Mechanizing Proofs of Computation Equivalence

Marcelo Glusman and Shmuel Katz

Department of Computer Science
The Technion, Haifa, Israel
{marce, katz}@cs.technion.ac.il

Abstract. A proof-theoretic mechanized verification environment that
allows taking advantage of the “convenient computations” method is pre-
sented. The PV S theories encapsulating this method reduce the concep-
tual difficulty of proving a safety or liveness property for all the possible
interleavings of a parallel computation by separating two different con-
cerns: proving that certain convenient computations satisfy the property,
and proving that every computation is related to a convenient one by a
relation which preserves the property. We define one such relation, the
equivalence of computations which differ only in the order of independent
operations. We also introduce the computation as an explicit semantic
object. The application of the method requires the definition of a “mea-
sure” function from computations into a well-founded set. We supply
two possible default measures, which can be applied in many cases, to-
gether with examples of their use. The work is done in PV'S, and a clear
separation is made between “infrastructural” theories to be supplied as
a proof environment library to users, and the specification and proof of
particular examples.

1 Introduction

This paper presents a proof environment for PV.S [13,17,12] that supports con-
venient computations and exploits partial order based on the independence of
operations in different processes, for the first time in a mechanized theorem-
proving context. Thus theoretic work defining this approach [8,9,11] is turned
into a proof environment for theorem-proving that can be used without having to
rejustify basic principles. Besides making convenient computations practical in a
theorem-proving tool, we demonstrate what is involved in packaging such a fra-
mework into a proof environment for use by nonexperts in the particular theory.
The modular structure of the theories (the units of PVS code that contain defini-
tions and theorems) should encourage using parts of the environment whenever
convenient computations are natural to the problem statement or proof.

In the continuation, basic theories are described in which computation se-
quences are viewed as ‘first-class’ objects that can be specified, equivalence of
computations based on independence of operations is precisely defined, and a
proof method using measure induction over well-founded sets is encapsulated.
Two possible default measures are provided to aid the user in completing the
proof obligations, one involving the distance between matching pairs of events,

N. Halbwachs and D. Peled (Eds.): CAV’99, LNCS 1633, pp. 354-367, 1999.
(© Springer-Verlag Berlin Heidelberg 1999

Mechanizing Proofs of Computation Equivalence 355

and one for computations that have layers of events. As an example among those
classes of properties that can be proven with the convenient computations me-
thod, (those properties preserved by the chosen reduction relation), we show a
subclass of the stable properties: final-state properties.

We summarize how a user can exploit the environment and describe two
generic examples. The first demonstrates ideas of virtual atomicity for sequences
of events local to a single process, and the second shows the use of the layers
measure for a pipelined implementation of insertion sorting. In this and the other
examples we have done, the proof environment (infrastructural theories) contains
over half of the lines in the PV S specification files and also of the interactive
PVS prover commands, taken as a rough indication of the proof effort.

Convenient Computations and the Need for Mechanization

Methods that exploit the partial order among independent operations have been
used both for model checking and for general theorem proving (see [16] for a va-
riety of approaches). In particular, ideas of the independence of operations that
lead to partial order reductions have either been used for (usually linear) tem-
poral logic based model checking reductions [14,18,7], or for theoretical work on
general correctness proofs in unbounded domains. [11,15,8]. For general correc-
tness (as opposed to model checking) no mechanization has been implemented
until now, and sample proofs have been hand simulated.

The intuitive idea behind convenient computations is simple. A system de-
fines a collection of linear sequences of the events and/or states (where each
sequence is called a computation). We often convince ourselves of the correc-
tness of a concurrent system by considering some “convenient” computations
in which events occur in an orderly fashion even though they may be in dif-
ferent processes. It is usually easier to prove properties for these well-chosen
computations than for all the possible interleavings of parallel processes. Two
computations are called equivalent if they differ only in that independent (poten-
tially concurrent) events appear in a different order. There are classes of safety
and liveness properties which are satisfied equally by any two equivalent compu-
tations (i.e., either both satisfy the property, or neither does). If we show that
any non-convenient computation is equivalent to some convenient one, then we
can conclude that any properties of this kind verified for the convenient compu-
tations must also be satisfied by the non-convenient ones.

