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Abstract. In this paper, we propose a new design tool for “block en-
cryption”, allowing the en/decryption of arbitrarily long messages, but
performing en/decryption on only a single block (e.g., 128 bit block),
where the rest of the message is only processed by a good scrambling
function (e.g., one based on an ideal hash function). The design can be a
component in constructing various schemes where the above properties
gives an advantage. A quite natural use of our scheme is for remotely
keyed encryption. We actually solve an open problem (at least in the re-
laxed ideal hash model and where hosts are allowed to add randomness
and integrity checks, thus giving a length increasing function); namely,
we show the existence of a secure remotely keyed encryption scheme
which performs only one interaction with the smart-card device.

1 Introduction

We provide a basic design allowing encryption and decryption to be performed
by combining a high quality scrambling technique with a strong encryption/
decryption mechanism. In particular the method applies to cooperation between
an untrusted (potentially exposed) but computationally potent device and a
trusted (highly secure) but computationally weak device. The method achieves
an appropriate balance of computation and trust by employing a scrambling
mechanism, which is modeled as an ideal length preserving one-way function
which can be built from a regular ideal (random oracle like) hash function.

While following the usual Feistel structure for block cipher design, we show
that most of the work can be done by the (publicly known and invertible) scram-
bling, requiring only a small portion to be performed by encryption. This situa-
tion allows a design which can be useful when the encryption is more expensive
than the scrambling, or when it is otherwise limited. This is the case when the
encryption is done by a small device (e.g. a smart card) which is slower than a
general host’s software (which has more computational power, but is less secure
— thus encryption keys must never be exposed to the host). We call the design
“scramble all, encrypt small.”

A most natural application of our protocol is for “remotely keyed encryp-
tion”, which we motivate below. Yet, our protocol is of independent interest
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and can be used in other settings, for example to speed up certain encryption
processes. In particular, our construction nicely applies in the context of traitor
tracing [CFN94, Pfi96, NP98|. In traitor tracing, the data is encrypted with a
random key, which is itself encrypted so that only users with legitimate keys can
decrypt it (so the keys can be traced). Instead of encrypting the data with a
random key, we can simply scramble it and encrypt a single block in the same
way the random key is encrypted.

The need for remotely keyed encryption was nicely motivated by Blaze. Let
us recall the motivation. Today’s relatively open environment of hosts (e.g., In-
ternet or Intranet servers) leads to a rather paradoxical situation in terms of
security architecture: The hosts which are the gateways to the outside world (or
internal users) are frequently required to perform cryptographic tasks, simply
because they often use encryption to communicate at a low level, and as such,
are the most vulnerable to various attacks (or even to exposure by simple im-
plementation flaws). Given a cryptographic application or service, what is often
neglected is its embedding environment and the implementation. It is argued
that given that general software and the operating system running the software
may be susceptible to viruses, Trojan horses, and other related attacks, there is a
substantial risk of attackers momentarily gaining control of networked computers
and the information stored by these. Therefore, secret keys should not be kept
or used in this environment whenever possible. On the other hand, smart cards
and other computational platforms with reduced risks of attacks often have a
very limited computational ability and low storage capabilities. Consequently, it
is desirable to divide the computation between an untrusted but powerful device
(which we will call the slave) and a trusted but weak device (the master).

This problem, which in its encryption incarnation is known as remotely keyed
encryption schemes (RKES) was proposed in [Bla96] with no model or proof and
with certain subtle problems. Several solutions have already been suggested to
solve this problem [Bla96, Luc97, BFN9S]. If we momentarily disregard the secu-
rity issues, the common aspect of these three schemes is that they ask a smartcard
to generate a “temporary” key, which depends on the message, and which is used
to encrypt the largest part of the message. This generates a “binding” between
the message and the device via the encryption. They later ask to hide this key.
A formal model and secure solution for this (based on pseudorandom functions)
was given in [BFNO98]; their solution requires two accesses to the smartcard per
operation.

