{ϕ} τ {ψ} def= ∀i . (ϕ ∧ ρτ [i] → ψ′)

A diagram G is S-valid if it satisfies the following conditions:

30 Z. Manna and H.B. Sipma

– Initiation: Every initial state of S must be covered by some initial node of
the diagram, that is Θ → µ(N0).

– Consecution: For every node n and every transition τ , there is a successor
node that can be reached by taking τ , that is

{ µ(n) } τ { µ(succ(n)) } .

The Initiation and Consecution conditions, if valid, prove that every run of S is
a run of the diagram, that is, LR(S) ⊆ LR(G)

A second set of verification conditions ensures that every computation of the
system has an accepting trail in the diagram. Thus, if an SCS S is not accepting,
we must show that computations can always leave S or cannot stay in S forever.

We say that an SCS S has a fair exit transition τ , if the following verification
conditions are valid for every node m ∈ S

µ(m) → enabled(τ) and { µ(m) } τ { µ(succ(m) − S) } ,

that is, τ is enabled on every node in S, and from every node in S transition τ
can be taken to leave S. Thus if an SCS has a fair exit transition, there is at
least one trail of every computation that can leave the SCS.

We say that an SCS S : {n1, . . . , nk} is well-founded if there exist ranking
functions {δ1, . . . , δk}, mapping the system states into a well-founded domain
(D,�), such that the following verification conditions hold: there is a cut-set2 C
of edges in S such that for all edges 〈n1, n2〉 ∈ C and every transition τ ,

µ(n1) ∧ ρτ ∧ µ′(n2) → δ1(n1) � δ′
2(n2) ,

and for all other edges 〈n1, n2〉 6∈ C in S and for all transitions τ ,

µ(n1) ∧ ρτ ∧ µ′(n2) → δ1(n1) � δ′
2(n2) .

Thus, if an SCS S is well-founded, no run can have a trail with limit set S, since
it would violate the well-founded order.

– Acceptance: Every nonaccepting SCS S (S 6∈ F), has a fair exit transition
or is well-founded.

The Acceptance condition ensures that every computation of the system has at
least one accepting trail in the diagram, that is, L(S) ⊆ L(G).

3.3 Property Satisfaction

It remains to justify that L(G) ⊆ L(ϕ), which is done using the property labeling
ν of the diagram. Recall that the property labeling assigns to each node of the
diagram a boolean combination of atomic assertions appearing in ϕ, the property
to be proven.
2 A cut-set of an SCS S is a set of edges C such that the removal of C from S results

in a subgraph that is not strongly connected.

Verification of Parameterized Systems by Dynamic Induction on Diagrams 31

We say that a path π : n0, n1, . . . is a property trail of an infinite sequence
of states σ : s0, s1, . . . if for all i ≥ 0, si |= ν(i). An infinite sequence of states
σ is a property model of a diagram if it has an accepting property trail in the
diagram. The set of property models of G is written Lp(G).

Given a property labeling ν, a diagram G defines a finite-state ω-automaton
AG by interpreting the atomic assertions of ν as propositions. Similarly, the
property ϕ defines a finite-state ω-automaton Aϕ. The models of both AG and
Aϕ are infinite sequences of states that assign truth values to these atomic
assertions.

The verification conditions to prove Property Satisfaction are

S1 for every node n ∈ N , µ(n) → ν(n), which can be shown deductively.
S2 the language inclusion L(AG) ⊆ L(Aϕ) holds, which can be shown by stan-

dard decidable ω-automata techniques.

Condition S1 proves L(G) ⊆ Lp(G); from S2 the inclusion Lp(G) ⊆ L(ϕ) follows,
and by transitivity we have L(G) ⊆ L(ϕ).

Example 3
Returning to program simple of Figure 1, it is our goal to verify that each
process i eventually sets a[i] to true. That is, we want to prove

ϕ[i] : 1 0 a[i] for all i ∈ [1..M] .

