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Abstract. Model-checking and testing are different activities, at least
conceptually. While model-checking consists in comparing two specifi-
cations at different abstraction levels, testing consists in trying to find
errors or gain some confidence in the correctness of an implementation
with respect to a specification by the execution of test cases. Neverthe-
less, there are also similarities in models and algorithms. We argue for
this by giving a new on-the-fly test generation algorithm which is an
adaptation of a classical graph algorithm which also serves as a basis
of some model-checking algorithms. This algorithm is the Tarjan’s algo-
rithm which computes the strongly connected components of a digraph.

1 Introduction

Conformance testing aims at applying test cases to an implementation under
test (IUT ) in order to detect errors or increase ones confidence in the fact that
the IUT is correct with respect to its specification. It is a black box testing:
the source of the IUT is unknown but its behavior is known by its interactions
with the environment. Conformance testing is applied in several domains and
especially in the domain of protocols where its activity is standardized but not
well formalized by [1]. [16] partly bridges this gap by defining a formal framework
but does not instantiate it into a precise test generation algorithm.

Nevertheless, a lot of theoretical work has been done on test generation al-
gorithms. Some syntactical methods exist but we will limit our discussion to
semantical ones. Semantical methods can be divided into two classes which dif-
fer on the models, theories and algorithms. Techniques based on automata theory
(see e.g. [20] for a survey) use Mealy machines (automata with each transition
labelled with an input and an output) as models. They theoretically have a pow-
erful fault coverage but make strong asumptions on specifications and IUT and
are limited to small specifications. The other class of semantical techniques uses
the model of labelled transition systems (LTS). They stem from fundamental
studies on testing theory [8,2,5]. Originally defined for general LTS, their ap-
plicability was not clear. But they were the starting points for more realistic
theories based on LTS with differentiated input and output transitions named
IOSM , IOTS or IOLTS [25,21]. The central point is a conformance relation
relating specifications to correct implementations. These methods at least insure
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unbias (only non conformant implementations can be rejected by a test case) and
“theoretical” exhaustiveness (under some assumptions on implementations, all
non conformant implementations can be rejected by a test suite).

In [12] we proposed a first on-the-fly test generation algorithm and we com-
pleted the picture in [17]. These algorithms have been implemented in our pro-
totype tool TGV and gave good results on industrial experiments [13]. The main
algorithm was based on a traversal of the synchronous product of a test purpose
automaton with an IOLTS representing the observable behavior of the speci-
fication. We thought that test cases should be acyclic in order to ensure the
finiteness of their execution on the IUT , so the algorithm was cutting loops. But
test practitioners and standardized test suite showed us that this was not always
the case. It is the reason why we started to investigate a way for producing test
cases with loops.

Some model-checking algorithms for CTL [6] or LTL [23], in particular local
or on-the-fly ones also have to tackle with loops. Some of these algorithms (see
e.g. [7,26]) are adaptations of the classical Tarjan’s algorithm which computes
strongly connected components (SCCs) of a digraph during a depth first search
(DFS). For on-the-fly model-checking, this algorithm has the advantage to pro-
vide a diagnostic sequence in the stack as soon as a violation of the property is
detected. This facility has been used for test generation [10] as the negation of
the checked property can be seen as a test selection criterion, i.e. a test purpose.

In our opinion, this is not sufficient as diagnostic sequences have to be fur-
ther transformed into test sequences by taking into account output freedom of
the specification, thus giving test sequences with possibly a lot of Inconclusive
verdicts 1. These verdicts should be reduced to the minimum in generating more
adaptative test cases. We believe that test generation can benefit from model-
checking algorithms but they need some adaptations to the testing framework.
We present here such algorithms.

The paper is organized as follows. We first present in Section 2 the models
used for test generation. Section 3 then gives an iterative formulation of the
Tarjan’s algorithm and present it as a framework for the derivation of all other
algorithms presented in the paper. The three subsequent sections present instan-
tiations of this framework for test generation. Section 4 describes an algorithm
computing the subgraph of all sequences leading to Accept states of the test pur-
pose and can be seen as a complete diagnosis for the CTL property AG¬Accept
(or a complete explanation of EFAccept). In Section 5 we extract one test case
from this subgraph. Section 6 improves the first algorithm for on-the-fly genera-
tion by anticipating operations of the second algorithm. Section 7 then describes
how these algorithms are integrated into our tool TGV. We conclude with a
comparison with other works and perspectives.