While our system provides the same functionality, the use of the “scramble
all, encrypt small” notion is different: in our scheme, the host does not perform
any encryption. It simply scrambles the message in a publicly available (and in-
vertible) way (after adding randomness and integrity check), and then deprives
an adversary of the ability to invert the scrambling by letting the smartcard
encrypt just a small part of the scrambled message. Also, in our scheme, there
is a single access to the trusted smart card which performs a single decryp-
tion/encryption operation before replying. This is implied by the fact that the
host does not use a temporary key for encryption and does not encrypt at all,
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but rather the host employs scrambling of high quality. In some sense the ear-
lier constructions can be viewed as an unbalanced Feistel (Luby-Rackoff type)
encryption. Namely, pseudorandom permutation based on pseudorandom func-
tions, where the pseudorandom functions are on the smart card. This seems to
require two applications of the pseudorandom function. This implies (only intu-
itively) the need for two calls to the card. Thus, to get the result with “a single
call” to the smart card we rely on the ideal (random oracle) hash model. It is an
open question whether this stronger assumption model is necessary for achieving
the “single call” result.

Since the host does not use encryption, the method gives a way to encrypt
arbitrarily long messages (with strong notion of security), while encrypting only
one block (of size, say 128/ 256 bits). We also allow the host to add randomness to
the encryption (this can be viewed as an added random IV) so we can formalize
our mechanism and security w.r.t. an overall randomized encryptions (which
eases the difficulty of pseudorandom ones as in the earlier works). The host also
adds an integrity check to prevent message modifications and other attacks.

We validate our design by giving a proof of security assuming the scram-
bling is an ideal hash and the small encryption is an ideal block cipher (random
permutation).

From an engineering perspective, the Bear and Lion designs [AB96] have
taught how to encrypt an arbitrary long block given fast stream ciphers. This
is suitable for applications with large messages. While we have the same ap-
plications in mind, we teach how to minimize the encryption mechanism to a
small block of size 128 bits, say. This minimization may be due to configuration
and performance constraints. Thus, our design where only small portions are
encrypted (rather than the entire large block which here is only scrambled with-
out a key) may be called “Cub” as opposed to “Bear” and “Lion”. Note that we
do not claim that there is a universal performance advantage of Cub over the
earlier designs which applies to all working environments. On the contrary, we
understand very well that stream cipher encryption may be fast comparing to
a good scrambling mechanisms. What is more interesting is the minimization of
encryption itself and the confinement of the entire cryptographic operation.

Finally, we remark that since the design deals with the constraints of having
a slow encryption whose use is minimized, it may fit well when the encryption
employed is obviously much slower than available good scrambling techniques
based on cryptographic hash functions. If the available encryption is based on
public-key, the relative performance resembles the gap of “remotely keyed en-
cryption”.

Remark on presentation: While we present a general two-process method,
its implementation as a “remotely keyed” mechanism is the prime example and
will serve as the working example (since it is concrete and it further adds envi-
ronmental constraints).

Outline: Section 2 discuss previous work on the subject. Section 3 introduces
our model, and section 4 presents the basic tools we will use. Section 5 explains
our new solution. Validation of the design via a security proof is given in section 6
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and experimental results are outlined in section 7. Finally section 8 presents open
problems and concludes the work.

2 Related work

There are many issues in block cipher design (for extensive review see the appro-
priate sections in [Sch96, MOV97]). Feistel introduced the fundamental notion
of rounds where a one-way function of half the “current message” is exor-ed into
the other half. Provable constructions based on one-way functions that act glob-
ally on half the block (analogous to “large s-boxes”) were first investigated by
Luby and Rackoff [LR88]; their functions were based, in fact, on pseudorandom
functions. Many other investigations followed which included simplifications of
the analysis and the proof of security and variations/ simplifications of the round
functions (see [Mau92, Luc96, NR97]).

In particular, employing stream-ciphers for fast block message encryption
in the style of Luby Rackoff was presented in [AB96]. Their design like the
one in this work is suitable for block cipher operations for large blocks, which
may be typical in software oriented mechanisms. Adding public scrambling via
hashing prior to encryption was considered in the past. A prime example is the
scrambling using ideal hash and pseudorandom generator in [BR94]. Another
example is in a work (coauthored by the third author) [IBM-pa.]. However, none
of these works put forth the notion of global scrambling combined with local
(small block) encryption as a possible provable design. Related work which we
have learned about recently, is in [MPR97, MPRZ98]. They do suggest a design
where scrambling via hashing is done prior to partial encryption as in our case,
but they do not give a security validation proof. They suggested their design to
standardization committees, and our validation proof may support their effort.
Their work does not have the context or the consideration for remotely keyed en-
cryption; rather they suggest it in the context of public-key encryption. The goal
of the current work is to suggest minimized encryption which is validated and
can be used systematically whenever needed, possible or useful. We character-
ize scenarios (alternatives) in working environments where we get performance
advantage.