However, we first prove the weaker property

ψ[i] : 0 1 ¬`1[i] → 1 0 a[i] for all i ∈ [1..M] ,

given in Example 2.
Figure 2 shows the verification diagram G1[i], parameterized by i. In the

diagram, initial nodes are indicated by a sourceless edge going to the node. The
diagram G1[i] represents a proof of ψ[i], for all i ∈ [1..M]. That is, for an arbitrary
i ∈ [1..M], L(simple) ⊆ L(G1[i]) ⊆ L(ψ[i]).

The acceptance condition, F = {{n1} , {n3}} states that every trail of a
computation must eventually end up in nodes n1 or n3. To justify L(G1[i]) ⊆
L(ψ[i]), we have to show: S1 the property labeling ν is implied by the node
labeling µ, which is trivial in this case, and S2 the inclusion L(AG1[i]) ⊆ L(Aψ[i])
holds, which is obvious (note that ψ[i] can be rewritten into 1 0 `1[i]∨1 0 a[i],
to make the connection between the acceptance condition and the property more
obvious).

To justify L(simple) ⊆ L(G1[i]), we have to show Initiation, Consecution and
Acceptance. Initiation and Consecution are easily shown. To show Acceptance,
we have to show that the three nonaccepting SCSs are well-founded or have a fair
exit transition. The SCS {n0, n1} is shown to be well-founded with the ranking
function δ : M+1−j[i] defined on both nodes, and the SCSs {n0} and {n2} have
fair exit transitions `0[i] and `2[i] respectively. Therefore L(simple) ⊆ L(ψ[i])
for i ∈ [1..M].

32 Z. Manna and H.B. Sipma

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
?

?

?

-
�

��
��
��

�-

-

-

�
µ : `0[i]
ν : true

n0

µ : `2[i]
ν : true

n2

µ : a[i]
ν : a[i]

n3

µ : `1[i]
ν : `1[i]

n1

F = {{n1} , {n3}}

Fig. 2. Verification diagram G1[i], proving ψ[i] : 0 1 ¬`1[i] → 1 0 a[i]

Note that we would not have been able to justify a nonaccepting {n1}, since
transition `1[i] is not guaranteed to be enabled on n1, and therefore is not a fair
exit transition. This led us to include {n1} in the acceptance condition, and thus
prove the weaker property.

3.4 Previously Proven Properties

Diagram verification enables the use of previously proven properties in several
ways. As in verification by verification rules, invariants of the program can be ad-
ded to the antecedents of all verification conditions. However, previously proven
temporal properties can be used as well.

Arbitrary temporal properties can be used to relax the Property Satisfaction
condition as follows [BMS96]. Let S |= ϕ1, . . . ,S |= ϕn, and let G be a diagram
for S and ϕ. Then, for Property Satisfaction, it suffices to show

L(ϕ1) ∩ . . . ∩ L(ϕn) ∩ L(G) ⊆ L(ϕ) ,

instead of L(G) ⊆ L(ϕ). To perform this check, additional propositions, appea-
ring in ϕ1 . . . ϕn, may have to be added to the diagram.

Simple temporal properties can also be used to show that a diagram is S-
valid. We say that an SCS S : {n1, . . . , nk} is terminating if

0 1 ¬(µ(n1) ∨ . . . ∨ µ(nk))

is S-valid, that is every computation will always eventually leave the SCS. The
Acceptance condition can now be relaxed to

– Acceptance: Every nonaccepting SCS S (S 6∈ F), has a fair exit transition,
is well-founded, or is terminating.

Verification of Parameterized Systems by Dynamic Induction on Diagrams 33

4 Diagram Induction

Proofs of progress properties of concurrent systems usually require the explicit
identification of the transitions that ensure progress, called helpful transitions.
For nonparameterized systems the number of distinct helpful transitions is bo-
unded; ranking functions are used if these helpful transitions have to be taken an
unknown number of times to achieve the goal. Therefore all helpful transitions
can be explicitly represented in the diagram.