1 Inconclusive verdicts are given to correct outputs of the IUT which do not lead to
the satisfaction of the test purpose.
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2 Conformance Testing

In this section we introduce the models used for test case generation and how
they are used to describe specifications, implementations, test cases and test
purposes. These models are based on the classical model of labelled transition
systems with distinguished inputs and outputs. We report to [25] for a precise
definition of the testing theory used.

Definition 1. An IOLTS is an LTS M = (QM, AM,→M, qM
0 ) with QM a finite set

of states, AM a finite alphabet partitioned into three distinct sets AM = AM
I
∪AM

O
∪

IM where AM
I

and AM
O

are respectively inputs and outputs alphabets and IM is an
alphabet of unobservable, internal actions, →M ⊂ QM×AM×QM is the transition
relation and qM

0
is the initial state.

We will use the classical following notations of LTS for IOLTS.
Let q, q′, q(i) ∈ QM, Q ⊆ QM, a(i) ∈ AM

I ∪ AM
O , τ(i) ∈ IM, and σ ∈ (AM

I ∪ AM
O )∗ .

q
ε⇒M q′ ≡ (q = q′ ∨ q

τ1...τn→ M q′) and q
a⇒M q′ ≡ ∃q1, q2 : q

ε⇒M q1
a→M q2

ε⇒M q′

which generalizes in q
a1...an⇒ M q′ ≡ ∃q0, ...qn : q = q0

a1⇒M q1...
an⇒M qn = q′.

TraceM(q) ≡ {σ|q σ⇒M} and TraceM(M) = TraceM(qM
0 ).

We note q afterM σ ≡ {q′|q σ⇒M q′} and Q afterM σ ≡ ∪q∈Qq afterM σ. We
define OutM(q) ≡ {a ∈ AM

O |q a⇒M} and OutM(Q) ≡ {OutM(q)|q ∈ Q}. We will
not always distinguish between an IOLTS and its initial state and note M ⇒M

instead of qM
0 ⇒M. We will omit the subscript M when it is clear from the context.

A specification is given in a formal description language (e.g. SDL, LOTOS
or Estelle) which semantics allows to describe the behavior of the specification
by an IOLTS S = (QS, AS,→S, qS

0 )
2. The IOLTS S and intermediate IOLTS

defined from S are not effectively built but we need to define them for reasonning.
As usually, we will assume that the behavior of the IUT can also be described
by an IOLTS which can never refuse an input: IUT = (QIUT, AIUT,→IUT, qIUT

0 )
with AIUT = AIUT

I ∪ AIUT
O ∪ I IUT and AS

I ⊆ AIUT
I and AS

O ⊆ AIUT
O . We use a

conformance relation which says that an IUT conforms to S if and only if after
a trace of S, outputs of the IUT are outputs of S:
IUT ioconf S ⇐⇒ ∀σ ∈ Trace(S), Out(IUT afterIUT σ) ⊆ Out(S afterS σ)

For the sake of clarity, we took the definition of ioconf but all results also apply
to ioco [25] which considers quiescence (i.e. deadlock and output quiescence) as
an observable event. In [17] we also treat livelocks. The relation ioco is obtained
from ioconf by adding loops labelled with a particular output δ to quiescent
states of S and IUT .

In practice, test purposes are used as test selection criteria. We formalize
them by automata i.e IOLTS with selected marked states. A test purpose is
a deterministic IOLTS TP = (QTP, ATP,→TP, qTP

0 ) equipped with two sets of
sink states AcceptTP which defines Pass verdicts and RejectTP which allows to
limit the exploration of the graph S. We suppose that ATP = AS (this authorizes

2 LOTOS does not distinguishes between inputs and outputs and a renaming is nec-
essary for test generation.
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actions of TP to be internal actions of S which is useful for testing in context)
and TP is complete (∀q ∈ QTP, a ∈ ATPq

a→TP ).
The synchronous product of S and TP is an IOLTS SP = (QSP, ASP,→SP, qSP

0 )
with QSP = QS ×QTP, ASP = AS, (p, q) a→SP (p′ , q′) ⇐⇒ p

a→S p′ and q
a→TP q′,

qSP
0 = (qS

0 , q
TP
0 ). It can be understood as an automaton with sets of sink states

defined by AcceptSP = QS × AcceptTP and RejectSP = QS × RejectTP.
As test generation only considers the observable behavior of S, a first step is

to replace in SP all internal actions by τ , to reduce τ actions (while adding δ
loops for ioco) and to determinize the result.

