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Abstract. We study the role of randomness in multi-party private com- 
putations. In particular, we give several results that  provc: the existence 
of a randornness-rounds tradeoff in rnrilt,i-part,y privatc: computation of 
xor. We show that with a single random bit, @(n)  rounds are neces- 
sary and sufficient t o  privately compute x o r  of 7i input, bits. With d 2 2 
random bits, R(1og n. /d)  rounds are necessary, arid O(log n/ log d )  are 
sufficient. 
More generally, we show that  the private cornput.at,ion of a boolean func- 
tion f, usirig d 2 2 random bits, requires f2( logS(f) /d)  rounds, whrrc 
S ( f )  is the sensitivity of f .  Using a single random bit,, fl(S(f)) rounds 
are necessary. 

1 Introduction 

A l-przvate (or simply, p r i v a t e )  protocol A for c,ompuling a function f is a 
protocol tha t  allows 71 players, Pi, 1 5 i 5 71, each possessing an individual 
secret input), zi, to compute the value of f (2)  in a way that no srnyle player 
learns more about the initial inputs of other players than  what is revealed by 
the value of f (Z)  an3 its own input' .  The  players are assumed to be honest but 
curious. Namely, t,hey all follow the prescribed protocol A but they could try to 
get additional information by considering t,he messages thcy receive during the 
execution of the  protocol. Private computations in this sett,ing were the subject 
of a considerable amount of work, e.g., [BGWM, CCD88, BBS9, CK89, K89, 
B89, FY92, CK92, CGKSO, CGKS'L]. One crucial ingredient in private protocols 
is the use of randomness. Quantifying the amount of  randomness needed for 
computing functions privately is the subject of tthe present, work. 

Randomness as a resource was extensively studied in Ihe last decade. Met,hods 
for saving random bits range over pseudo-random generators  [BM84, Y82, N90], 

* Work on this paper by t,he first author was supported by thc E. and J. Bishop Re- 
search Fund, and by the Fund for the Promotion of Research at  the Technion. Part. of 
his research was performed while he was at  Aikcn Coniputalion Laboratory, Harvard 
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techniques for re-cycling random bits [IZ89, CW89], sources of weak random- 
ness [CG88, VV85, ZSl], and construction of different kinds of small probability 
spaces [NN90, AGHPSO, S92, KMSS] (which sometimes even allow to eliminate 
the use of randomness). A different direction of research is a quantitative study of 
the role of randomness in specific contexts, c.g. ,  [RS89, KPU88, BGGSO, CG90, 
BGS94, BSVSI]. In this work, we init,iate a quantitative study of randomness in 
private computations. We will mainly concentrate on the specific task of comput- 
ing llie xor of n input bits. However, some of our results extend to  any boolean 
function. The  task of computing xor was the subject, of previous research due 
to its being a basic 1inea.r opera.t,ion and its relative simplicity [FY92, CK921. 

It  is not difficult to show tha t  private computation of xor cannot be carried 
out, deterministically (for n 2 3).  On the  other hand, with a single random bit 
this becomes possiblc: At the first round player P, chooses a random bit T and 
sends to PI t,he bit 2, @ r .  Then,  in round i (2 5 i 5 n )  player Pi-1 xors its bit 
xi-1 with the message it received in the previous round, and sends the  result 
to Pi. Finally, P, xors the message it received with the random bit T .  Both the 
correctness and privacy of this protocol are easy to verify. The  main drawback of 
this protocol is t ha t  it  takes n rounds. Another protocol for this task computes 
xor in 2 rounds but requires a linear number of random bils: In the first round 
each player chooses a random bit T * .  It  sends zi g, ~i t o  PI and 7-i to P:!. In 
the second round P2 xors all the (random) bits it received in the first round and 
sends the result to PI which xors all the messages it received during the protoc.01 
to get the  value of the function. Again, both the correctness and  privacy are not 
hard to  verify. 