The situation is different when the system is parameterized. In this case,
achieving the goal may depend on an unbounded number of distinct helpful
transitions, and thus they cannot be represented explicitly in the diagram. For
example, in program simple, achieving 0 1 ¬`1[i] may require a number of
distinct transitions proportional to M .

A possible solution in this case is to use existential diagrams, which assert
the existence of a process index for which the transition guarantees progress.
Existence must then be shown as part of the proof of the verification conditions.

Example 4
In Example 3 we succeeded in proving

ψ[i] : 0 1 ¬`1[i] → 1 0 a[i] for all i ∈ [1..M] .

If we are able to prove

χ[i] : 0 1 ¬`1[i] for all i ∈ [1..M] ,

we can conclude that the desired property, ϕ[i] : 1 0 a[i], holds.
Figure 3 shows the existential diagram G2[i], which could be used to prove

χ[i]. The diagram uses encapsulation conventions: a compound node labeled by
an assertion p adds p as a conjunct to all of its subnodes, and an edge arriving
at (or departing from) a compound node represents a set of edges that arrive at
(or depart from) each of its subnodes.

In the diagram sup(i) stands for the set of process indices for which process
i is waiting, that is, those processes that have priority over i,

sup(i) def= {r | r < i ∧ ¬a[r]} .

The diagram states that as long as sup(i) 6= ∅, there exists a process r at
location `0, `1 or `2, and, if at `1, the process is enabled. Proving Initiation for
this diagram is straightforward. However, proving Consecution is much harder
than for the usual diagrams, due to the existential quantifiers in the verification
conditions. For example, using Hoare triple notation, the consecution condition
for n2 and transition `2 is

34 Z. Manna and H.B. Sipma

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

'
&

$
%

'

&

$

%

'

&

$

%
?

?

?

-
� �

�
�

?
6�

?

n0

n2

n3

n4

n1

µ : ∃r.`0[r]

µ : ∃r.`2[r]

µ : sup(i) = ∅

µ : ¬`1[i]
ν : ¬`1[i]

µ : ∃r.`1[r] ∧
(

a[j[r]]
∨

r ≤ j[r]

)µ : sup(i) 6= ∅

µ : `1[i]
ν : true

F = {S | n4 ∈ S}

Fig. 3. Existential diagram G2[i], proving χ[i] : 0 1 ¬`1[i]

{ ∃r.`2[r] ∧ `1[i] ∧ sup(i) 6= ∅ }

`2

`1[i] ∧ sup(i) 6= ∅ ∧ ∃r.`0[r] ∨
`1[i] ∧ sup(i) 6= ∅ ∧ ∃r.`1[r] ∧ (a[j[r]] ∨ r ≤ j[r]) ∨
`1[i] ∧ sup(i) 6= ∅ ∧ ∃r.`2[r] ∨
`1[i] ∧ sup(i) = ∅ ∨
¬`1[i]

The proof of this verification condition requires the instantiation of r with the
process index of the process that is enabled if sup(i) 6= ∅.

The verification conditions to justify Acceptance are slightly different from
those presented in this paper, to ensure that identity of transitions is preserved
for fairness. The full definition of existential diagrams is given in [MP96].

We now describe our new approach, showing how mathematical induction
on a process index can be used to simplify the diagrams and the corresponding
verification conditions needed to prove a progress property ϕ[i], over a system
S consisting of M processes.

Verification of Parameterized Systems by Dynamic Induction on Diagrams 35

The standard mathematical induction principle states that to prove P [i]
for all natural numbers, it suffices to prove P [i] for an arbitrary i, assuming
∀k < i.P [k] holds. This principle is directly applicable to the proof of temporal
properties. However, the requirement of a fixed order on the process indices se-
verely limits its applicability. Therefore we introduce a principle of mathematical
induction for diagrams that allows a state-dependent order, that is, the truth
value of k ≺ i may change from state to state in a computation.

