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Abstract. In the last five years, many cryptosystems based on the chaos 
phenomenon have been proposed. Most of them use chaotic maps, i. e., 
the discrete-time chaos. The recent anuouncernent of a cryptosystem 
based on continuous-time chaos that is generated by a very simple elec- 
tronic circuit known as Chua’s circuit passed unrecognized by a large part 
of the cryptographic community. It is an analog to the VERNAM-cipher 
system, but uses auto-synchronization through remote replication of the 
chaotic masking signal. After the introductory description of continuous- 
time chaotic systems and their synchronization a general definition and 
discussion of cryptosystems based on remote chaos replication is given. 
A cryptanalytic attack for these systems is developed that can break the 
cryptosystem using Chua’s circuit for all types of information-bearing 
signals. 

1 Introduction 

Analog scrambling devices have been a part of classical cryptography ever since 
secure transmission by wire and radio have been used. Amongst the many proce- 
dures for such tasks the method of adding synchronous noise is thoroughly under- 
stood from the information theoretic point of view. The well known VERNAM- 
cipher system [Ver26] as a digital counterpart of this method which has been 
defined for secure transmission of binary strings was proved unbreakably secure 
by SHANNON [Sha49], provided the noise sequence has maximal entropy and 
a secure key/synchronization channel is used. While digital cryptosystems of 
this kind have successfully been used during the last seven decades, the recent 
announcement of a by far cheaper and more efficient analog scrambling cryp- 
tosystem realized as a simple electronic circuit by L. CHUA and his coworkers 
[KHE92] passed unrecognized by a large part of the cryptographic community. 

The idea, widely acclaimed in the community of control engineers, is that  
with a cryptosystem based on the continuous-time chaos phenomenon not only 
secure communication can be guaranteed, but also, what is more, it is implicitly 
claimed that this is achievable without the need for key management and external 
synchronization. The principle of this system resembles a modification of the 
VERNAM-cipher system where the additive scrambling noise is coming from a 
chaotic analog signal generator. The information-bearing signal is covered in 
chaotic pseudo noise of high amplitude giving a waveform with a very small 
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signal-to-noise (S/N) ratio thus masked for the interceptor. At the receiver’s 
side, this waveform is used to  drive a replicating circuit that is equally tuned as 
the chaotic signal generator, the parameters being unknown to the interceptor. 
The auto-synchronizing replicating circuit produces a quite accurate copy of 
the chaotic noise which is then subtracted from the incoming waveform, thus 
revealing the buried signal. 

In this paper we do not only show how such a system can be broken by 
well-adapted methods of signal processing. Also, a short discussion about the 
behavior of this type of cryptosystem in a real communication environment with 
channel noise and distortions points out the doubtfulness of a simple realization, 
especially in heavily disturbed communication channels. Besides, the implicated 
key-freeness of this auto-synchronizing device is also questionable, although 
the common parameters of the chaos generating and replicating circuits may 
eventually be used as a key space. However, even the introduction of such a key 
doesn’t significantly improve the security of the proposed system. Actually, the 
dominating power of the chaotic noise designed for auto-synchronizing purposes 
is from an information theoretic point of view the reason why this type of system 
is generally breakable [Sim79], [Sha93]. 

2 Coiitiiiuous Tiine Chaos 

When the behavior of some physical system is well understood, it is often possible 
to  model it in terms of a set of state variables SV = {zl(t), . . . , z ~ ( t ) }  varying 
in time. The most familiar systems using this approach are dynamical systems. 
A very common representation of a continuous time dynamical system is that of 
a system of N simultaneous first-order ordinary differential equations (ODE): 

x = f(x,d,A,t), (1) 
where 

x = x(t) = (21(1),.. . X N ( 1 ) )  ; zn(t) E sv, = 1,. . . , N ,  
x = X(t) = (dzi(t) /dt , .  . . , dzN(t)/dt) ,  
f = f ( x ,  ...) : U - R N ,  uc_IRN, 
d = d(t) = (di(t), . . . , d k f ( t ) )  , 
x = (h,. . . , XL) E R L ,  
t E z = ( a , b )  

&(t)  E DF = {di(t), . . . d ~ ( t ) }  9 

XI E S P  = { A l , .  . . , AL} , 
R. 