This defines an IOLTS SPVIS = (QVIS, AVIS,→VIS, q
VIS
0 ) with QVIS ⊆ 2QSP

,
AVIS = AVIS

I ∪ AVIS
O with AVIS

O = ASP
O and AVIS

I = ASP
I , qVIS

0 = qSP
0 afterSP ε,

∀a ∈ AVIS, ∀P, P ′ ∈ QVIS, P
a→VIS P ′ ⇐⇒ P ′ = P afterSP a. SPVIS is equipped

with sets of sink states defined by RejectVIS = {s ∈ QVIS | s ∩ RejectSP 
= ∅}
and AcceptVIS = {s ∈ QVIS | s ∩ AcceptSP 
= ∅} \ RejectVIS.

Test cases are constructed from the IOLTS SPVIS. Before going to that
construction, we must define what are test cases. A test case is an IOLTS
TC = (QTC, ATC,→TC, qTC

0 ) with distinguished subsets of states Pass, Inconc,
and a new state fail. TC should have the following properties:

1. QTC ⊆ QVIS ∪ {fail}, and qTC
0 = qVIS

0 ,
2. ATC = ATC

I ∪ ATC
O with ATC

O ⊆ AVIS
I and ATC

I ⊆ AI
O (mirror image and all

possible outputs of I considered),
3. Pass = AcceptVIS ∩ QTC, Inconc ⊆ QVIS, Pass, Inconc and fail are sink

states and every state of TC except fail can reach either a Pass or an
Inconc state, fail and Inconc states can be reached directly only by inputs,

4. ∀q ∈ QTC, ∀a ∈ ATC
I , (∃q′ ∈ Inconc ∪ {fail}, q a→TC q′ ⇒ q

∗→ Pass) and
(q a→TC fail ⇒ q 
 a→VIS),

5. ∀q, q′ ∈ QTC, ∀a ∈ ATC, q
a→TC q′ ∧ q′ 
= fail ⇒ q

a→VIS q′ ,
6. maximality: ∀q ∈ Inconc, q 
 ∗→VIS Accept,
7. controllability: ∀q ∈ QTC, ∀a ∈ ATC

O , q
a→TC⇒

∀b 
= a, q 
 b→TC ∧ ∀q ∈ QTC, (∃a ∈ ATC
I , q

a→TC⇒ ∀b ∈ ATC
I , q

a→TC).

Some of these properties come from the definition of ioconf and ensure unbias
(i.e. no correct implementation can be rejected by a test case). Some other prop-
erties such as the controllability condition come from test practice: a tester al-
ways controls its outputs. The maximality property ensures that no Inconclusif
verdict can be given in a state where a Pass verdict could eventually be obtained
later. In a state where an input is possible all possible outputs of an IUT are
considered. This input completion allows us to consider transitions leading to
fail as implicit in the sequel. These properties do not uniquely identify a test
case, thus we have to provide a constructive algorithm which ensures them. This
is the subject of the following sections.
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3 Tarjan’s Algorithm as a Framework

In this section we present an iterative version of the algorithm “StrongCon-
nect” [24] computing the SCCs of a given digraph G = (QG, AG,→G, qG

0 ) as a
framework to derive other algorithms. First, we introduce all the notions and
results used to describe this framework and following algorithms. Finally, we
show the framework “StrongConnect” and its resulting graph.

q1

q2

q3

q4

q5

Short-cutin

Frond

Cross-linkin

Cross-linkout

T-arc*

T-arcout

T-arcout
root

root
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T-arcin

root

with k < i < n
and q1 < q2 < q3 < q4 < q5
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SCCk