In certain contexts, like sequential consistency of memory models and seria-
lizability of database transaction protocols, where the convenient computations’
behavior is taken as the correct one by definition, the computation equivalence
itself is the goal of the verification effort. Even when the goal is to prove certain
properties of a system, if we attempt to reduce the problem to verification of the
convenient computations, we might find flaws in our intuitive belief that they
“represent” all possible computations. Finding that some computations are not
equivalent to any convenient one can have as much practical value as finding a
counterexample to a property expressed by a logical formula.

356 M. Glusman and S. Katz

The availability of general purpose theorem proving tools such as PV S opens
the way for a mechanized application of the convenient computations technique.
Usually, attempts to carry out mechanized proofs in such tools raise issues that
might be overlooked when using “intuitive” formal reasoning. Moreover, proofs
can be saved and later, in the face of change, adjusted and rerun rather than
just discarded. The down side of mechanized theorem proving methods is the
need to prove many facts that are easily understood and believed to be correct
by human intuition. Many of these facts are common to all applications of a
proof approach. General definitions and powerful lemmas can be packed in theo-
ries that provide a comfortable proof environment. These theories also clarify
the new approach, and generate the needed proof obligations for any particular
application. The proof obligations arise as “importing assumptions” of generic
theories, as “type checking conditions” when defining objects of the provided
types, or as antecedents (preconditions) in the provided theorems that have the
form of a logical implication.

Existing Versus Proposed Verification Styles

The PVS tool is a general-purpose theorem prover with a higher-order logic
designed to verify and challenge specifications, and is not tailored to any com-
putation model or programming language. It does provide a prelude of theories
about arithmetic, inequalities, sets, and other common mathematical structures,
and some additional useful libraries. Decidable fragments of logic are treated by
a collection of decision procedures that replace many tedious subproofs. Howe-
ver, it has no inherent concept of states, operations, or computations. Usual
verification examples, like proving an invariant in a transition system, involve
the definition of states, initial conditions (initial-state functions), and transitions
(next-state functions) by the user. To prove invariance of a state property P, one
just writes and proves an induction theorem of the form:

(initial(s) = P(s)) A (P(s) = P(next(s)))

The computations themselves are not mentioned directly, and the property “in
every state, P” (OP of linear temporal logic) is justified (usually implicitly) by
such an induction theorem.

As part of the proof environment presented here, we provide precise defi-
nitions for computations, conditional independence of operations, computation
equivalence, and verification of properties based on computation equivalence and
convenient computations using well-founded sets.

We define a “computation” type as a function from discrete time into “steps”
(a state paired with an operation), and specify temporal properties as arbitrary
predicates over computations. Thus, if ¢ : comps is a function from ¢ : time to
steps, and st is a projection function from a step to its state component, then

OP = global_P?(c : comps) : bool =Vt € time : P(st(c(t)))

Mechanizing Proofs of Computation Equivalence 357

This style is needed so we can reason about computations and their relationships.
Note that we are not limited to linear-time properties by this style of expression.
The higher-order logic of PV'S allows us for example, to express a CTL* formula
like “GEFp” by means of a predicate on computations:

GEFp(c: comps) : boolean =
V(t : time) : 3(d : comps) : Y(tp: timeltp < t) : d(tp) = c(tp)
AA(tf : timeltf > t) : p(st(d(tf)))

or in words, “for every time point ¢ there exists a computation (called d) which
is identical to ¢ before time t and, at time t or later, has a state that satisfies p”

2 The Theories

In this section we describe a hierarchy of theories, whose IMPORTING relations-
hips can be seen in Figure 1. They provide the foundation for reasoning about
equivalence among computations. The top level of the hierarchy contains three
main components: the computation model, the equivalence notion, and the proof
method. An additional default measure component uses the other theories in
specific contexts that hide some of the proof obligations in an application.