Diagram induction requires an order function ≺ : Σ 7→ 2[1..M]×[1..M] that
maps each state s to a relation ≺(s), such that for every s ∈ Σ, the relation
≺(s) is a partial order on [1..M] (that is, ≺(s) is transitive and irreflexive). The
order function ≺ is incorporated in the inductive hypothesis as follows.

Let ϕ[i] be the property to be proven for all i ∈ [1..M], let ≺ be an or-
der function, and let Aϕ[i] : 〈N,N0, E, ν,F〉 be an ω-automaton for ϕ[i]. Then
the automaton for the inductive hypothesis for ϕ[i] and ≺ is the ω-automaton
A≺
ϕ[i][k] : 〈N i, N i

0, E
i, νi,F i〉 obtained from Aϕ[i] as follows:

N i = N ∪ {ne}
N i

0 = N0 ∪ {ne}
Ei = E ∪ {(n, ne) | n ∈ N} ∪ {(ne, n) | n ∈ N}
νi(n) = ν(n)[k/i] ∧ k ≺ i for n ∈ N
νi(ne) = ¬(k ≺ i)
F i = F ∪ {S | ne ∈ S}

Informally, this inductive hypothesis automaton A≺
ϕ[i][k] includes those sequences

of states that satisfy ϕ[k] or that satisfy ¬(k ≺ i) infinitely often.

Example 5
Figure 4 shows the ω-automaton and inductive hypothesis automaton for the
property ϕ[i] : 1 0 a[i] and the order function ≺.

Lemma 1. The set of models of the inductive hypothesis of ϕ[i] for k with order
function ≺ includes all models of ϕ[k], that is,

L(ϕ[k]) ⊆ L(A≺
ϕ[i][k])

Lemma 2. For every order function ≺, every sequence of states σ ∈ L(ϕ[k]S)
has a trail in A≺

ϕ[i][k].

With this definition of inductive hypothesis, we can now formulate the in-
duction principle for diagrams:

Diagram Induction Principle

Consider a parameterized system S, consisting of M processes, and a property
ϕ[i] to be proven for all i ∈ [1..M]. Assume there exists a diagram G[i], parame-
terized by i, and an order function ≺ such that the following conditions hold for
all i ∈ [1..M]:

36 Z. Manna and H.B. Sipma

�
�
�
�

�
�
�
�

�
?

�
?

� �
?

� �6
?

¬a[i]

a[i]

n0

n1

¬a[k]

a[k]

n0

n1

�
�
�
�

�
�
�
�
�
�
�
�

'

&

$

%

�
?

�
?

� �
?

� �6

� �
?

?

-
�

k ≺ i

¬(k ≺ i)ne

F = {{n1}} F =

{ {n1} , {n1, ne} ,
{ne} , {n0, ne} ,
{n0, n1, ne}

}

(a) Aϕ[i] (b) A≺ϕ[i][k]

Fig. 4. ω-Automaton and inductive hypothesis automaton for ϕ[i] : 1 0 a[i]

I1 ≺(s) is a partial order on [1..M] for each S-accessible state s;
I2 S satisfies the safety closure of ϕ[i], that is, L(S) ⊆ L(ϕ[i]S);
I3 G[i] is S-valid, that is L(S) ⊆ L(G[i]);
I4 there exists a set of indices K ⊆ [1..M] such that the product of G[i] and the

inductive hypothesis automata A≺
ϕ[i][k], for k ∈ K, is included in ϕ[i], that

is, (
L(G[i]) ∩

⋂
k∈K

L(A≺
ϕ[i][k])

)
⊆ L(ϕ[i]) for some K ⊆ [1..M] .

Then S |= ϕ[i], for all i ∈ [1..M].