Fig. 1. Partition of edges defined by a DFS

Recall that a graph is strongly connected if for each pair of states (v,w) there
is a path from v to v containing w. The SCCs of a graph G are the maximal
strongly connected subgraphs of G. A DFS applied to G defines a spanning for-
est F by considering edges leading to unvisited states (tree-arcs). We suppose
that states are numbered in the order in which they are reached during the
search (field “number” of a state). Inspired from [24] a DFS defines a partition
of edges (see Figure 1) : edges leading to a new state (not yet numbered) of
the same (resp. distinct) SCC(s) are called “tree-arcsin” (resp. “tree-arcsout”);
“fronds” are edges running from descendants to ancestors in the tree; “short-
cutsin” (resp. “short-cutsout”) are edges running from ancestors to descendants
of the same (resp. distinct) SCC(s); edges in a SCC (resp. between two SCCs)
running from one subtree to another subtree of F are called “cross-linksin” (resp.
“cross-linksout”). For any frond (resp. short-cut) between two states v and u
(resp. u and v), there exists a path of tree-arcs from u leading to v. A root of a
SCC is the first reached state of this SCC and thus the smallest numbered state.
The field “lowlink” of a state allows to detect the root of each SCC synthesizing
the smallest state which is in the same component and is reachable by traversing
zero or more tree-arcs followed by at most one frond or cross-linkin. A state is
a root of a SCC if and only if its number and its lowlink are equal. The follow-
ing framework is the well-known algorithm “StrongConnect” of Tarjan, where
some sections (Start state, New state, Old state, State of a new SCC, Tree-arc
backtrack) are left empty for derived algorithms. This algorithm identifies the
set of SCCs of a graph G. The stack “Dfs Stack” stores the current exploration
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sequence during the search and the stack “Scc Stack” keeps all the visited states
which SCC is still not completed. The field “act” of a state q is the label of the
tree-arc leading to q.

The function Adjacency Set gives fireable transitions from a given state q, so:
Adjacency Set (q) := {(a, q’) | (q, a, q’) ∈ →G}
Procedure StrongConnect (state : qstart);
state : qsource, qtarget, qpred, q; adjacency set : Adjsource, Adjtarget, Adjpred;
BEGIN

Creation of Dfs Stack; Creation of Scc Stack;
qstart.number := qstart.lowlink := i := i + 1; qstart.act := ε;
[Start state]
Push (qstart, Adjacency Set(qstart)) in Dfs Stack; Push qstart in Scc Stack;
while not empty Dfs Stack do begin

(qsource, Adjsource) := Top(Dfs Stack);
if not empty Adjsource then begin

Remove (m,qtarget) from Adjsource;
if qtarget is not yet numbered then begin (*(qsource, m, qtarget) is a tree-arc*)

qtarget .number := qtarget.lowlink := i := i + 1; qtarget .act := m;
Push (qtarget , Adjacency Set(qtarget)) in Dfs Stack; Push qtarget in Scc Stack;
[New state]

else begin (* (qsource, m, qtarget) is not a tree-arc *)
if qtarget .number < qsource.number and qtarget in Scc Stack then
(* (qsource, m, qtarget) is a frond or a cross-linkin (in same SCC) *)

qsource.lowlink := min(qsource.lowlink, qtarget.number);
[Old state]

end
else begin (* Adjsource is empty *)

Pop (qsource) from Dfs Stack;
if qsource.lowlink = qsource.number then begin (*qsource is root of SCC*)

while q := top(Scc Stack) satisfies q.number ≥ qsource.number do
begin (* creation of a new component *)

Pop (q) from Scc Stack and put q in current component;
[State of a new SCC]

end
end
if not empty Dfs Stack then begin (* backtracking *)

(qpred, Adjpred) := top(Dfs Stack);
qpred.lowlink := min(qpred.lowlink, qsource.lowlink);
[Tree-arc backtrack]

end
end

end
END;
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Procedure MAIN (G);

BEGIN

integer : i := 0;

for qstart in QG if qstart not yet numbered then StrongConnect (qstart);

END;

We can interpret the result of this program as the reduced directed acyclic
graph (DAG) where a node is a SCC of G and where edges are either tree-arcout,
cross-linkout, or short-cutout. This algorithm is linear in both space and time.
Notice that if the input graph G is rooted, a call to StrongConnect with the root
will visit all states.