In the computation model component, transition systems and computations
over them are defined. The option of providing global restrictions on possible
sequences of transitions (for example, in order to introduce various notions of
fairness [6,2]) is also provided. In the equivalence component, theories are pre-
sented that encode when transitions are independent, and when computations
are defined to be equivalent (in that independent transitions occur in a different
order). The proof method component shows how to prove that for an arbitrary
set and subset, every element of the set is related to some element of the sub-
set, using well-foundedness. Here the elements are arbitrary, and the relation
is given as a parameter. When instantiated with the equivalence relation from
the equivalence component, the needed proof rule and its justification are pro-
vided. As an example of the classes of properties relevant to this method, we
include a theory that defines the “final-state properties” and proves that they
are preserved by the defined computation equivalence relation.

After presenting these theories in somewhat more detail, two default measu-
res are described, for matching pairs of operations and for layered computations.
We then summarize how a user should apply the theories to an application, and
describe two examples.

(Note: The PV'S files for the proof environment and the examples are available
from the Web page at http://www.cs.technion.ac.il/ marce).

2.1 Computation Model

Our model of computation is defined by three parameterized theories:
step_sequences, execution sequences, and computations. Each application
using these theories must define types for the specific states and the operations as

358 M. Glusman and S. Katz

COMPUTATION EQUIVALENCE

conditional_independence

S

step_sequences

COMPUTATION l—»

MODEL

execution_sequences

\
|

equivalence_of_comps

PROOF METHOD

computations
‘ measure_induction

|
|
|
|
L
|
777777777] a
|
|
—

DEFAULT finite. sefs * subset_reachability
MEASURE — -

matching_intervals_measure |

1

conv_comps

or layered_measure

777%777

~ PROPERTY CLASSES 71 -

final_state_properties application example

o Legend: ‘ A H B ‘ means "B IMPORTS A"

Fig. 1. The hierarchy of theories.

actual parameters upon instantiation of the theories. The theory step_sequences,
based on these two types, defines function types needed to build a transition sy-

stem: initial _conditions, enabling conditions, and next_state_functions.
It also defines the types time, steps (records with two fields: st: states and

op: ops), and step_seqs (functions from time to steps).

In an application, the user defines the initial states, the enabling conditi-
ons and the next-state functions for each operation, and then instantiates the
theory execution_sequences. This theory defines the subtype of the well-built
execution_sequences: the ones that start in an initial state, and whose steps
are consecutive, i.e., the operations are enabled on the corresponding state, and
the state in the following step is their next-state value.

The theory computations has an additional parameter to be provided by a
user, namely, a predicate on execution_sequences called relevant? which is
used to define the subtype comps. This includes only those execution_sequences
which satisfy the added predicate. This restriction can be used to focus on a spe-
cial subset of all the possible execution sequences, for example to express fairness
assumptions or to analyze just a part of the system’s behavior (such as a finite
collection of transactions).

2.2 Computation Equivalence

Equivalence between computations and independence of operations is forma-
lized by the theories conditional_independence and equivalence_of_comps.

Mechanizing Proofs of Computation Equivalence 359

The functional independence defined in the first of these theories is over pairs
of operations and states, expressing when two operations are independent in a
given state. It requires that the execution of either of the two operations doesn’t
interfere with the other’s enabledness, and that the result of applying both ope-
rations from the given state must be the same regardless of their ordering.

Though this functional independence expresses commutativity of operations,
it is not practical to prove it each time we need to show that a pair of consecutive
operations can be exchanged. To separate this (local) consideration and make
later proofs simpler, we allow the user to define a separate conditional indepen-
dence relation also over pairs of operations and states. This predicate must be
symmetric and it must imply the functional independence of the two operations
from the given state. (These conditions will appear as proof obligations when the
theory is instantiated.) This arrangement allows the user to choose how much
independence is to be considered for a particular application.

The theory equivalence_of comps first defines the result of swapping two
independent operations on a given state in an execution sequence. If the need
arises to prove that the result is a legal computation (a relevant? execution
sequence), it is passed as a proof obligation to the application since relevant?is
only defined there. The rest of the theory deals only with legal computations
that are identical up to the swapping of independent operations, defining:

— one_swap_equiv?(c1,c2): cl and c2 are different and differ by a single swap,
i.e., c2 is the result of swapping consecutive independent operations in cl at
some time t.