In this work we prove tha t  there is a tradeoff between the amount of ran- 
domness and the number of rounds in private computations of xor. For exam- 
ple, we show that, while with a single random bit O ( n )  rounds are necessary 
and  sufficient2, with two random bits O(1ogn) rounds suffice. Namely, with a 
second additional random bit ,  the  number of rounds is significantly reduced. Ad- 
ditional bits give a much more “modest” saving. More precisely, we prove tha t  
with d 2 2 random bits O(1og n,/ log d) rounds suffice and R(1og n/d)  rounds are 
required. Our upper bound is achieved using a new method tha t  enables us to 
use linear combinations of random bits again and again (while preserving the 
privacy). The  lower bounds are proved using combinatorial arguments, and they 
are strong in the sense tha t  they also apply to protocols t ha t  are allowed to  
make errors, and tha t  they actually show a lower bound on t,he expected number 
of rounds. In t,he final version of this paper, we will show that if protocols are 
restricted t80 a certain natural type (that includes, in particular, the  protocol 
tha t  achieves the upper bound) we can even improve the lower bound and show 
tha t  @(log n/ log d )  rounds are necessary and sufficient. 

Our lower bound techniques apply not only to the  xor function, but in fact 
give lower bounds on the number of rounds for any boolean function in terms 
of the sens i t i v i t y  of the function. Namely, we prove tha t  with d 2 2 random bits 

* More precisely, n / 2  rounds; and this can be achieved by a slight modification of the 
first, protocol abovc. 
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L'(log S(f)/d) rounds are necessary to privately corripute a boolean function )', 
whose sensitivity is S(f). With a single random hit ( d  = I )  Q(S(f)) rounds are 
necessary. 

The question whether private computations m n  be carried out in constant' 
number of rounds was discussed in [RB89, BFKRSl]. In light of our results, 
a promising approach to  investligate this question may be by proving that if a 
constant number of rounds is sufficient then a large number of random bits is 
required. 

The rest of the paper is organized as follows: In Section 2 we give some defi- 
nitions. In Section 3 we give a n  upper bound on the number of roilnds required 
t o  privately compute xor. In section 4 we give lower bounds on the number of 
rounds to privately compute a boolean funct,ion, in terms of its sensitivity. We 
conclude in Section 5 with lower bounds on t,he expected number of rounds in 
terms of the average  sensitivity of the function being computed. 

2 Preliminaries 

We give here a description of t,he protocols we consider, and define the p r i a a c y  
property of protocols. More rigorous definitions of the protocols are given in 
Section 4.1. 

A set of n players Pi (1 5 i 5 n ) ,  each possessing a secret inpnt hit, x i ,  

collaborate in  a protocol to  compute a function f(.'). 'I'he protocol operates in 
rounds. In each round each player may toss some coins, and t2hen sends messages 
to  the other players (messages are sent over private channels so that  other than 
the intended receiver no other player can listen t o  them). I t  t,hen receives the 
messages sent, to  it by the other players. In addition, each player a t  a certain 
round chooses to oiit>put the value of Ihe function. We assume that each player 
knows its serial number and the total number of players 71.. 

Each player Pi receives during the execution of the protocol a sequence of 
messages C;. Informally, pri,uacy with respect to player Pi means that  player Pi 
cannot learn anything (in particular, the inputs of the other players) from Ci, 
except what is implied by its input bit ,  and the value of the function computed. 
Formally, 

Definitionl. (Privacy) A protocol A for computing a function f is private 
with respect, t o  player Pi if for any two input vectors 5 and ij, such that f(2) = f(a and xi = yi) for any sequence of messages C ,  and for any random coins, 
Ri, tossed by Pi, Pr[Ci = CIRi, 4 = Pr[Cj = CIR;, d, where the probability is 
over the random coin t>osscs of all other players. 

3 Upper Bound 

This section presents a protocol which allows n players to  use d 2 2 random bits 
for computing xor privately. This  protocol takes O(log, n)  rounds. (For the case 
d = 1 a similar protocol can be presented, that, uses n/2 rounds.) 
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Consider the following protocol (which we call the basic protocol):  First or- 
ganize the R players in a tree. The  degree of the root of the  tree is d + 1, and 
t5hatb of any other internal node is d (assume for simplicity tha t  n is such tha t  
this forms a complete tree), The  computation starts from the leaves and  goes 
towards the root by sending messages (each of them of a single bit) as follows: 
Each leaf player Pi sends its input bit xi t o  its parent in the tree. Each internal 
node, after receiving messages from its d children, sums them up (modulo 2 )  
together with its input bit xi and sends the result t o  its parent. Finally, the root 
player sums up the d + 1 messages it receives together with i ts  input bit  and the  
result is the output of the protocol. 