4 Computation of the Complete Test Graph

Notice that if the controllability condition defined in Section 2 is suppressed and
in condition 3 we redefine Pass by Pass = AcceptVIS, the resulting set of prop-
erties uniquely defines a subgraph of SPVIS called Complete Test Graph (CTG)
as it defines all potential test cases w.r.t. TP . Even if it does not define a test
case, it is sometimes interesting to produce CTG and then to seperate it into
a set of test cases. The following algorithm instantiating the undefined parts of
StrongConnect framework computes the subgraph of the graph SPVIS composed
of all sequences leading to states in AcceptVIS. Moreover, as ioco forces to take
into account all outputs of the specification, those not leading to AcceptVIS have
to be kept. Target states are put in the Inconclusive set.

Trace(CTG) = {σ | SPVIS after σ ⊆ AcceptVIS}
∪ {σ.a ∈ Trace(SPVIS) | a ∈ AVIS

O ∧ ∃σ′(SPVIS after σ.σ′ ⊆ AcceptVIS)}

The problem of finding this subgraph reduces to the problem of finding the
reduced DAG of SCCs which lead to an Accept state and thus reduces to find
the roots of SCCs leading to an Accept state. For a DAG, a simple DFS allows
to correctly synthesize the reachability to an Accept state along tree-arcsout,
cross-linksout and short-cutsout (there is no other type of edge in such a graph).
This property is used to prove the correctness of the synthesis for each root of
SCC using the underlying DAG structure of SCCs. Notice that a short-cutout

between u and v does not give additional information regarding reachability in
u w.r.t. v because there exists another path of tree-arcs from u leading to v.
A root of a SCC leads to an Accept state if and only if it is an Accept state
or a state of its SCC can reach another SCC, by a tree-arcout or cross-linkout,
which leads to an Accept state. The field “L2A” of a state meaning “Leads to
an Accept state” is used to synthesize this reachability information. Moreover,
L2A is also used for garbage collection of unnecessary parts of the graph.
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When we reach a state for the first time,

its L2A field is initialized to true if and

only if it is an Accept state. So:

[Start state]

qstart.L2A := qstart ∈ AcceptVIS;

if qstart ∈ RejectVIS ∪ AcceptVIS then

remove all (qstart, a, q′) from →VIS;

[New state]

qtarget .L2A := qtarget ∈ AcceptVIS;

if qtarget ∈ RejectVIS ∪ AcceptVIS then

remove all (qtarget, a, q′) from →VIS;

When a state is reached again, only cross-

linkout transitions add more information

about reachability to an Accept state to

the root of a strongly connected com-

ponent. An input short-cutout or cross-

linkout to a SCC not leading to Accept is

pruned. So:

[Old state]

if qtarget not in Scc Stack then begin

(* It is a short-cutout or cross-linkout*)

if qtarget .number < qsource.number

then (* It is a cross-linkout *)

qsource.L2A := qsource.L2A ∨ qtarget .L2A;

if ¬qtarget .L2A ∧ m ∈ AVIS
I then

remove (qsource, m, qtarget) from →VIS;

end

When a root of a SCC is found, its L2A

field is correct. All the states of this SCC

update their L2A field w.r.t. their root

and the part of the graph which cannot

lead to Accept is pruned.

[State of a new SCC]

q.L2A := qsource.L2A;

if ¬q.L2A then

remove all (q, a, q′) from →VIS;

We have to synthesize the reachability in-

formation along tree-arcs. An input tree-

arcout leading to a state not in CTG is

pruned. So:

[Tree-arc backtrack]

qpred.L2A := qpred.L2A ∨ qsource.L2A;

if qsource.number = qsource.lowlink ∧
¬qsource .L2A ∧ m′ := qsource.act ∈ AVIS

I

then

remove (qpred, m’, qsource) from →VIS;

Let CTG be the subgraph obtained by this algorithm from SPVIS and reduced
to the accessible part from its initial state. CTG = (QCTG, ACTG,→CTG, qCTG

0 ),
with two sets of marked states PassCTG and InconcCTG such that:
ACTG = ACTG

O ∪ ACTG
I with ACTG

O ⊆ AVIS
I and ACTG

I = AVIS
O (mirror image),

→CTG = {(v, a, w) ∈ →VIS | v.L2A ∧ (w.L2A ∨ a ∈ ACTG
I )}, qCTG

0 = qVIS
0 ,

QCTG = {v ∈ QVIS | qCTG
0

∗→CTG v}, PassCTG = AcceptVIS ∩ QCTG,
InconcCTG = {v ∈ QCTG\PassCTG | ∀a ∈ ACTG ∧ w ∈ QCTG, (v, a, w) 
∈ →CTG}.