Here, zn(t), n = 1,. . . , N are unknown real-valued functions of a real variable 2 
(time) and f is a known vector field which depends on x and, but not necessarily, 
on a set DF of real-valued drive functions, on a set S P  of real-valued system 
parameters aiid on the time t .  If x = f (x, A ,  t ) ,  the dynamical system is non- 
driven, and if x = f (x, A) ,  it is autonomous. 

Solving an initial value problem (IVP) of (1) for some given XO E RL of 
system parameters consists of finding N real-valued functions 

X(t) = (JYl(t)’. . . , X N ( t ) )  (2) 
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satisfying (1)  and the initial conditions 

X ( t 0 )  = xo = (XY, . . . , X h )  E u c IRN, ( 3) 

where X f ,  . . . , X$ represent a chosen set of initial states of the continuous 
time dynamical system at some chosen initial time t o  E I. The set of points 
{ X ( t )  I X ( t 0 )  = X o , t  E I }  is called the trajectory through XO in the state 
space RN. If the vector field satisfies certain reasonable conditions, then an IVP 
has a unique solution in I .  In general, different initial conditions at t o  lead to  
different IVP solutions. An important property of autonomous systems is that 
if the IVP: x = f (x, Ao) ,X(to = 0) = Xa has the solution X(t), the IVP: 
x = f (x, XO) , X ( t o  # 0) = XO has the solution X ( t  - t o )  [GH90], [Pergl]. 

The term steady state refers to  the asymptotic behavior of IVP solutions 
as t 00 and defines the limit s e t  in the state space. For continuous-time 
dynamical systems there exist four kinds of steady state behaviors: equilibrial, 
periodical, quasiperiodical and chaotic. The corresponding limit sets are: equilib- 
rium point, closed curve, two-torus and the strange attractor. Chaotic behavior 
arises only in nonlinear systems for N 2 3, for particular vector fields. A chaotic 
vector field has chaotic behavior only for particular parameter values, i. e., in 
chaotic regime, and usually has many different strange attractors characterized 
by the corresponding parameter values. 

State variables in the chaotic regime are nonperiodic with a continuous broad- 
band spectrum and exhibit sensitive dependence on initial conditions. Two iden- 
tical autonomous chaotic systems started at  initial conditions arbitrarily close to  
one another have trajectories which quickly become uncorrelated. Practically, it 
is impossible to construct two identical, independent chaotic systems with syn- 
chronized trajectories. There is always some error in measuring or specifying the 
initial condilions. Due to sensitive dependence, these errors, however small, will 
almost always alter the macroscopic behavior of a chaotic system [PC89]. Thus, 
in a very real sense, chaotic systems are unpredictable, i.e., their IVP solutions 
in chaotical regime behave similar to  random processes. For this reason they are 
attractive for cryptographic applications. Until now, many cryptosystems based 
on chaos are proposed, most of them relying on discrete dynamical systems (time 
discrete variants of dynamical systems where ODE’S are replaced by difference 
equations). 

3 Synchronization in Chaotic Dynamical Systems 

The vector field of an N-dimensional autonomous dynamical system 

x = f (XI A)  (4) 

with state variables in SV and with system parameters in S P  is drive decom- 
posable if it can be split up into the drive and response subsystems. This means 
that there is a dimension N1 < N and corresponding functions f(’) : Ul - 
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{ X $ ' ) ( t ) } N 1  = svl c sv, 
{ p ( t ) } .  

k=al 
= sv, c sv, 

r = l  

= SPI SP,  

= SP2 E SP, 
1 

SPl u SP, = SP,  L1 + L ,  2 L: 

The two subsystems are coupled such that the behavior of the second (5b) is 
dependent on the behavior of the first (5a), but the first is not influenced by the 
behavior of the second. The first subsystem is called the drive and the second the 
response. Theoretically, for every A E [RL and every X(0) = Xo E U the solution 
of the IVP of (4) should always be equal to the solution of the IVP of the cor- 
responding decoupled system (5) if the initial states X(')(O) = Xr', X(2)(0) = 
Xr)  and system parameters A(1) u A(2) of (5) are ident,ical to  the corresponding 
ones in (4). 