— swap_equiv.n?(cl, c2, n): cl and ¢2 differ by up to n single swaps.

— swap-_equiv?(cl,c2): this is the transitive closure of one_swap_equiv? and
is true iff there is an n s.t. swap_equiv.n?(cl, c2, n).

In the theory, the relation swap_equiv? is proven to be an equivalence re-
lation. This relation is the formalization of the intuitive notion of equivalent
computations, and the equivalence classes that it generates in the set of all com-
putations are called interleaving sets in the context of partial order reductions
and the temporal logic 1STL*[9,10].

2.3 Proof Method

Consider an arbitrary set (or data type) T, with a preorder relation path_to?
over its elements, and choose a subset of T - those elements which satisfy a
given predicate. We want to prove that from each element in T we can reach
one in the chosen subset. We first pick a “measure function” which maps ele-
ments from T into elements of a well-founded structure (M,<). In the theory
subset_reachability we show that it suffices to prove that each element out-
side the chosen subset has a path to one with a strictly smaller measure.

The theory conv_comps has parameters that define a computation model,
a reduces_to? preorder, a predicate for choosing the conv?enient computati-
ons, and a measure function into a well-founded set. These are used with the

360 M. Glusman and S. Katz

subset_reachability theory to provide a sufficient condition:
Ve : —conv?(c) = 3d: reduces_to?(c,d) Am(d) < m(c) (1)
from which reduction to convenient computations is proved:
Ve : 3d : conv?(d) A reduces_to?(c,d)

It also provides a theorem defining the two added proof obligations that must
be discharged in an application to verify any property p? for all computations:

Ve : conv?(c) = p?(c)

Ve,d: reduces_to?(c,d) = (p?(d) = p?(c)) (2)

In other words, p? must be true for the convenient computations, and must
respect the preorder used in the theory. In a wider context, the theory of con-
venient computations can be used to reduce the verification of properties of
general computations to the simpler problem of verification over the conveni-
ent computations. The reduces_to? relation can be any preorder for which the
required premises ((1) and (2)) can be proven. Since the theory is parametric,
other computation models and notions of equivalence can be used, besides those
seen here.

2.4 Property Classes

Any property preserved by the relation (preorder) chosen as a reduction to con-
venient computations, is a candidate to be verified by this method. A common
example is that of stable properties. The theory final state_properties exem-
plifies a special case of stable properties. It defines a final state of a computation
as any point in time after which the computation remains quiescent i.e. every
operation-state pair is the same as the next one. A function is defined that, given
a state property, generates a computation predicate that enforces that state pro-
perty on all final states. The “final-state properties” thus generated are proven
invariant under the swap-equivalence relation.

2.5 Default Measures

The choice of measure functions should address the intuitive notion of “how
close” a computation is to a convenient one. (e.g. how many independent ope-
ration pairs should be swapped). Only then will the proof obligations generated
be easy (if not trivial) to discharge. We provide theories with two measures that
widen the support given to the user of the method.

Mechanizing Proofs of Computation Equivalence 361

Matching intervals measure: In [8] the convenient computations method was
applied (manually) to the sequential consistency problem. The measure involved
intervals of selected events (computation steps) and their length. The measure
value was lowered by moving unrelated events out of the interval until all the
selected events happened consecutively. We provide a simpler version which can
be applied to achieve the same effect. An interval is defined as a pair of points
in time (t1,¢2), and its distance (length) is ¢2 — ¢t1 — 1 (thus a consecutive pair
(t,t + 1) has distance zero). The measure value for a computation is defined as
the sum of all the distances of its matching intervals.

To use this measure, the application must supply a predicate match?(c,i)
that defines the “matching” intervals i (pairs of points) in a given computation
c. In a matching interval we want two events to ideally happen immediately
one after the other, in a certain order, even if in many computations there are
intervening events. Typical cases are sending and receiving a value over an empty
communication channel, or performing a series of local steps in a process. The
minimum value is attained when all the matching intervals have zero distance. In
a reasonable application of the method, the definition of the matching intervals
should make it easy to prove that nonconvenient computations have a nonzero
measure. The match? predicate must satisfy the following requirements:

— Every computation has finitely many matching intervals. This is to make the
measure finite. (An alternative would be to require that the set of nonzero-
distance matching intervals be finite, and sum distances only over that set.)