Example 6
Returning to program simple, we refine diagram G1[i] shown in Figure 2 by
splitting node n1 into two nodes: n11 where `1[i] is guaranteed to be enabled
and n12 where it is not enabled. The result is the verification diagram G3[i],
shown in Figure 5. The acceptance condition is F = {{n3} , {n12}}. Initia-
tion, Consecution and Acceptance are easily shown for this diagram, and thus
L(simple) ⊆ L(G3[i]). For the property

ψ[i] : 0 1 a[j[i]] → 1 0 a[i] for all i ∈ [1..M] ,

Property Satisfaction is also easy to show, and thus L(G3[i]) ⊆ L(ψ[i]), and
therefore simple |= ψ[i] for all i ∈ [1..M].

However, we claim that by diagram induction diagram G3[i] also represents
a proof of the desired property

ϕ[i] : 1 0 a[i] for all i ∈ [1..M] ,

Verification of Parameterized Systems by Dynamic Induction on Diagrams 37

#
"

!

#
"

!

#
"

!

#
"

!
#
"

!

'

&

$

%

� � � �
? ?

?

?

-
�

�

µ : `1[i]� �
?

� �6

��

�
?

n0

n2

n3

n11 n12
µ : ¬a[j[i]] ∧ j[i] < i

ν : ¬a[j[i]] ∧ j[i] < i

µ : a[j[i]] ∨ i ≤ j[i]
ν : true

µ : `0[i]
ν : true

µ : `2[i]
ν : true

µ : a[i]
ν : a[i]

F = {{n3} , {n12}}

Fig. 5. Verification diagram G3[i], proving φ[i] : 0 1 a[i] by diagram induction

using the order function ≺ defined as the less-than relation (<) on [1..M] at all
states. Premise I1 clearly holds. The safety closure of ϕ is ϕS : true, so premise
I2 holds trivially. The diagram was shown to be S-valid earlier, thus satisfying
premise I3. Finally, by taking K to be the singleton set {j[i]} the intersection
of G3[i] of Figure 5 and A≺

ϕ[i][j[i]] of Figure 4(b) is included in the property
1 0 a[i] of Figure 4(a), since the inductive hypothesis for j[i] eliminates the
SCS {n12}. Therefore, by the diagram induction principle, we can conclude that
simple|= 1 0 a[i] for all i ∈ [1..M].

Theorem 1 (Soundness). The Diagram Induction Principle is sound.

Proof. Assume that the premises I1 through I4 hold, and suppose, for a cont-
radiction, that S 6|= ϕ[k1] for some k1 ∈ [1..M]. Then there exists a computation
σ : s0, s1, . . . of S such that σ 6|= ϕ[k1], that is, σ 6∈ L(ϕ[k1]). By premise I3 we
have L(S) ⊆ L(G[k1]), and therefore σ ∈ L(G[k1]). But then, by premise I4, there
must exist some k2 such that σ 6∈ L(A≺

ϕ[k1][k2]). By premise I2, σ ∈ L(ϕ[k2]S),
and thus by Lemma 2 the sequence σ has a trail in A≺

ϕ[k1][k2]. From the fact that
the trail is not accepting we can conclude that the trail eventually has to end up
outside the added node ne, since all sets that include this node are accepting.
All nodes in A≺

ϕ[k1][k2] outside ne are labeled by k2 ≺ k1 and therefore we have
σ |= 1 0 (k2 ≺ k1). In addition, by Lemma 1, we know that σ 6|= ϕ[k2].

By the same reasoning we can conclude that there exists some k3 such that
σ 6∈ A≺

ϕ[k2][k3], and that σ |= 1 0 (k3 ≺ k2). Repeating this argument M times

38 Z. Manna and H.B. Sipma

we can conclude that

σ |= 1 0 (kM+1 ≺ kM) ∧ . . . ∧ 1 0 (k2 ≺ k1) ,

and therefore

σ |= 1 0 ((kM+1 ≺ kM) ∧ . . . ∧ (k2 ≺ k1)) ,

and thus there exists a particular state sz in σ such that

sz |= kM+1 ≺ kM ≺ . . . ≺ k1

However, some process index k must appear twice in this sequence, violating
premise I1, that ≺(sz) is a partial order, a contradiction.