The concept of drive decomposition of an autonomous dynamical system 
makes a spatial separation of drive and response possible. If the dynamical SYS- 

tem models an electronic circuit, the corresponding drive and response can be 
connected with a communication link that transmits the set of drive functions 
SV1 as signals from the transmitting point (drive) to  the receiving point (re- 
sponse). If the regime of the whole system is chaotic, such a communication 
system would represent a source which generates chaotic signals SV, driven by 
remotely generated chaotic signals SV1 (SVI are all different from SV2). Fur- 
thermore, if a second inverse dynamical subsystem (circuit) 

x ( I ) ,  d(I) = x(II), A(') ) , (6) 

where 
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can be constructed at the receiving point which is driven with SVII & SV2 and 
generates one or more signals Sh C SV1, a remote replica of chaotic signals 
would be theoretically possible. 

For practical realization of such chaotic, synchronized subsystems, the sta- 
bility of the response and inverse circuit is required. That means, 

. 

1.  independent of initial conditions Xf) and Xr) ,  
2.  when response and inverse circuit have common parameters, and parameters 

3. when there is an additive disturbance b ( t )  = (61(t), . . . , SN,(~)) in the com- 

bance-to-chaos - power ratios D/C,  , i = 1 , .  . . , N1, smaller than some upper 
limit value D / C .  

corresponding to  the drive are slightly different, and 

munication channel, i.e., d j  ( 2 )  ( t )  = x i  ( 1 )  ( t )+6 , ( t ) ;  i = 1,. . ., N1, with distur- 

We will call these three stability conditions initial value, parameter and channel 
disturbance stability. In practical applications, (7)  should converge relatively 
rapid. 

Recently, PECORA and CARROLL [PCgO], [PC91] practically showed that if 
the response is driven only by some subset of the driven system's state variables, 
it is possible to construct decoupled systems whose common state variables are 
synchronized even in chaotic regime. This gives a subdivision of the system (4) 
into three Subsystems: 

k(1) = f ( 1 )  ( x(1), d(') = x(z), A(')  ) , 

( ) 
(84  

(8b) k(2) = f (2)  ~ ( ~ 1 ,  d(2) = x(l), A(') , 

where f(') is N1-dimensional, f(2) is Nz-dimensional and both together represent 
the drive, while f(3) is the N3-diniensional response (N1 + Nz + N3 = N). The 
special case of (8), in which f(') = f(3) (and thus Nz = N3), leads to the concept 
of synchronization of chaotic subsystems. This special case is called homogeneous 
driving. The construction of this system consists of dividing the initial system 
(4) into two subsystems f(') and f (2 ) .  Then the subsystem f(2) (which will not 
be used for driving f(3)) is duplicated. This duplicate is applied as response. 
How to divide the drive is determined by calculating the conditional Lyapunov 
exponents [PCSl], [Sch89]. If the conditional Lyapunov exponents of f@) driven 
by x(l) are all negative, the state variables of f(2) and f(3) synchronize. 

PECORA and CARROLL apply the idea of homogeneous driving to the Lorenz 
and Rossler chaotic systems as well as to the hysteretic electronic circuit and 
its numerical model [PC91]. In all these threedimensional systems, chaotic syn- 
chronization is achieved with respect to the initial value and parameter stability 
conditions. The channel noise stability was not considered. 
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Based on tlie homogeneous driving principle and using an inverse subsystem, 
a model of remote chaos replication can be constructed, as shown in figure 1. 

I Chaosgenerator 

Fig. 1. The model of remote chaos replication. 

4 Cryptosystenis based on Remote Chaos Replication 

Using the model of remote chaos replication, a secret key cryptosystem for analog 
communication channels can be formulated. For this purpose, only one replica of 

zy’(t) and limt+m lzy)( t )  - xil)(t)l = 0. At the transmitter side, this system 
is an analog variant of the VERNAM-cipher system, because the chaotic signal 
zy’ ( t )  is added (real addition) to the information-bearing signal s ( t )  SO that 
their sum c ( t )  represents the channel input signal (see figure 2). The random 
key space could be the subset Xk C u A(‘) of all values of parameters of 
(f(2) U f(‘)) n (f(’) u f(’)) that cause chaotic regime in the chaos generator with 
mutually different strange attractors. 

At the receiver side, this system principally differs from VERNAM-cipher s y s  
tems. Here, the channel disturbance stability of the subsystem f(3) in the chaos 
replicator enables the auto-synchronization and the recovery of the information- 
bearing signal s( t ) .  The additive disturbance b ( t )  = & ( t )  in the communication 
channel is & ( t )  = s ( t ) + n ( t ) ,  where n( t )  represents the equivalent additive chan- 
nel noise. If the actual disturbance-to-chaos ratio D/C is smaller than the limit 

the chaotic signals in SV1 is required, i.e., N1 = 1, x(’)(t) = tt (1) ( t ) ,  x( ’ ) ( t )  = 
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Fig. 2. The model of the cryptosystem based on remote chaos replication. 