The graph CTG contains all the behaviors a test case might have. According
to the test case definition, now we have to deal with controllability.

5 Extraction of a Controllable Test Graph

We present here an algorithm based on the StrongConnect framework and com-
puting a subgraph of the accepted subgraph CTG, controllable and where each
state can reach Pass state or is an Inconclusive state. Informally, the adaptation
of StrongConnect consists in a DFS starting from each Pass state of CTG and
using the predecessor transition relation. A correction of possibly controllability
conflicts is done for all new reached state by pruning conflicting actions with the
current action. This may modify the reachability from the initial state which is
synthesized in order to determine the set of states of the resulting controllable
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test case. This is based on the same scheme as the synthesis of L2A (field “rfis”
for “Reachable From the Initial State”).

The function Adjacency Set takes into

account the backward sight of the new

algorithm.

Adjacency Set(q) :=

{(a, q′)|(q′, a, q) ∈ →CTG}
The procedure Pruning allows to prune

transitions of CTG causing controllability

conflicts with the current transition of a

given state.

Procedure Pruning (q, m)

Begin

if m ∈ ACTG
O then (* remove all others *)

∀ m′ �= m, remove (q, m′, q′) from →CTG;

else (* remove all the outputs *)

∀m′ ∈ ACTG
O , remove (q, m′, q′) from →CTG;

End

The initialization and synthesis of the rfis

field are based on the L2A field scheme.

We prune conflicting transitions when a

new state is reached.

[Start state]

qstart.rfis := (qstart = qCTG
0 );

[New state]

qtarget .rfis := (qtarget = qCTG
0 );

Pruning (qtarget , m);

[Old State]

qsource.rfis := qsource.rfis ∨ qtarget.rfis;

if ¬qtarget .rfis ∧ m ∈ ACTG
O then

remove (qtarget, m, qsource) from →CTG

[State of a new SCC]

q.rfis := qsource.rfis;

if ¬q.rfis then

remove all (q, a, q′) from →CTG;

[Tree-arc backtrack]

qpred.rfis := qpred.rfis ∨ qsource.rfis;

if qsource.number = qsource.lowlink ∧
¬qsource .rfis ∧ m′ := qsource.act ∈ ACTG

O

then

remove (qsource, m
′, qpred) from →CTG;

Let TC = (QTC, ATC,→TC, qTC
0 ), with two sets PassTC and InconcTC such

that : ATC = ATC
O ∪ ATC

I with ATC
O = ACTG

O and ATC
I = ACTG

I ,
→TC = {(v, a, w)→CTG|v.rfis ∧ (w.rfis ∨ a ∈ ATC

I )}, qTC
0 = qCTG

0 ,
QTC = {v ∈ QCTG | qTC

0

∗→TC v}, PassTC = PassCTG ∩ QTC,
InconcTC = {v ∈ QTC\PassTC | ∀a ∈ ATC ∧ w ∈ QTC, (v, a, w) 
∈ →TC}.
Remark: The order in which we apply “controllable” StrongConnect to Pass
states of CTG influences the resulting test case. Breadth-first search starting
from the set of Pass states could give shortest test cases, but StrongConnect
allows to interleave garbage collection. The graph CTG represents all the behav-
ior to be tested w.r.t. a test purpose. We can derive from this graph sequential,
arborescent, or looping test cases. We could even apply some automata based
methods such as UIO to each SCC of CTG.

6 Solving Controllability Conflicts during Forward Search

In the previous section, we have shown an algorithm resolving all the control-
lability conflicts of the graph CTG. In fact some conflicts can be solved during
the forward DFS as will be shown in this section.

Notice that in the complete algorithm, we attempt to synthesize in an efficient
way the information of reachability to an Accept state on all the roots of SCC of
SPVIS. First, we prone that a controllability conflict in a state can be removed
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during this algorithm in the case where we know that this state leads to an
Accept state. This is done while backtracking a transition m between a source
state such that its L2A is still false and a target state such that its L2A is true.
In this case, we can prune all the transitions from the source state in conflict
with m. This assumption leads us to synthesize L2A not only for a root of a
SCC but also for all the states of this SCC which can get the information earlier
and then to prune parts of the initial graph earlier and thus saving time. In this
algorithm refined from the CTG computation, the synthesis of L2A information
is done along tree-arcs, cross-links and fronds and possible pruning actions are
done earlier. As seen before, short-cut transitions give redundant information.