While a simple induction shows the correctness of this protocol, and i t  clearly 
runs in O(logdn) rounds, it  is obvious tha t  it, does not maintain the required 
privacy. The  second idea will be to  “mask” each of the messages sent in the 
basic protocol by an  appropriate random bit (constructed using the d random 
bits available), in a ~ 7 a y  tha t  these masks will disappear at the end, and we will 
he  left, with t,he output.  To do so we assign the nodes of the  above tree vectors in 
GF[2d]  as follows (the meaning of those vectors will become clear soon): Assign 
to the root the vector (0, . . . , O ) .  The  children of the root will be assigned d + 1 
(non-zero) vectors such tha t  the vectors in any d-size subset of them are linearly 
independent arid the sum of all the d + 1 vect#ors is (0 , 0 )  (for example, the 
d unit vectors together with the (1, these requirements). 
Finally, in a rccursive way, given an internal node which is assigned a vector V ,  
we assign t,o its d children d linearly independent vectors whose sum is (note 
tha t  in particular none of these vectors is the 0’ v e ~ t o r ) ~ .  

We ~ i o w  show how to use the vect,ors we assigned to  the  nodes, so as to  gel a 
private protocol. We will assume tha t  the random bits b l ,  . . . ~ bd are chosen by 
some external processor. We will later see tha t  this assumption can be eliminated 
easily. Let u be the vector assigned to  some player which is a leufin the tree. We 
will give this player a single bit r,  = w . b ,  where b = ( b l , .  , . I b d )  is the vector 
consisting of the d random bits, and the product is an  inner product. The players 
will use tlhe basic protocol, described above, with the modification that a player 
in a leaf also adds to its message the bit r,  it received (the other players behave 
exacAly as before). We claim that for cvery player Pi, if in the basic protocol it 
sends t h e  messagc m when the input, vect,or is 2,. then in the  rriodified protocol it 
sends the message m +  (w; ‘ b ) ,  where is the vector assigned to this player. The  
proof goes by induction: I t  is trivially true for the leaf players. For internal nodes 
the message is calculated by summing the incoming messages, thus, using the 
induction hypothesis it is zk=l[nzk + ( w k  ‘ b ) ] ,  where rnk is the message received 
from the k’th child in the basic protocol, and .cik is the vector assigned to the k’th 
child. Since the construction is such tlhat, vi, t,ht: vector assigned to Pi, satisfies 
lii = ck=i ilk ,  then a simple algebraic rrianipulation proves the induction step. 

d 

d 

For example, such a collection of d vectors ran  be constructed as follows: Since II # 0’ 
thew exists an index z such that  v1 = 1. The first d - 1 vectors will be the d - 1 unit 
vectors e l  > .  . . , e , - l ,  e , + l ,  . . . , c d .  The last vector will be u - e 3 .  Obviously the 
sum of these d vectors is u and they are linearly independent. 
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In particular, as the  root is assigned the vect>or ( 0 , .  . . , 0),  its ou tput  equals the  
output of the basic protocol. Hence, the correctness follows. 

We now prove the privacy property of the protocol. The  leaf players do not 
receive any message, hence there is nothing t80 prove. Let Pj he  an internal node 
in the tree. Denote by s l .  . . . , sd the  messages it, receives. We claim that for every 
vector w = ( ~ 1 ~ .  . . , 7 U d )  E G F [ ~ ~ ] ,  for any input vec.tur, we have 

where the probability is over the random choice of b l ,  . . . , b d  (note tha t  in this 
protocol the players do not make internal random choices). In other words, fix 
any spec,ific input vector 2, then for every vector w ,  there exists exactly one 
choice of values for h i ,  . , . , b d ,  such tha t  the  messages tha t  Pj receives, when the 
protocol is executed with input 2,  are the  vector w. Denote by v" ,  . . . , if the 
vectors corresponding to the d children of I'j in the  tree, and  let rn' ~ . . . , md be 
the messages they have to send in the basic protocol given a specific inpul vector 
2. As claimed, for every 1 5 k 5 d ,  the message that the t - t h  child sends in the 
modified protocol can be expressed as sk = nik + (t? .;). With this notation, for 
having s1 = ~ 1 , .  . . , sd = w d  the following linear syslern has to be satisfied: 

-d Since v", . . . ~ 'u arc-. linearly iridependent, this system has exactly one solution, 
as needed. 