- 
value D/C, the chaos replicator with input signal r ( t )  = c ( t )  + n ( t )  yields the 

chaotic signal x y ) ( t )  = xy' ( l )+a( t )  at its output, which is more or less synchro- 
nized with the output z$')(t) of the chaos generator at the transmission side. 
Here, u(t )  represents the equvalent additive synchronization noise caused by 

ditive mixture of information-bearing signal, channel and synchronization noise 
is obtained. If the power of the signal z(l')(t) is much greater than the power 
of s ( t ) ,  then the information-bearing signal s ( t )  will be masked by the unpre- 
dictable chaotic signal. However, the infonilation-bearing signal must have some 
minimal power in order not to  be masked by channel and synchronization noise. 

This cryptosystem was proposed by A .  OPPENHEIM and his coworkers with- 
out specifying what is the key, if any, in the system [OWIC92]. An example of 
masking and recovering a segment of a speech signal using the chaotic LORENTZ- 
system was demonstrated by computer simulation. The influence of the channel 
noise and the parameter stability of the system was  not considered. 

An experimental demonstration of the cryptosystem based on remote chaos 
replication was recently realized using Chua's circuit as chaos generator [KHE92]. 
This circuit is a very simple and robust electronic circuit built up with four 
linear element,s arid one nonlinear element called Chua's diode (CD). The circuit 
is shown in figure 3(a), and the state equations are given by 

h 

momentary losses of synchronization. By subtraction of x1 K- ( t )  from ~ ( t )  an ad- 

i l  = f l  ( 2 1 j 2 2 ,  XI, A47 A 5 1  A61 X7) = S;; 1 = --+ - h ) ,  

-1 ta-21 +x3) 9 (9) 
A 2  i X I  

i:! = f z  22r 23, Xz, - x = f(x, A )  = { i 3  = 13 ( 2 2 ,  X3) = ( - 2 2 )  1 

where h = h(~1, X5,  Xg, 1,) is the piecewise linear characteristic of Chua's diode, 
as shown i n  figure 3(b). Here, 2 1  is the voltage across the capacitor C1 = A1,  

1 2  is the voltage across the capacitor Cz = Xz, and 13 is the current through 
the inductor L = XJ. The parameter Xq is the resistance R ,  while A5 and A6 are 
slopes of the inner and outer regions of h ,  and A 7  indicates the breakpoints of h 
(for details see [Ken9'2]). 

Using the principle of homogeneous driving, the Chua's circuit was decom- 
posed in the following way: f(') = f i ,  f(z) = ( f z , f 3 ) ,  and f(') = fi, so that 
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CD 

4 

h 

Fig. 3. (a) Chua’s circuit, (b) the characteristic of Chua’s diode. 

z l ( t )  = z1 (1) ( t )  (voltage across C,) was used as a masking signal. The information- 
bearing signal s ( t )  was a sine wave of frequency taken from the interval between 
10% and 90% of the natural frequency of the ROSSLER-type attractor. With an 
S/N-ratio (in this case D/C-ratio) of approximately -6 dB, the signal loss at  
the receiver was limited to  less than -2 dB (-4 dBV). This signal loss is affected 
by momentary losses of synchronization which occur during some transitions be- 
tween two Rossler-type attractors. The influence of the channel noise and the 
parameter stability was not considered. 

Using these arguments and the fact that the sine wave s ( t )  was not rec- 
ognizable in the spectrum of z l ( t ) ,  the authors of [KHE92] believe that this is 
sufficient to demonstrate a secure communication. It was not considered whether 
there should be a key in the proposed system, what it should consist of, and how 
it would be managed. 

5 
C 11 ao s Rep 1 i c at i 011 

Cryptanalysis of Cryptosystems based on Remote 

There are basically three possibilities for the cryptanalysis of cryptosystems 
based on remote chaos replication: 

- The extraction of the information-bearing signal s ( l )  from the channel out- 

- the extraction of the chaotic masking signal z l ( t )  from ~ ( t ) ,  and 
- the estimation of parameters of the chaos replicator, which are chosen from 

put signal ~ ( t ) ,  

the key space Ak of the cryptosystem. 