— The matching intervals in two one-swap-equivalent computations are the
same, up to the exchange of the end-points affected by the swap.

— No two matching intervals start in the same time point and no two end
together. This is used to simplify the number of cases.

— Swappable (i.e., independent consecutive) operations cannot appear at the
ends of a (zero-distance) matching interval.

These requirements mainly restrain the choice of the match? function to a usable
one. Again, for reasonable choices their proof is straightforward.

The theory also provides and proves a heuristic for finding a computation d
which is equivalent to a given computation ¢ and has a smaller measure. Such a
d exists if ¢ satisfies that for some t¢:

(only_starts_interval?(c,t) A —only_starts_interval?(c,t + 1)) V
(only_ends_interval?(c,t + 1) A —only_ends_interval?(c,t))

where only_starts_interval?(c,t) = starts_interval?(c, t)A—ends_interval?(c,t)
(and only_ends_interval? is defined similarly).

The predicates starts_interval?(c,t) and ends_interval?(c,t) state that
there is a matching interval in ¢ that starts(ends) at time t. This means that
either an event only starting an interval is followed by one not only starting an
interval, or an event only ending an interval is preceded by one not only ending
an interval. Due to the other assumptions, if this holds, the relevant pair can be
exchanged, yielding a computation with a smaller measure.

362 M. Glusman and S. Katz

Layered measure Another way of thinking of convenient computations of a
program is to define ordered phases or layers of execution [5,4]. Each event
is associated with a layer. If the events in every layer appear contiguously in
the computation, without events from a layer getting mixed with events from
an earlier layer, the computation is considered convenient. Examples where this
approach seems natural are programs with communication-closed layers and dis-
tributed snapshot algorithms [3]. In contrast to some of those previous works,
however, we do not focus on syntactic layers: the same program instruction oc-
curring more than once might produce events belonging to different execution
layers.

The layered measure theory considers programs with a finite number of
layers, where all but the last one must be finite and eventually finish, i.e., for
each computation and for each layer in it, there is a time after which all the
events belong to other layers. If infinite computations are considered, this can
be achieved by applying some sort of fairness assumption.

For each event (computation step) except those associated with the last layer,
we count the number of previous events that belong to a (strictly) later layer than
the layer of that event. The measure value of a computation is the sum of those
counts. Clearly, computations with a zero measure value should be convenient
in an application, since no event is preceded by an event from a later layer.

The application must define a natural number lastlayer and function (layer)
that maps a computation and a time point into a natural number less than
or equal to lastlayer. This function must meet the following requirements:

— As mentioned before, for every layer below lastlayer there is a time after
which there are no more time points belonging to it. Proofs of this require-
ment are based on basic progress of the computation, which can be supported
by fairness assumptions from the relevant? predicate.

— The layer function is the same for one-swap-equivalent computations, ex-
cept at the two time points involved in the swap, where the layer values are
interchanged. This is trivial for reasonable definitions of the layer function.

— For any time ¢t where layer(t) > layer(t + 1), the operations at t and ¢ + 1
must be independent, i.e. a swap must be possible. This seemingly strong
requirement is easy to prove if layering is appropriate for the application.

In this theory, it is proven that any assignment of layers satisfying these condi-
tions guarantees that any computation in which a later-layer event comes before
a previous-layer event (and thus having a non-zero measure) is equivalent to one
with a smaller measure. Thus, showing a drop in the measure value is hidden
from a user, if the three conditions above can be shown.

3 Using the Method: A Summary

3.1 The User’s Problem Description

First, the computation model must be described by defining the types of the
states and operations, the initial states, the operations’ enabling conditions, and

Mechanizing Proofs of Computation Equivalence 363

their next-state functions. Any necessary global restrictions such as fairness or
finiteness are then added to define the relevant computations.