As for the root player the same argument8 can be applied to any fixed d-size 
subset of the  d +  1 rnessages it, receives. 'I'his gives us that given any input vector 
2, for all d-size messages vectors 6, 

Now take two input vectors j: and ij such bhat xroot, = yroot, and such that 
f(2) = f($). 'I'hcn by the correctness of t,hc algorithm, given a specific d-size 
messages-vector, the d +  l'st message is the same for 2 and y'. ' rhus the privacy 
property holds with respect to the root too. 

Finally, note tha t  we assumed that, the  random choices were made by some 
external processor. Howevcr, we can let one of the leaf players randomly choose 
the bits b l ~  . . . , b d  and to supply each of the leaf players with the xppropriate bit 
T , .  A s  the leaf players only send messages in the protocol, the special processor 
tha t  selects the random bits gets no advantage. 

Note tha t  if a player is non-honest it can easily prevent the ot.her players from 
computing 6he correct output.  However, it  cannot get any additional information 
in the  above protocol, since the only message each player gets after sending its 
own message is the value of the function. We have thus proved the  following 
theorem: 
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Theorern2. The Jundaon o o r  can  be computed pravately uszng d 2 2 random 
bits i n  O(log n/ log d )  rmiiid.5. 

4 Lower Bounds 

In this sectlion we prove several lower bounds on the number of rounds required 
to privately compute a boolean function, given that the total number of random 
bits the players can toss is d. ‘ lhe lower bound is given in terms of the sensitivity 
of the function. In Section 4.1 we give some formal definitions. In Section 4.2  we 
present a lemma, central to  our proofs, about sensit,ivity of functions. The proof 
of the lower bound appears in Section 4.3.  

4.1 Preliminaries 

We first give a formal definit,ion for the protocols. A protocol operates in rounds. 
In eac,h round each player Pi, based on the value of its input bit x;, the values of 
the messages received in previous rounds, and the values of the coins tossed in 
previous rounds, tosses a certain number of addit,ional coins, and sends messages 
t o  the other players. The values of these messages may depend on all of the above, 
including the coins just tossed. Then the player receives the messages sent, to 
it by the other players. In addition, each player, at, a certain round, chooses to  
output the value of the function as calculated by i t .  To define the protocol more 
formally we give the following definition: 

Definition3. (View) 

~ A time-t partial  view of player Pi consists of its input bit zi, the messages 
it has received in the first t - 1 rounds, and the coins it tossed in the first 
t - 1 rounds. We denote it by PView;.  

- A tirnc-t vicw of player Pi consists of its input bit xi, the messages i t  has 
received in the first 1 - 1 rounds, and the coins i t  t,ossed in the first t rounds. 
We denote it by View:.  

Intuitively, the part ial  view of a player in round t determines how many coins 
(if at all) it will toss in round 2 .  Then, its view (which includes those newly 
tossed coins) determines the messages it will send in round t .  Formally, 

Definition4. A protocol consists of a set of functions R,k(PViewf) which de- 
termine how many coins are tossed by Pi in round le, and a set of functions 
IW:+~ : View,k + M ,  1 5 i , j  5 n (where M is a finite domain of possible 
message values), which determine the message sent by P, t o  PJ at  round k .  

Definition5. A d-random protocol is a protocol such that  for any input assign- 
ment, the total number of coins tossed by all players in any execution is a t  most 
d. 
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We emphasize that the definitions allow, for example, tha t  in different exe- 
cutions different players will toss the coins. This m a y  depend on both the  input 
of the players, and previous coin tosses. 

DefinitioIi6. A protocol to computc a function j is a protocol such that for 
any input vector 2 and every player Pz,  P, correctly outputs the value of f ( 2 )  
with probability 1. 

Protocols t ha t  are allowed to err will be considered in Section 5.1. 
We will slightly modify our view of the protocol in the following way. Fix a n  

arbitrary binary encoding for the  messages in M .  We will consider a protocol 
where each player sends instead of a single message from M ,  a set of boolean 
messages tha t  represent the binary encoding of the  message to  be sent in the  
original protocol, These messages are sent “in parallel” in the same round. Hence- 
forth when we refer to messages we refer t o  these binary messages. Clearly, the 
number of rounds remains the same. 