5 Example: Accessibility for bakery-m

In this section we give an outline of the proof of accessibility for the paramete-
rized system bakery-m, shown in Figure 6. This program, taken from [Pnu96],
is based on Lamport’s bakery algorithm [Lam74,Lam77] for mutual exclusion.

in M : integer where M > 0
local choosing : array [1..M] of boolean where choosing = false

number : array [1..M] of integer where number = 0

||Mi=1P [i] ::

local j, k, t : integer where j = 0, k = 0, t = 0

`0: loop forever do

`1: noncritical
`2: choosing [i] := true
`3: t := 0
`4: for k = 1 to M do

`5: t := max(t,number [k])
`6: number [i] := t+ 1
`7: choosing [i] := false
`8: for j = 1 to M do

`9: await ¬choosing [j]

`10: await

(
j = i

∨ number [j] = 0
∨ (number [i], i) ≺ (number [j], j)

)
`11: critical
`12: number [i] := 0

Fig. 6. Program bakery-m: molecular version

Verification of Parameterized Systems by Dynamic Induction on Diagrams 39

In the program, in statements `2 through `7, process i determines the ma-
ximum ticket number currently held by any other process and assigns it, incre-
mented by 1, to its own ticket number. In the coarser-grained atomic version of
the program these statements are replaced by

`a1 : number[i] := 1 +max(number) .

In statements `8 through `10 process i can proceed only if every other process has
a ticket number 0 (meaning it is not interested in entering the critical section),
or its ticket number is higher than that of process i. In the atomic version these
statements become

`a2 : await ∀j : [1..M].(i 6= j → number[j] = 0 ∨ number[i] ≤ number[j]) .

In [Lam77,Pnu96] it is shown that bakery-m guarantees mutual exclusion
and accessibility, where in [Pnu96] accessibility is proven using existential dia-
grams. Here we present an alternative proof of accessibility that uses diagram
induction.

The proof of accessibility, specified by

acc[i] : 0 (at `2[i] → 1 at `11[i]) for all i ∈ [1..M] ,

is represented by four verification diagrams. The S-validity of the diagrams relies
on the following invariants, taken from [Pnu96],

I0 : choosing [i] ↔ at `3...7[i]
I1 : at `7...12[i] ≤ number [i]
I2 : (at `4 → 1 ≤ k ≤ M + 1) ∧ (at `5 → 1 ≤ k ≤ M)
I3 : at `6 → k = M + 1
I4 : (at `8 → 1 ≤ j ≤ M + 1) ∧ (at `9,10 → 1 ≤ j ≤ M)
I5 : at `11 → j = M + 1
I6 : at `10[i] ∧ choosing [j[i]] → superior [i, j[i]]

where

superior [i, r] :

 at `0...3[r]

∨ at `4...6[r] ∧ (k[r] ≤ i ∨ number [i] ≤ t[r])
∨ at `7...12[r] ∧ (number [i], i) ≺ (number [r], r)

The first diagram, G4[i], shown in Figure 7, proves that accessibility holds
provided the program will always leave locations `9 and `10:

φ4[i] : (0 1 ¬`9[i] ∧ 0 1 ¬`10[i]) → 0 (`2[i] → 1 `11[i])

The diagram is a straightforward representation of the path that leads from
location `2 to `11. Initiation and Consecution clearly hold for this diagram. To

40 Z. Manna and H.B. Sipma

justify the acceptance condition, F = {{n7} , {n8} , {n10}} ∪ {S | n9 ∈ S}, we
have to show that all nonaccepting SCSs have a fair exit or are well-founded. It
is easy to see that all nonaccepting single-node SCSs have a fair exit transition.
The two remaining SCSs, {n2, n3}, and {n6, n7, n8} are shown to be well-founded
using the ranking functions δ(n2) = δ(n3) = M + 1 − k[i], and δ(n6) = δ(n7) =
δ(n8) = M + 1 − j[i], respectively. The well-foundedness of M + 1 − k[i] and
M + 1 − j[i] relies on the invariants I2 and I4 respectively.