Second, the user must define the conditional independence relation between
the operations at given states. This is used to instantiate the computation
equivalence theory which will provide the swap-equiv relation. The theory will
generate proof obligations to show that the user’s suggested relation is a valid
independence relation. Finally, in the proof method theories, the convenient
computations must be provided in the instantiation of the theory conv-comps,
and a measure function must be defined (either by the user, or using one of the
two provided).

These are all the definitions needed to prove computation equivalence. Aside
from the importing assumptions of the theories used, the user is left to prove
that for every non-convenient computation there is a reduction to a computation
with a lower measure (for the two default measures provided there is a sufficient
condition that makes that proof much easier).

To prove any property (predicate over computations) for all the computations
of an application, the theorem provided in conv_comps leaves the user to prove
that the property holds for convenient computations and that equivalence over
the user’s independence relation preserves the property.

3.2 The User’s Design Decisions and Tradeoffs

As in any proof method, experience is essential in successfully applying the ele-
ments of this method. Choosing the relevant computations can be critical, espe-
cially in proving the importing assumptions of the theories that define measure
functions.

When proving that the reduction preserves the property to be verified, and
also when proving that the independence relation implies functional indepen-
dence, it helps to have as small an independence relation as possible. This con-
flicts with the interest of having more opportunities to swap operations in order
to find a computation with a smaller measure.

If we include more computations in the class of convenient computations,
it may be easier to show a reduction to a smaller measure for the remaining
nonconvenient computations. On the other hand, we reduce the benefit of the
use of equivalence by having to prove the desired properties directly for a larger
class of convenient computations.

As seen in the proof obligation (2), the properties that can be verified when
the theories are combined in an application are those which are preserved by
the reduction relation. A lemma in the theory equivalence_of _comps simplifies
this requirement: it suffices to show that two computations which differ only in
the order of one pair of independent operations, must satisfy p? equally:

Ve, d : one_swap_equiv?(c,d) = p?(d) = p?(c) (3)

This requirement is easy to prove for large classes of properties, e.g., those
defined in the theory final _state_properties.

364 M. Glusman and S. Katz

In certain cases, one might need to add “history” variables to the state,
(without affecting the behavior of the rest of the state components) to support
property verification. For example, in order to verify mutual exclusion, a flag that
records a violation of the mutual exclusion should be added. This is done so that
two computations which differ only by the order of a pair of operations are not
considered equivalent if one of them violates the mutual exclusion requirement
and the other does not. The original system variables might not suffice to make
those operations functionally dependent.

The characterization of the properties which can be proven by this method
is a subject worth further research. In this paper we have focused on the pro-
ofs that computations are equivalent, and particularly on showing that every
computation is equivalent to one of the convenient computations.

4 Example 1: Using the Matching Intervals Measure

Our first example (a full listing is at the Web page given earlier) shows how a
sequence of local actions in a process can be considered atomic. It is typical of
many situations where a sequence of local actions can be viewed as virtually
atomic [1].

% flag: bool=FALSE tl,tm,x: nat

% PL: 10: tl=1 % local || PM: mO: tm=2 % local
% 11: x=tl % globall | ml: await flag=TRUE

% 12: flag=TRUE Il m2: x=x+tm % global
YA 13: STOP Il m3: STOP

Here the operation 12 must occur before m1, so in fact we observe all the
possible interleavings of the operation m0 (PM’s initialization) with the opera-
tions 10-12. The states type contains the two program counters explicitly. The
ops typeis {10,11,12, mO,m1,m2, stop}. The initial? predicate on states is
straightforward. The en? enabling condition, and the next next-state-function
are defined in table format to enhance readability.