We further modify the model, with respect to its randomness. By the above 
definitions in a d-random protocol each player can locally toss coins, and we are 
assured tha t  no more than d coin tosses occur. Assume we have a n  additional 
external agent tha t  has a tape  with d random bits. Then ,  we can replace the 
local coins tossing by a primitive with which each player communicates with 
this external agent, asking it for a random bit,. In response, the external agent, 
(immediately) provides the next random bit on its tape. 

Given a d-random private protocol in which the  players locally toss coins, 
there is a. protocol that  uses the external agent, sends the same messages, and 
runs in the same number of rounds, while the privacy requirements are not 
violated in any of the players. The  external agent will never be asked for more 
than the d random bits it has on i ts  tapc. Notc tha t  the  external agent may 
be able to learn things, but in our lower bound proof we will use the  privacy 
requirement, only with respect t o  the  original players. Thus ,  withont loss of 
gcncrality, we prove our lower bounds on the number of rounds required by a d- 
random privatc protocol that, uses an  external agent as its source of randomness. 

With this model in  mind we can regard a d-random protocol as a distribution 
of 2d deder~mznislic protocols, each derived from the randornixed protocol by a 
specific random tape of lengt,li d. Furtherrriore, V i e w : ,  for any i and t ,  is a 
funct>ion of the random tape ;and the input assignment Z. We can thus write it 
as View:(?, Q. 

Denote by T;(2,;) the round number in which P, outputs its result, given 
input assignment 2 and random tape h’ (Not,e tha t  since b‘ is an  argument, for T ,  
then T is a deterministic funct,ion). The  following definition defines the number 
of rounds of a protocol. 

Definition 7. (Rounds Complexity) 

- An r-round protocol to corripute a function f is a protocol to compute f 
such that, for all i. 2, h’ , x(2, c) 5 r .  
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An expec ted  r-round protocol to coinputme ,a function f is a protocol to com- 
pute f such L ~ L  for all i and 2, E$YL(2, b)]  5 r .  

We include here some definitions related to functions f : (0 ,  I}" + D ,  where 
D is some finite domain. 

Definition8. (Sensitivity) 

- A function f is sensitwe t o  its i-th variable on assignment Y ,  if f ( Y )  # 

- S f ( Y )  is the set of variables to which the fuiicliori S is sensitive on assignment 

- The  sensitivziy of a furiction f, denoted S(f), is S(f) = maxy{lSf(Y)/}.  
- The averuge sensitivity of a fiiiiction 1, denoted AS'(f) ,  is Ihe atrerage of 

f (Y(z ) ) ,  where 

Y .  

is the same as Y with the i-th variable flipped. 

A 

A 
IS,(Y)I. Tha t  is, A S ( f )  = & c y E { o , l ] "  P J ( Y ) l .  

A 
- The  set of variables on which f d e p e n d s ,  denoted ' D ( f ) ,  is D(f)  = { i  : 

3Ys.t.i E Sj(Y)}. If i E D ( f )  we say tha t  f depends on its i-th variable. 

The  following claim gives a lower bound on lhe degree of error if we evaluate a 
function f by means of another fuiiction g ,  in k r m s  of their average sensitivities. 

Claim 9. C o n s a d e r  two Junctzons j ,  g ( 0 , l ) "  i D Then f (Z) = g ( F )  f o r  a1 

most 2" (1 - A S ( f ) & A S ( S ' )  anput asslgnmerlts F 

Proof. Consider the n-dimensional hypercube. An f-good edge  is an  edgc e = 
(Z,$ such t1ia.t f(5) # f($. Ry the definilioris, the number of f-good edges 
is exactly q. Therefore, there arc a.t least, 2", A S ( f ) - A S ( g  edges which are 
f-good but rial y-good. For each such edge e = ( Z , f )  either f(2) # g ( 2 )  or 
f($ # y ( 3 .  Since the degree of each vertex in the hypercube is n there must 

0 be at least i L t L .  AS(f )&As(g)  inputs on which f and g do riot, agree. 

4.2 A Lemma on Sensitivity 

In this section we prove a lemma that, bounds the growth o f t h e  sensitivity of a 
combination of fiinctions. ' lhis lemma plays a central role in the proofs of our 
lower hoiinds, and any irnprovernent on it will immediately improve our lower 
bounds. 