Blaze’s remotely key encryption protocol [Bla96] was based on the idea of
letting the host send the card one block which depends on the whole message.
This block would be encrypted with the smart card secret key, and would also
serve as a “seed” for the creation of a “temporary” secret key, that will be used by
the host in order to encrypt the rest of the message. However, as Lucks [Luc97]
pointed out, Blaze’s scheme had problems in that in allowed an adversary to
forge a new valid plaintext/ciphertext pair after several interactions with the
card. Lucks suggested an alternative model and protocol, which in turn, was
attacked by Blaze, Feigenbaum and Naor [BFN98] who further demonstrated
the subtleties of this problem. They showed that the encryption key used for
the largest part of the message is deterministically derived from the two first
blocks of the message, hence an adversary who takes control of the host will
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be able to decrypt a large set of messages with only one query. They derived
a careful formal model and a scheme based on pseudorandom functions. Very
recently, Lucks [Luc99] further extended their security model and suggested a
faster scheme. In contrast, we will allow randomized encryption and we will rely
on ideal (random oracle) hash functions.

Our work makes sure that missing a small piece of the scrambled data (via
encryption) while keeping the rest available makes it hard to recover the mes-
sage. This bears some relationship to Rivest’s notion of All-Or-Nothing encryp-
tion [Riv97]. Informally, given a symmetric cipher, a mode of encryption is de-
fined to be strongly non-separable when it encrypts s blocks of plaintext into
t blocks of ciphertext (¢ > s) which are such that an attacker cannot get any
information on the plaintext without decrypting all the ciphertext blocks. In
order to obtain strongly non-separable encryption, Rivest suggests to perform
an “all-or-nothing” transform on the plaintext, followed by a regular encryption
of the result. There is an obvious parallel between our scrambling step and the
all-or-nothing transform. As a matter of fact, our scrambling step possesses a
slightly more general property than the strong non-separability. It has the prop-
erty that no information can be gained on the pre-image of a scrambling as soon
as any k-bits are missing (in the design we fix which k bits to hide). The two
preprocessing steps are interchangeable: Rivest’s all-or-nothing transform could
be followed by a single encryption, and our scrambling yields an all-or-nothing
encryption mode. However, the motivations of the two notions are very differ-
ent. Our goal is to design a scheme which minimizes encryption with a given
key, while Rivest’s goal is to make brute-force decryption more difficult to an
adversary. As a final note, we should point out that our techniques is much
more efficient than the one proposed in [Riv97], notably because we do not use
encryption during the preprocessing step.

3 Model and Definitions

We will present a two-stage model: scrambling and encryption. As noted above,
the presentation follows the remotely keyed encryption model.

3.1 Model

Our scheme involves two connected devices: a computationally potent device, let
us call this device the slave device, and a computationally weak device, which
we denote the master device.

We assume a limited and low bandwidth communication channel between
the master and the slave. We trust the master device to follow the protocols and
to be tamper resistant. We only trust the slave device to be able to perform the
operations it is asked to. On the other hand, we do not trust it for being intrusion
resistant: we assume that an adversary may take full control of it for some time
period. During this preliminary period the adversary may in particular obtain
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any information that the slave has and also interact with the master in any way
he likes.

We would like to construct schemes that allow the slave device to perform
encryption (and decryption) on large messages at high speed, with the help of
private information owned by the master device. In the full generality, we may
consider that the master can own keys corresponding to any kind of encryption
(symmetric, public-key, probabilistic or non-probabilistic), and that the encryp-
tion obtained at the end of the protocol can be of any of the previous types.
However, for public-key we may employ the master only for decryption, and
with symmetric encryption the type of queries and attacks is larger (since “en-
cryption queries” are meaningful). We consider as our example model of choice
a master which employs an ideal cipher (e.g., a (pseudo)-random permutation),
and a slave which performs sampling of a randomized IV, and scrambling via a
public ideal (random oracle) hash.

The requirements on the schemes are as follow:

Balanced computation. The slave should perform the largest possible part
of the computation, the master should perform the lowest. Their respective
parts of the computation can be proportional to their computing rate (thus
we balance the time spent by each component). Other choices of resource
balancing are possible— e.g., limit the slow component to a “constant usage”
and vary the fast component as a function of the message size.

Low communications. The number of interactions between the slave and the
master should be low, and each of these interactions should need only a small
amount of communication. Ideally, there should be only one interaction per
protocol.