The function “pruning” not only prune

conflicting already synthesized transitions

but also conflicting transitions not already

treated.

Procedure Pruning (q, m, Adj)

Begin

if m ∈ AVIS
I then

begin (*remove all other transitions*)

Adj := ∅;
∀m′ �= m, remove all (q, m′, q′) from →VIS;

else begin (* remove all the inputs *)

∀m′ ∈ AVIS
I , remove all (q, m′, q′) from →VIS;

∀m′ ∈ AVIS
I , remove all (m′, q′) from Adj;

end

End

[Start state], [New state] and [State

of a new SCC] are identical to parts of

the complete test graph computation. The

synthesis of L2A is done along cross-links,

short-cuts, fronds and tree-arcs. Now,

pruning actions are done earlier when

backtracking to a state which knows that

it leads to Accept.

[Old State]

if qtarget.L2A ∧ ¬qsource.L2A then

Pruning (qsource, m, Adjsource);

else if qtarget �∈ Scc Stack ∧ ¬qtarget .L2A

∧ m ∈ AVIS
I then

remove (qsource, m, qtarget) from →VIS;

qsource.L2A := qsource.L2A ∨ qtarget.L2A;

[Tree-arc backtrack]

if qsource.L2A ∧ ¬qpred.L2A then

Pruning (qpred, qsource.act, Adjpred);

else if qsource �∈ Scc Stack ∧ ¬qsource.L2A

∧ m′ := qsource.act ∈ AVIS
I then

remove (qpred, m′, qsource) from →VIS;

qpred.L2A := qpred.L2A ∨ qsource.L2A;

Remark: The resulting graph is a subgraph of CTG. Some controllability con-
flicts persist in some states which have synthesized the L2A information w.r.t.
their root only. We have to apply to this resulting graph the algorithm of the
previous section to correct persistent conflicts.

7 Tool

Architecture and Algorithms: The algorithms presented in the paper are the
basis of our prototype tool TGV developed in collaboration with IRISA/INRIA
Rennes and Verimag Grenoble [12,13,17,4]. In Section 2 we have presented all
IOLTS considered for the test cases generation: S, TP , SP , SPVIS. As TGV
works on-the-fly, only necessary parts of these IOLTS are constructed on de-
mand in a lazy way. This imposes that IOLTS are implicit and accessed through
APIs giving the functions for their construction: the initial state, the transition
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relation and comparison of states. TGV also uses an API of CADP [11] to store
parts of all intermediate IOLTS. TGV is interfaced with several different sim-
ulators which provide the API for S. In particular it is interfaced with the SDL
simulator ObjectGeode from Verilog [3] and the LOTOS simulator from CADP.

Another central algorithm is the algorithm which computes SPVIS from SP
already presented in [17]. It combines several aspects: addition of δ actions in the
case of quiescence, τ -reduction and determinization. All this is done on-the-fly
with again an adaptation of StrongConnect interleaved with a classical subset
construction for determinization (see e.g. [15]). In this case StrongConnect is
applied to the subgraph of SP composed of τ -actions. Meanwhile, observable
actions and target states are synthesized on top of the subgraphs and a subset
construction is applied for determinization. StrongConnect starts from the initial
state of SP and creates new initial states for subsequent calls to StrongConnect
each time an observable action reaches a new state until no new initial state is
created. Links from states to their SCCs are stored avoiding to explore an already
computed SCC. The application of Tarjan algorithm has linear complexity in
time and space but the subset construction involves an exponential blow up in
the size of the resulting graph. Nevertheless as TGV is applied on-the-fly we
have been able to tackle examples with a lot of internal actions (specifications
describing services for example) where determinization was the bottleneck for
methods with complete state graph generation.