Lemma 10. Let F = { fj}, 1 5 j 5 yri be a s e t  of m fun,ctzons f j  : (0, 1)" + 

(0, l}, f o r  some 1%. Assume S(fj) 5 C f o r  a l l  j. Define the function F'(Y) = 
( f i ( Y ) ,  . . . ,fi,..(Y)). I f F  assumes at  m o s t  ' L ~  di f lerenl  va/,ues (digerent vectors),  
then. th,e sensi t iv i ly  of E is a /  m o s i  C .  2d - l .4 

A 

An obvious bound is S ( F )  5 C .  rn. llowever, for reasons that will become clear soon 
we are interested in bounds which are independent of m. 
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Proof. Assume towards a contradiction that F has a larger sensitivity. Then, 
there is an assignment Y such that ISF(Y)I 2 C . 2 d .  Consider Y and assume 
without loss of generality that F ( Y )  = (0, . . . , 0). We will show the existence of 
2d + 1 different values of F ,  contradicting the conditions of the lemma. Pick the 
smallest value jl such that Sfjl (Y) # @. Thus, there exists an i E Sfjl ( Y )  which 
implies that F ( Y ( a ) )  = ( 0 , .  . . , 0,  f j l (Y ( i ) )  # 0,  *, . . . , *), where each * denotes 
an arbitrary value. From now on we disregard all values k such that k E SfIl ( Y )  
(those variables to which f j ,  is sensitive on Y ) .  According to  the conditions of 
the lemma there are at most C such variables. We now pick a new value j , ,  the 
smallest, j, > j ,  such t,hat there exist,s a new va.riable numbered f ,  still under 
consideration, and I E Sf,, ( Y ) .  Since f j ,  is not sensitive to the P th  variable on 
Y ,  we have that F ( Y ( l ) )  = ( 0 , .  . . , 0,  fj2(Y(') j  # 0,  *, . . . , *) which is different 
from the previous value for F that we have built. We continue this process and 
at each such step we eliminate at  most C variable to which F is sensitive on Y .  
Since we assumed that ISF(Y) I 2 C 2d ,  we can continue this process for at least 
2d steps, creating 2d differeril values for F .  Together with F ( Y )  = ( 0 , .  . . , 0) this 
makes more that 2d different values. 0 

4.3 Lower Bound on the Number of Rounds 

Tn this subsection we prove the following theorem 

T h e o r e m i i .  Let A be an r-round d-random (d 2 2 )  private protocol t o  com- 
pute a boolean function f. Then, r = Q(logS(f)/d).  

Using similar arguments we can show that with a single random bit ( d  = 1) 
O(S( f ) )  rounds are required. The proof of this case is omitted. 

In the following proof we restrict our attention to a specific determiSistic 
algorithm derived from the original protocol by a specific random tape B .  In 
such a deterministic protocol the views of the players are functions of only the 
input assignment 2. 

L e m m a i 2 .  Conszder a pravate d-random protocol t o  romputp a boolean func- 
tzon f For a gzven random tape 2, recall that View,k(y', g) as the vaew of player 
P, at round k Then, for  any P,, V iewa(g ,  B) can assume a t  most 2d+2 daflerent 
values. 

Proof. Partition the input assignments E into 4 groups according to the values of 
xi (0 or l), and the value of f ( 2 )  (0 or 1). We argue that, the number of different 
values the view can assume within each such group is at most 2d. 

Fix 2 in  one of these 4 groups and consider any other cpertaining to the same 
group. Since the two input assignm_ents are in the same group, by t_he privacy 
requirement the value of View!(;, B )  must appear also as V i e w t ( f ,  6 )  for some 

0 random tape b'. However, there are only 2d different, random tapes. 
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Lemma 13. C‘onszder a przvate  d-random prot_ocol t o  c o m p u t e  a boolean f u n c -  
tzon f, a n d  consader a specific r a n d o m  tape  B T h e n  for a n y  p l a y e r  Pz ,  t h e  
f u n c t z o n  Vzewf(;r’,g) ( a s  a f u n c t i o n  os 2) has sensotovaty of a t  mos t  T(k) = 

A 

(2d+2)k- 1 

Proo f .  First note that as we consider a fixed random tape the views of the players 
are functions of t,he input assignment f only. 