In this example we define two operations as independent if they are both
stop or if they belong to different processes and satisfy indep_1 m?, a predicate
given in tabular form. The table’s rows and columns represent operations which
belong to different processes, and the entries are state predicates, though in this
particular case they are not state-dependent (always TRUE or FALSE). This
table was filled based on our understanding of the semantics of the program-
ming language. The independence relation must be proved to imply functional
equivalence and to be symmetric, as a type-correctness requirement. After that
is done, to decide if two operations can be swapped, we only need to look them
up in the table. The convenient computations are chosen as those in which m0
is executed immediately before m1 (and after 10-12). We choose to use the de-
fault measure with matching pairs. Here we can define the match? predicate

Mechanizing Proofs of Computation Equivalence 365

so that only the pair (m0,m1) matches. Clearly, when the measure is zero, the
computation is convenient.

The proof that for any nonconvenient computation there is an equivalent one
with a smaller measure was accomplished by using the theorem provided in the
matching intervals_measure theory. Note that if the instructions in question
were in a loop, the definition of “matching intervals” would have to guarantee
that the proper occurrences of the instructions are matched, e.g., by using a
loop counter as well as the operations. There is another condition: computations
must have a finite number of matching intervals. In the present example, this is
easy to show since each operation is done exactly once. In general, this would be
proven by using some kind of finiteness constraint, typically from the relevant?
predicate.

Although our main concern is proving computation equivalence, we show
the remaining proof obligations for a final-state property. The proof obligation
(conv_implies_p) shows that p holds for the convenient computations and is not
completed here. The other obligation (one_swap_equiv_preserves_p) is easily
discharged by invoking a theorem from the theory final state_properties.

5 Example 2: Using the Layered Measure

Our second example (also available at the Web page) is a typical representative
of the pipelined processing paradigm. In our example, all computations are equi-
valent to those that execute “one wave at a time,” i.e., in which a new input is
entered only when all the operations related to the previous inputs have been
finished. The program is a pipelined insertion-sort algorithm in which the buffers
between the processors can hold a single value. We assume that each processor
does its local actions atomically: taking its input, comparing it with the value
it holds, and sending the maximum between them to the next processor in the
pipeline. To understand why it is complicated to prove that the algorithm cor-
rectly sorts the inserted values without the convenient computations approach,
consider a general computation. In a typical state, the k first processors already
have a value, and some of them have a nonempty incoming buffer. There could
be several such processors whose successor has room in its buffer, so many diffe-
rent operations would be enabled in such a state. To verify the sorting algorithm
we need a general invariant, much harder to find than the one needed if we only
have to consider convenient computations in which there is at most one possible
continuation at a time.

The example is described in the theory pipeline_sort, parametric on the
type of the values being sorted, their total-ordering relation, the number of input
values (and of processors) NUM, and an array from 0 to NUM-1 holding those values.

The processors’ indices range from 1 up to NUM. Since we choose to use the
layers approach, we augment the state variables and next-state functions to allow
defining the layer value of each computation step. The system state includes a
counter of the number of inputs already inserted, and an array of processor
states. Fach such processor state includes a locally held value, an input buffer,

366 M. Glusman and S. Katz

and an integer (input_layer) that holds the layer associated with that input.
This number is taken from the global counter when inputting a new value into
the first processor in the pipeline, and is copied to the next processor when a
value is propagated forward, regardless of the result of the comparison between
the input and the locally held value.

The layer value of an “input-new-value” operation is the value of the global
input counter. For a normal computation step by any processor, the layer value
is the input_layer stored in that processor’s state. Since it originated from
the global counter’s value when the layer began, this value ranges from 0 up to
NUM-1. The idling operation, enabled only at the end of the whole computation,
has a layer value NUM.

The initial states, enabling conditions and next-state-functions are coded
in a straightforward way. In this case, we imposed no added restrictions when
describing the relevant? computations.

The independence relation is defined as TRUE only between operations done
by non-adjacent processors (and for two idling steps). This simplified relation is
much easier to use during the proofs than the functional independence relation.

These are the (nontrivial) proof obligations generated after instantiating all
the needed infrastructural theories with the above mentioned definitions:

— The user’s independence relation implies functional independence and is
symmetric. Proving this requires only local reasoning.

— Each layer eventually ends. To prove this we used sublemmas that show
eventual progress by simple induction.

— The layering function is consistent for one-swap-equivalent computations.
This is easily proven because the layer function’s definition is local.