It remains to show that the system cannot forever stay in nodes n7 and n8,
that is,

ψ1[i] : 0 1 ¬at `9[i] for all i ∈ [1..M]
ψ2[i] : 0 1 ¬at `10[i] for all i ∈ [1..M]

Two diagrams, not included in this paper, prove that for all i ∈ [1..M]

ϕ5[i] : 0 1 ¬choosing[j[i]] → 0 1 ¬at `9[i]

and
ϕ6[i] : 0 1 ¬choosing[i]

respectively, from which ψ1[i] can be concluded for all i ∈ [1..M].
The diagram G7[i], shown in Figure 8, represents a proof of ψ2[i] using dia-

gram induction. Informally, the nodes n0, . . . , n5 represent the situation that
process j[i] has priority over process i to enter its critical section. In node n6,
process i has priority over j[i] and on this node transition `10[i] is guaranteed to
be enabled, leading to the goal node n7.

Initiation is easily shown for this diagram. Consecution requires several of
the invariants. In particular the verification condition

{ µ(n6) } `6 { µ(n6) ∨ µ(n7) }
represents a crucial part of the proof, namely that once process j[i] has left its
critical section, it will not return with a lower ticket number than process i while
process i is at `10.

To justify the acceptance condition F = {{n3}} ∪ {S | n7 ∈ S}, all single-
node, nonaccepting SCS’s, except {n2} are shown to have fair exit transitions;
{n2} is shown to be terminating by ψ1[j[i]]; and the SCS {n1, n2, n3} is esta-
blished to be well-founded, with ranking functions δ(n1) = δ(n2) = δ(n3) =
M + 1 − j[j[i]], whose well-foundedness relies on the invariant I4.

Without using induction the diagram G7 represents a proof of

ϕ7[i] : 0 1 ¬`10[j[i]] → 0 1 ¬`10[i] .

However, if we apply the diagram induction principle with order function ≺,
defined by

i ≺ k iff (number[i], i) < (number[k], k)

at each state, and take K to be the singleton set {j[i]}, the offending SCS {n3}
is eliminated and the diagram represents a proof of ψ2[i] for all i ∈ [1..M], as
desired. This completes the proof of accessibility for bakery-m.

Verification of Parameterized Systems by Dynamic Induction on Diagrams 41

Acknowledgements

We thank Anca Browne, Michael Colón and Tomás Uribe for their comments
and suggestions.

References

[AL90] M. Abadi and L. Lamport. Composing specifications. In Stepwise Refine-
ment of Distributed Systems: Models, Formalism, Correctness, vol. 430 of
LNCS, pages 1–41. Springer-Verlag, 1990.

[BLM97] N.S. Bjørner, U. Lerner, and Z. Manna. Deductive verification of parame-
terized fault-tolerant systems: A case study. In Intl. Conf. on Temporal
Logic. Kluwer, 1997. To appear.

[BMS95] A. Browne, Z. Manna, and H.B. Sipma. Generalized temporal verification
diagrams. In 15th Conference on the Foundations of Software Technology
and Theoretical Computer Science, vol. 1026 of LNCS, pages 484–498.
Springer-Verlag, 1995.

[BMS96] A. Browne, Z. Manna, and H.B. Sipma. Hierarchical verification using
verification diagrams. In 2nd Asian Computing Science Conf., vol. 1179 of
LNCS, pages 276–286. Springer-Verlag, December 1996.

[Lam74] L. Lamport. A new solution of Dijkstra’s concurrent programming pro-
blem. Communications of the ACM, 17(8):435–455, 1974.