Security. Intuitively and informally, we require that after having taken control
of the slave and making a number of queries (bounded by some polynomial)
to the master, and then losing the control of the slave, an adversary will not
have any advantage in distinguishing subsequent plaintext/ciphertext pairs
from random pairs. Variations on the security requirements are possible: e.g.,
the adversary may choose the plaintext for which a distinguishing challenge is
required. Other challenges than distinguishability are possible as well. Here,
we will consider two attacks. (Though the above talks about “polynomial
time” and “advantages” in general terms, we will actually compute actual
probabilities of successful attacks).

Of course, the interaction and the encryption blocks are still large enough in
the size of the security parameter. Namely, the security of the protocol is assured
sub-exponentially in the size of that block (e.g., 128 or 256 bit size).

3.2 Definitions

Configuration A probabilistic remotely key encryption scheme (PRKES), con-
sists of two protocols, one for encryption, the other for decryption, both executed
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on two communicating devices. These devices are (1) a probabilistic machine
(machine with a truly random generator) called a “master” and (2) a machine
called a “slave”. (The slave can also be probabilistic in some designs. In fact,
herein we model the slave as an ideal cipher, namely a random permutation).
Given an input to the slave, it interacts with the master and produces an output.
The input includes an indicator for performing either encryption or decryption,
possibly a size parameter, and the argument (resp. cleartext or ciphertext).

Background for attacks Let us review attacks on the protocol.

The polynomial-time attacker A (we will use concrete assumptions regarding
the “polynomial-time power”) has a challenge phase, and one or more probing
(tampering) phases. Typically the probing enables the adversary to activate the
device up to some bound (some polynomial in the key length). The probing is
a preliminary step prior to the challenge (or a prior step followed by additional
probing with certain restriction after the challenge has been issued).

In the challenge phase, a certain goal is required from A:

Distinguishability challenge: A is presented with a challenge pair ¢1, co, which
is either a plaintext/ciphertext pair or a random pair from the same distri-
bution. (Below we specify one such distribution).

Valid pair creation challenge: Another possible type of challenge, yielding
another attack, is to ask A to exhibit one plaintext/ciphertext pair more
than the number of probes he performed.

The probing phase. As noted above it can come before the challenge but also
some limited part of it can be allowed to occur after the challenge.
We consider two probing phases regarding PRKES:

System probing: The attacker gets input-output access to the slave but not
to its memory. Namely, he uses the slave as an oracle.

Master probing: The attacker gets full access to the memory of the slave. He
can use the slave to interact with the master (input-output access) on queries
of its own using the master as an oracle.

Attacks and security against them Let us next describe the entire attack.
We consider two types of attack, which differs only by the challenge phase,
described below.

An adaptive chosen-message chosen-ciphertext attack with distinguishability
challenge includes:

— first phase: A performs “master probing”. We assume that it performs up to
p1 pre-challenge probes. We also assume that the slave is reset (to a random
state) after the intrusion, that is before the second phase. (This insures that
no state information on the slave is known after the probing).
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— second phase (distinguishability challenge): A presents a plaintext (or plain-
texts) pl and gets a challenge pair (plaintext, value) whose plaintext part
is pl and the value part is either a ciphertext of the plaintext or a random
value, each case chosen with probability 1/2.

— third phase: A performs “system probing” where he can ask any oracle query
(including further encryptions of the challenge plaintext) BUT is not allowed
to perform a decryption query on the ciphertext of the challenge pair. We
allow up to ps such post-challenge probes.

Security: We say that a PRKES is secure against a distinguishability attack if
for a plaintext of its choice, A cannot distinguish a valid {plaintext/ciphertext}
pair from a {plaintext/random-text} pair with probability asymptotically better
than 1/2 (for the same chosen plaintext).

An adaptive chosen-message chosen-ciphertext attack with valid pair creation
challenge includes:

— first phase: A performs “master probing”. We assume that it performs up to
p1 pre-challenge probes. We also assume that the slave is reset (to a random
state) after the intrusion, that is before the second phase. (This insures that
no state information on the slave is known after the probing).

— second phase (valid pair creation challenge): A is challenged to exhibit p; 41
valid plaintext/ciphertext pairs.

Security: We say that a PRKES is secure against a valid pair creation attack if
A is able to answer the challenge only with an asymptotically small probability
(to be computed concretely).