The extraction of the information-bearing signal is generally possible if s ( t )  
is a periodic signal or consists of periodic frames with sufficient duration, e. g., 
different types of low-rate digital modulations. Detection by autocorrelation and 
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crosscorrelation used in radar signal processing and various other communication 
systems enables an effective extraction of s ( t )  even a t  very low S/N-ratio [Lee64]. 
As these techniques are commonly known, we won't explain their use here. It 
should be noted that the demonstration of security in [KIIE92] was done using 
just a periodical signal. 

If the information-bearing signal doesn't contain long-term periodical com- 
ponents, the next possibility is the extraction of the masking signal x l ( t )  from 
~ ( t ) .  Lower-dimensional continuous time systems in chaotic regime always gen- 
erate signals containing unpredictable repetitions of similar signal patterns that 
can generally be described as one parameterized function with a small number 
of parameters. Finding such a function and estimation of its actual parameters 
using the channel output signal ~ ( t )  is the main task at this approach. From 
an information theoretic point of view, this parameter estimation can be done 
with sufficient accuracy since the S/N-ratio for the masking signal t l ( t )  is very 
high so that this communication system operates far below the channel capacity 
which makes it unsecure as a cryptosystem. The approach is demonstrated for 
the cryptosystem based on Chua's circuit. 

Since the Chua's circuit contains the piecewise linear Chua's diode, the 
chaotic masking signal zl(t) behaves in a linear fashion as long as cl(t) re- 
mains within one linear segment of the characteristic shown in figure 3(b). For 
each of these time frames, the Laplace transform of zl(t) can be calculated and 
is of the following form: 

x 1  (s) = 

- - 

where 

62  s 1 = u + v - - ,  
3 

3U + 3V + 262 

3U + 3V + 2b2 

u-v 
u - v  

s2 = - + i h -  
6 2 '  

- ih- 
6 2 '  

s3 = - 

b? 2b: b2 
y = b 1 -  - l  q = - - - + bo,  3 27 3 

A l X 4 A '  + A3 A2X'  + X l A *  + A2A4 

X1X2A4A' 
b l  = ' b2 = 

A* + A4 bo = 
A1 A?X3x4X*  ' X1A2A3X4A' 

Here, A' represents a time-variable parameter (Chua's diode inner resistance) 
which depends on the momentary value of the voltage z l ( t ) ,  i.e., 
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2 1 ( q  2 x7. 

Accordingly, the masking signal z l ( t )  can be viewed as zl sequence of three 
separate types of time frames: lower, middle and upper signal time frame with 
corresponding variable durations q , T,,, , and T,, in varying order, as shown in fig. 
4. 

Fig. 4. A typical sample of the chaotic masking signal z l ( t ) .  

In all three types of time frames, the masking signal is, according to the 
inverse Laplace t7raiisforni of ( lo ) ,  of the following form 

z l ( t )  = Aeat cos(wt - 4) + Bebt + g, (11) 

if D > 0 and s1, s2 and s3 are mutually different and different from zero, which 
is the necessary condition for a chaotic regime. The exponents a and b and the 
frequency w depend only on the poles of (10) and thus on XI, X2,  As, A4,  A5 and 
A6 

a = Re(sz ) ,  w = I m ( s z ) ,  b = sl, (12) 
while the amplitudes 

and the initial phase 

additionally depend on coefficients i n  the numerator of (10) 

xo a" = -- 
A l x 2 A 3 '  
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xix&i(O) + x323(0) - x3x0 
a1 = 

X l x 2 X 3 x 4  

xlzl(0) - x 2 x 4 x 0  + x2zZ(O) 

x l x 2 x 4  

1 

a2 = I 

a3 = . l ( O ) ,  

and thus on zl(O), z2(0) and z3(0) representing initial values of state variables at 
the beginning of each new time frame. Xo is, like A', a timevariable parameter 
(Chua's diode constant current) which depends on the momentary value of the 
voltage z l ( t ) ,  i.e., on the actual time frame 

Having a general form (11) of the masking signal, this cryptanalysis approach 
(the extraction of the chaotic masking signal zl ( t )  from r ( t ) )  reduces to the 
classical techniques of multiple real parameter estimation of the known signal 
form in the presence of additive noise [vT71]. Here, an adaptive suboptimal 
estimation method will be used which is relatively simple but accurate enough 
to  demonstrate the extraction of the masking signal. 