We prove the lemma by induction. For k 1 1 the view of any player depends 
only on its single input bit.  Thus, the claim is obvious. For k > 1 assume the 
claim holds for any li < k .  This implies in particular tha t  all messages received 
by player i and included in t,he view under consideration have sensitivity of at 
most T(k  - 1). Denote by F the view of the player without its input bit. Assume 
towards a contradiction that, View! has sensit,ivit,y strictly greater than T (  k). 
Since the view consists of the input bit of the player and the messages received, 
then F has sensitivity of at least T ( k ) .  IJsing Lemma 10 with G = T(k  - 1) we 
conclude tha t  F assiimes more than 2d+2 different values, contradicting Lemma 
12. (Note tha t  Lemma 10 allows us to give a bound which does not depend on 

0 the number of messages received by Pz . )  

Theorem 1 4 .  G i v e n  a priva.te d - r a n d o m  protocol  (d 2 2) t o  c o m p u t e  a boolean 
f u n c t i o n  f, coiisadcr the de2erm.znzstrc pro tocol  derzved from at by a n y  g i v e n  ran-  
dam. t ape  <, For a n y  p l a y e r  Pi, there zs at  least  one  i n p u t  a s s i g n m e n t  2 s u c h  

- 
t h a t  7 i ( Z ,  B )  = R(logS(f ) /d) .  

Proo f .  Consider a fixed but arbitrary player Pz. Denote by t the largest round 
number in which Pi outputs a value, i.e. t = maxs{z(5, B ) } .  We claim tha t  as 
long as the sensitivity of the view of Pi does not reach S(f), there is at least 
one input assignment 5 for which Pi cannot, output the correct value f(2). The 
reason is tha t  the sensitivity of the view of Pi, while deciding on its ou tput ,  
is a bound on tlie sensitivity of the o~ i t~pu t~  of Pi. On the other hand the value 
S(f) is obtained by some assignment lu’ such t,hat the value of f ( Y )  is different 
from the value of f on S(f) of Y’s “neighbors”. Hence, the output must be 

4 

This proves Thcorern 11. Note_thal this provcs not only tha t  there is a.n input 
assignment, F arid a random tape h for which tlie prot,ocol runs “for a long t ime”, 
but also that, for each random tape h tlierr is such inpnt, assignment. 

+ 

Corollary 1 5 .  Let St be on r - r o u n d  d-random pravate protocol (d 2 2 )  l o  c o m -  
p u t e  x o r  of n bits. T h e n  T = f2(Iogn/d). 

As stated at, t)he top of the section, using similar arguments we can show that 
with a single random bit ( d  = 1)  R(R)  rounds are required to privately compute 
xor, which is tight. 
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5 Lower Bounds on the Expected Number of Rounds 

In this section we prove lower bounds on the expected number of rounds, in terms 
of the average sensitivity of the computed function. In particular, we prove an 
Q(logn/d) lower bound on the expected number of rounds required by protocols 
that privately compute xor of n bits. We further strengthen the result in the 
next subsection where we allow the protocol to make errors (we will formally 
define this notion shortly). In particular, we prove that the expected number of 
rounds of such protocols that compute xor remains Q(logn/d). We start with 
the following theorcm: 

Theorem16. Let f be a boolean function and let A be an expected r-round 
d-random. pravate protocol (d 2 'L/ t o  compute th,e function f. 
Then, r = L?(AS(f) log r l S ( f ) / n d ) .  

Consider a protocol A and a player Pi. We say that the protocol is late on 2 
and 6' if T, (2) 6') 2 + 1. We first show that for ariy deterministic protocol 
derived from a private protocol to compute f, not only there is at least one input 
on which it is late, but that this happens for a largc fraction of the inputs. 

Lemma 1 7 .  Consider player Pi. For any random tape b ,  there are at least 

an( A s i J ) ~ ~ )  input asszgnments i such ihat the protocol is late o n  2, b'. 

Proof. Consider the views of Pi, V i e w : ,  giver1 random tape g. For any round t 
such that t < w+l, by Lemma 13, S ( V i e w j )  < 2 ( d t 2 ) M  = d m .  
Any function g computed from such a view can have at, most the same sensitivity, 
and thus clearly an average sensitivity of at most d m .  By Claim 9, g can 

have the correct value for the function f for at most a n ( l  - 
input assignments. Since we assume that A is correct for all input assignments, 

0 

+ 

lo A S  

A S ( f ) -  a) 
2n 

it follows that at least 2n As(f'-m 2n input, assignments are late. 