[Lam77] L. Lamport. Proving the correctness of multiprocess programs. IEEE
Trans. Software Engin., 3:125–143, 1977.

[MBSU98] Z. Manna, A. Browne, H.B. Sipma, and T.E. Uribe. Visual abstractions
for temporal verification. In A. Haeberer, editor, AMAST’98, vol. 1548 of
LNCS, pages 28–41. Springer-Verlag, December 1998.

[MP94] Z. Manna and A. Pnueli. Temporal verification diagrams. In M. Hagiya
and J.C. Mitchell, editors, Proc. International Symposium on Theoretical
Aspects of Computer Software, vol. 789 of LNCS, pages 726–765. Springer-
Verlag, 1994.

[MP95] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Sa-
fety. Springer-Verlag, New York, 1995.

[MP96] Z. Manna and A. Pnueli. Temporal verification of reactive systems: Pro-
gress. Draft Manuscript, 1996.

[Pnu96] A. Pnueli. Lecture notes: the Bakery algorithm. Draft Manuscript, Weiz-
mann Institute of Science, Israel, May 1996.

[Tho90] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, vol. B, pages 133–191. Elsevier
Science Publishers (North-Holland), 1990.

42 Z. Manna and H.B. Sipma

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

?

?

?

?

?

?

?

-
�

- -

� �6

�
?

��
��
��
��
��
��
��
��

-

-

-

-

-

-

-

-

� �
?

� � � �
? ?

'

& %

$
?

µ : `2[i]
ν : `2[i]

n0

µ : `3[i]
ν : true

n1

µ : `4[i]
ν : true

n2
µ : `5[i]
ν : true

n3

µ : `6[i]
ν : true

n4

µ : `7[i]
ν : true

n5

µ : `8[i]
ν : true

n6
µ : `9[i]
ν : true

n7
µ : `10[i]
ν : true

n8

µ : `11[i]
ν : `11[i]

n9

µ : `12,0,1[i]
ν : ¬`2[i]

n10 F = {{n7} , {n8} , {n10}} ∪ {S | n9 ∈ S}

Fig. 7. Diagram G4[i], proving (0 1 ¬`9[i] ∧ 0 1 ¬`10[i]) → 0 (`2[i] → 1 `11[i])

Verification of Parameterized Systems by Dynamic Induction on Diagrams 43

'

&

$

%

µ : `10[i]
ν : `10[i]'

&

$

%

µ : ¬(i = j[i] ∨ number[j[i]] = 0 ∨ (number[i], i) < (number[j[i]], j[i]))
ν : (number[j[i]], j[i]) < (number[i], i)�
�
�
��

�
�
��

�
�
��

�
�
�

?

?

?

?

?

�
�
�
�
�
�
�
�- -

� � � �
? ?

� 6

�
�

�
�

�
-

�

�

�

�

-

-

-

-

�
�
�
�

�
-
6�

?

n0

n1 n2 n3

n4

n5

n6

n7

µ : `7[j[i]]
ν : true

µ : `8[j[i]]
ν : true

µ : `9[j[i]]
ν : true

µ : `10[j[i]]
ν : `10[j[i]]

µ : `11[j[i]]
ν : true

µ : `12[j[i]]
ν : true

µ : i = j[i] ∨ number[j[i]] = 0 ∨ (number[i], i) < (number[j[i]], j[i])
ν : true

µ : ¬`10[i]
ν : ¬`10[i] F = {{n3}} ∪ {S | n7 ∈ S}

Fig. 8. Verification diagram G7[i], proving φ[i] : 0 1 ¬`10[i], by diagram induction

	Introduction
	Preliminaries
	Computational Model
	Specification Language

	Verification Diagrams
	Definition
	Verification Conditions
	Property Satisfaction
	Previously Proven Properties

	Diagram Induction
	Example: Accessibility for BAKERY-M