By iterated differentiation of (1 1) one finds the following series of equations: 

-(u2 + w 2 ) b ( z l ( t )  - g )  + (a2 + w2 + 2ab)z$')(t) + 

-(u2 + w 2 ) b z y ) ( t )  + (2 + w 2  + 2ab)zi'+')(t) + 
-(2a + b)$'( t )  + p ( t )  = 0 

-(2Q -k b)2yt2)(t) + X y t 3 ) ( t )  = 0, 

( W  

(16b) 

where zy ' ( t )  is the k-th order derivative of zl(t) .  Since the power of z l ( t )  dom- 
inates that  of s ( t )  in order to  allow auto-synchronization of the chaos replicator, 
the parameters of zl(t) can be estimated quite accurately with appropriately 
smoothed derivatives of the sampled channel output signal r ( t )  = z l ( t )  + ~ ( t ) ,  
so that 

h 

$ ) ( t )  = r ( t )  * g( " ( t )  = d"(t)  * g ( t ) ,  (17) 
where 

is the Gaussian bell curve controlled by the scaling factor s, s > 0, and * denotes 
convolution. Using (16b) for three consecutive values of k yields the following 
system of linear equations 
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whose solution is
f

- a 2 ~ w 2 - 2 a b \ = [ 0 \ = (19)
2a + b J

1

_ (le+2) (t+1) (*+3) (* + l) (*+2) (*) 0

Solutions of the system of nonlinear equations (18) in 6, d, and u> represent the
estimations of b, a and u

b = u + v + l (20)
3 ' K '

a=^p-, (21)

w = ^ / - a 2 - 2ab - /?, (22)

where
72

The DC term g is estimated by substitution of a, 6 and u in equation (16a). The
equations

X = (a — by +wl

a = Ae a i sin(a;/ - <j>) =

b(ab - a? + Q2)(x[ -g) + x^jd2 - P - u2) + x?\b - a)

£>({a-b)2+Q2)

obtained from (11) and its derivatives, allow the estimations of <fi, Aeat and Bebt

<j> — arctan —, (23)
X

? + x2 (23)
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With these results, a program with graphic interaction was written that reads 
in the sampled channel output signal, performs the calculations and displays the 
estimated parameters of (11). It then synthesizes a signal which is subtracted 
from the input signal, leaving the signal for which masking was attempted with 
considerably reduced chaotic masking component. Experiments with this prc- 
gram using speech signals 15 dB below the masking signal that were initially 
not audible reproduced the speech signals in clearly understandable quality. The 
influence of the channel noise and parameter stability of the system was not 
considered. It should be noted that in the upper and lower signal time frames 
the exponent b is always negative and the component Bebt is rather weak. Its 
neglection leads to a much simpler estimation process and gives relatively good 
results, too. 

The third mentioned cryptanalysis approach consisting of the estimation of 
the chaos replicator’s parameters directly follows from the presented results. I t  
was not addressed here since the described method gives sufficient results for the 
cryptanalysis of the cryptosystem based on Chua’s circuit. We only point out 
that the back-substitution of the estimated parameters in (10)’ (la),  (13) and 
(14) or the coefficient comparison of (9) in its third order differential equation 
form with (16) makes the estimation of the unknown parameters from the key 
space Ak possible. 

6 Conclusions 

The presented cryptanalysis method of extracting the chaotic masking signal 
from the channel output signal breaks the cryptosystem using Chua’s circuit for 
all types of information-bearing signals. This method is applicable for all other 
cryptosystems based on the remote chaos replication principle where the func- 
tional form of the masking signal or its dominating components can be revealed 
from the structure of the chaos generator. For three-dimensional and some other 
lower-dimensional chaotic continuous-time systems this is always possible by US- 

ing adequate linearization techniques. Having the functional form, the dominat- 
ing power of the chaotic masking signal necessary for the auto-synchronization of 
the cryptosystem always enables a sufficiently accurate estimation of remaining 
unknown parameters. Cryptosystenis of this type based on higher-dimensional 
continuous-time chaotic systems would require much higher cryptanalytic effort. 
For such systems however, the realization of auto-synchronization based on only 
one state variable (the masking signal) is still an open problem [PC91]. 
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