Proof. By the previous lemrna the total nurnber of pairs I, b' on which the 

protocol is late is at least 2 9 " (  A5'f'-m) 271 It follows that there is at least one 

input assignment 2 for which there are at  least ad( A '(')<F) random tapes 
;such that the protocol is l a k  on 2, g. For each such tape + 1. 

0 
(5,  g) 2 

Theorem 16 follows from the above lemma. 

Corollary 19. Let A be an expected r-round d-random pravate protocol (d 2 2 )  
to compute x o r  of n bzts. Then, = Q ( l o g n / d ) .  

Proof. Follows from 'Theorem 16 and the facl that AS(xor )  = R. 0 
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5.1 Weakly Correct Protocols 

We first formally define a protocol tha t  is alloyed to make a certain amount 
of errors. Given a protocol A, denote by d i ( Z ,  b)  the output  of the protocol in 
player Pi, given input assignment 2 and random tape b .  

+ 

Definition20. For 6 < 1/2,  a (1 - b)-correct protocol to compute a function - f 
is a protocol such tha t  for any player Pi and any input vector 2, Pr-[di(?, b )  = b 
f(.’)I 2 (1 - 6) .  

We prove lower bounds on the number (and the expected number) of rounds 
of such d-random protocols. 

Theorein21. Let f be a boolean fuiictron, 

Let A be an (1 - 6)-correct r-round d-random private protocol (d >_ 2) to 

compute f .  If 6 < As(f)-m a n  then r = R(1og AS(f)/d).  
Let A be an (1 - 6)-correct d-random. przvate protocol (d 2 2,) to compute 

A S ( f 1 - m  - f. Then, the expected number of rounds is Q((1 - I/‘%) . ( 2n fi) . logAS(f ) /d) .  

Proof. We first prove a lower bound on the  nuniher of rounds, and then turn 
our attention t,o t,he expected number 0: rounds. The  correctness requirement 
implies tha t  for any player Pi, Pr-[Ai(2,  b )  = f (Z)] 2 1-6, for all 2. This implies 

t ha t  there is at  least one random h p e  ;such tha t  for at least 2.(1 - 6) input 
assignments I, di(2, c) = f(2). By the same arguments a,s those in the proof of 
Lemma 17, it follows tha t  before roiind number + 1, the protocol can 

be correct on at  most Y(1 - A s ( f ) -  271 m, inputs (with random tape g). Since 
we require that at least an( l  - 6)  are correct, we have tha t  at least 

b 

inputs are late. For a lower bound on r for an r-round protocol it, is sufficient 
to have a single input veclor Z such t,hat t,hc cxccution on (2, b )  is “long”. For 

this ,  note tha t  if 6 < AS(’)-m 2 n, then (for raridom tape  g) the number of late 
inputs is great,er than 0. This gives 11s a lower bound of r = R(logAS(f)/d) for 
any (1 - 6)-correct r-round d-random protocol, with 6 as above. 

We now prove a lower bound on the expected number of rounds of ( I  - 6)- 
correct protocols. Again the correctness requirement implies tha t  for any player 
Pi Pr-[A;(?’,h) = f(2)] 2 1 - 6, for all Z .  By a counting argumenl, i t  follows 

that for at least 2’(1 - a) random tapes, d;(Z, g) = j ( S )  for at least 2.(l - 

- 

b 
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8) input assignments i. Consider those random tapes, and the deterministic 
protocols derived by them. For each such prot,ocol there are at least 

d 

late input assignments. Thus the total number of late pairs 2, b is at least 

It follows that there is at least one input assignment 2 for which the number of 

random tapes Zsuch that ?,;is late is at least ad(l-v%).( 2n 

Corollary 22. For jzed  6 < 1/2 let  A be a ( I  -S)-correct d-random expected T -  

round przvate protocol t o  compute x o r  o f n  bzts Then r = L?(logn/d) (Obvtously 
the same lower bound holds for  r-round protocols ) 

Proof Follows from Theorem 21 and the fact that AS(xor) = n Note that the 

term (1 - &%)( - 6- &=) is greater than 0 for any 6 < 1/11 (and sufficiently 
large n) 0 

Acknowledgments We thank Benny Chor for useful coniments. 
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