Case Studies: The first experiment of TGV [13] was done on an SDL speci-
fication of an ISDN protocol named DREX. Even with this embryonic version
implementing the algorithm of [12] which did not completely work on the fly,
TGV proved its efficiency and the quality of generated test cases compared to
manual ones. TGV now works on-the-fly with the algorithms presented here and
has been experimented on two industrial size case studies. The first one is an
SDL specification of the SSCOP protocol of the ATM which served for many
other case studies. This study allowed us to combine static analysis techniques
in prelude to test generation and to use TGV on a multi-process specification in
an asynchronous environment [4]. The second one is a LOTOS specification of a
cache coherency protocol of a multiprocessor architecture of Bull [18]. Produced
test cases have been executed on the real architecture and improved the test
practice in a domain to which it was not originally dedicated. For these two case
studies, on-the-fly generation proved its utility as it was impossible to generate
the complete state graphs.

Comparison with other Techniques: Compared to TGV, methods based on
automata theory (see e.g. [20]) have serious drawbacks. They need the construc-
tion of complete state graphs which limits their use to small specifications. As
in TGV, they need abstraction and reduction of internal actions, determiniza-
tion and often minimization, but on the whole state graph of the specification.
They need the construction of identifying sequences (UIO for example) and quite
complex algorithms to build test cases while TGV is linear in this phase. Their
advantage is the complete coverage of a fault model but, as other methods, this
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needs assumptions on the implementation such as fairness. Often determinism
is required but this is not realistic. A test suite is a monolithic sequence and
does not correspond to hand-written test cases. Observable non-determinism
(possible responses of the implementation to an input) is not really taken into
account because output divergence of the specification w.r.t. the test sequence
directly leads to an Inconclusive verdict . Nevertheless, test suites written by
hand sometimes have identifying sequences that automatic tools should be able
to produce. These sequences do not identify states of the state graph but control
states of the specification. An idea is to use these methods on more abstract spec-
ifications (only the control part) in order to generate test purposes for control
state identification.

This leads us to the comparison with TVEDA. TGV and TVEDA are com-
plementary tools. TVEDA can produce automatically test purposes that can be
used by TGV. But generating test purposes automatically is in general not suf-
ficient to cover all interesting behaviors. So users will still have to specify some
test purposes by hand.

In some aspects, TGV seems similar to Samstag [14] which uses test pur-
poses specified by MSCs. But there are important differences. The first one is
that the theory underlying Samstag is not clear. Nothing refers to any confor-
mance relation or fault model which prevent from any proof on the correctness
of generated test cases. Non-determinism is not taken into account because if
a test purpose MSC does not define a ”unique observable”, it is rejected. A
test purpose specified by an MSC must describe a complete sequence of observ-
able events which makes it difficult to write and prevents for any abstraction.
Finally, the algorithm is almost limited to checking that the MSC describes a
(non-deterministic) behavior of the specification and completing the MSC with
inputs leading to Inconclusive.

Trojka [9] has common points with TGV. It is based on the same theoretical
background [25]. It performs on-the-fly test case generation in the sense that it
can simultaneously execute them on the IUT. Trojka does not use test purposes
as TGV but randomly chooses outputs of the test case among possible ones and
checks the validity of inputs according to the observable behavior of the specifi-
cation. This necessitates a function similar to τ -reduction and determinization .
This has been implemented by a breadth traversal which prevents the detection
of livelocks and may duplicate some work, problems which are solved by TGV
with the computation of SCCs.

8 Conclusion

We have presented a new on-the-fly test case generation algorithm based on a
classical graph algorithm also used in some local and on-the-fly model-checkers.
This algorithm has complexity linear in the size of the observable behavior of
the product of a test purpose and a specification. It produces test cases of high
quality and very similar to those written by hand with choices and loops. This
algorithm and those sketched in Section 7 are being transfered into the Object-
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Geode tool from Verilog [3]. They will serve as the test generation engine which
will accept test purposes either written by hand or obtained by simulation or
automatically computed by a method derived from TVeda with a coverage strat-
egy [19]. However, what is lacking in TGV is a clever treatment of data. For the
moment, the stress has been put on control and data values are enumerated by
the underlying simulation tools which may lead to a state explosion for specifi-
cations with large value domains. But we have started to study the possibility
to combine the algorithms of TGV with a constraint solver and abstract in-
terpretation techniques with the ambition to generate symbolic test cases with
parameters and variables. Some ideas from previous works on TVEDA for ex-
ample [22] could also be helpful.
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