— Consecutive events whose layer values are not in ascending order can be
swapped. To prove this, we show that any two such events can only involve
non-contiguous processors, whose operations are independent by definition.

To prove computation equivalence using the theorem from conv_comps, we need
to prove that each nonconvenient computation is equivalent to one with a smaller
measure. Using the theorem from the layered measure theory, we only need to
prove that in each non-convenient computation there is an event a that precedes
an event b where b’s layer value is strictly smaller than a’s. To prove this we show
that the layer value of an input operation is bigger than that of any operation
belonging to a processing “wave” that started with a previous input.

Note that none of the proof obligations involve the specification (sorting is
not mentioned, the values sorted are not relevant) and all are local or structural
in nature. Since the layer measure is appropriate to the structure of the system,
any difficulty in the proofs is technical, not conceptual.

Acknowledgment

This research was supported by the Bar-Nir Bergreen Software Technology Cen-
ter of Excellence at the Technion.

Mechanizing Proofs of Computation Equivalence 367

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

K. Apt and E. R. Olderog. Verification of Sequential and Concurrent Programs.
Springer-Verlag, 1991.

K. R. Apt, N. Francez, and S. Katz. Appraising fairness in languages for distributed
programming. Distributed Computing, 2:226-241, 1988.

K.M. Chandy and L. Lamport. Distributed snapshots: determining global states
of distributed systems. ACM Trans. on Computer Systems, 3(1):63-75, Feb 1985.
C. Chou and E. Gafni. Understanding and verifying distributed algorithms using
stratified decomposition. In Proceedings of 7th ACM PODC, pages 44-65, 1988.
T. Elrad and N. Francez. Decompositions of distributed programs into communi-
cation closed layers. Science of Computer Programming, 2(3):155-173, 1982.

N. Francez. Fairness. Springer-Verlag, 1986.

P. Godefroid. On the costs and benefits of using partial-order methods for the
verification of concurrent systems. In D. Peled, V. Pratt, and G. Holzmann, editors,
Partial Order Methods in Verification, pages 289-303. American Mathematical
Society, 1997. DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, vol. 29.

S. Katz. Refinement with global equivalence proofs in temporal logic. In D. Pe-
led, V. Pratt, and G. Holzmann, editors, Partial Order Methods in Verification,
pages 59-78. American Mathematical Society, 1997. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, vol. 29.

S. Katz and D. Peled. Interleaving set temporal logic. Theoretical Computer
Science, 75:263-287, 1990. Preliminary version was in the 6th ACM-PODC, 1987.
S. Katz and D. Peled. Defining conditional independence using collapses. Theore-
tical Computer Science, 101:337-359, 1992.

S. Katz and D. Peled. Verification of distributed programs using representative
interleaving sequences. Distributed Computing, 6:107-120, 1992.

S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Language
Reference. Computer Science Lab, SRI International, Menlo Park, CA, 1998.
Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal
verification for fault-tolerant architectures: Prolegomena to the design of PVS.
IEEE Transactions on Software Engineering, 21(2):107-125, February 1995.

D. Peled. Combining partial order reductions with on-the-fly model checking.
Journal of Formal Methods in System Design, 8:39—64, 1996.

D. Peled and A. Pnueli. Proving partial order properties. Theoretical Computer
Science, 126:143-182, 1994.

D. Peled, V. Pratt, and G. Holzmann(eds.). Partial Order Methods in Verification.
American Mathematical Society, 1997. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, vol. 29.

John Rushby, Sam Owre, and N. Shankar. Subtypes for specifications: Predicate
subtyping in PVS. IEEE Transactions on Software Engineering, 24(9):709-720,
September 1998.

P. Wolper and P. Godefroid. Partial-order methods for temporal verification. In
Proceedings of CONCUR’98 (Eike Best, ed.), LNCS 715, 1993.

	Introduction
	The Theories
	Computation Model
	Computation Equivalence
	Proof Method
	Property Classes
	Default Measures

	Using the Method: A Summary
	The User's Problem Description
	The User's Design Decisions and Tradeoffs

	Example 1: Using the Matching Intervals Measure
	Example 2: Using the Layered Measure