Remark: It should be noted here that our definition is different from the
basic definition in [BFN98]. Here the definition follows the one in (adaptive)
chosen ciphertext security (See [NY90, RS92, DDN91, BDPR9S]). This is due to
a difference in the model. In [BFN98], length preserving encryption was consid-
ered. As a consequence, their encryption model was deterministic, and thus, their
definition required the introduction of an arbiter to filter the choice of A in the
second phase (whereas in our case, internal randomization may allow oracle style
probing on the challenge). In a recent extended version of their paper [BFN99],
a formal model and treatment of length increasing functions was given as well;
it formalized an indistinguishability attack. Our indistinguishability attack is of
a similar nature.

4 Basic Tools

Ideal hash function We assume the existence of an ideal hash function (a
function whose behavior is indistinguishable from a random oracle, see [BR93]).
In numerous practical constructions, the validation or indication of the security
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of the design was based on such an assumption; we use the assumption in the
same manner here. In practice, the ideal hash function may be replaced by a
strong hash (such as one based on SHA-1). Then from this hash function, we
show how to construct, in a very simple manner, an ideal length-preserving one-
way function H which — apart from the fact that its output has the same length
as its input — has the same properties as an ideal hash function.

Let h be an ideal hash function and [ be the size of the hash produced by
this function. Let = be a message of size n. We assume, for ease of explanation,
that [ divides n.

We define H; as H;(x) = h(t||i||h(z)) (where || denotes the concatenation
and t is a tag designated specifically for this usage of the hash function, and
which can include a specific number and the length of z).

Then, we can define H(x) as being the concatenation of the H;(z) so that
the size of H(x) matches the size of x:

H(x) = Ho|[Hx|| ... [|Hnja-1)

If [ does not divide n, we simply concatenate with the first bits of an extra
Hi{(n/(-1)), as to ensure that the sizes match.

It is easy to argue that since each sub-block of H depends on the whole
message, that if h is ideal in the random oracle model, H is ideal as well. (In short,
this is so since any weakness (say, a bias from randomness or predictability) with
H can translate to a weakness on one of the blocks and thus to a weakness with
h). We comment that if (unlike the construction above) each block of H is not
global (sensitive to all bits) there may be problems. These problems arise either
from the definition of ideal hash function and also certain concrete problems as
pointed out at in [And95].

While the above construction allows us to build a pseudo-random stream
of the same size of the message without relying on other assumptions than
ideal-ness of the hash function, we can, for efficiency reasons, replace the above
quadratic construction by faster ones. A single regular hashing of the message
can be used as a seed for a pseudo-random number generator, which can be,
for instance, the PRNG suggested in [AB96]. We can also employ the Panama
cipher [DC98] (which combines hashing and stream cipher).

Encryption function We now discuss the properties that we require for the
encryption function used by the master (smartcard). We require the encryption
to be at least pseudorandom (a pseudorandom permutation or function). This
assures “strong security” in the sense that no partial information is revealed
about the input given the output (and vice versa). It protects as in semantic
security except for the “block repeat problem” where the encryption of the same
block is deterministic. If we add a random IV we get rid of this “issue” as well.

Denote by k;, the input size of the cipher, and by k. its output size. For
symmetric ciphers, without IV we have k;;, = koy¢- Indeed this may be a pseu-
dorandom function (such as encrypting a block in an EBC or CBC mode; or we
may allow adding IV increasing the input size). k;,, = k is our security parameter
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(namely we will achieve security while allowing polynomial probes in its size)
and we assume that the encryption above is invertible with probability 1/ (2(’“6))
for some constant ¢ (to an adversary which gets to see a concrete given bound
of cleartext ciphertext pairs). When validating our design we will assume the
encryption to be an ideal cipher, namely a random permutation (so that the
probability of inverting above can be easily related to the number of cleartext
ciphertext pairs available to a concrete attacker).

5 The Scheme

Let n be an integer, which represents the size of a message to be encrypted, and
let M € {0,1}™ be this message. Also let k be a security parameter. We will
denote by x the secret key held by the card, and by E(-) and D(-) the encryption
and decryption functions used by the card. Finally, we will denote by H a length
preserving hash function, as defined in the previous section.

We first present the encryption scheme:

Encryption

(v [ M |

e | [e [

| c |

Fig. 1. The Encryption Algorithm

The encryption protocol is sketched in figure 1 and precisely goes as follows:
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Slave computation Let M be the plaintext to be encrypted. The slave first
chooses an uniformly chosen random number U of size polynomial in the
security parameter (say k;, bits without loss of generality) and pads M on
the left with R = U||h(M,U).

Then, if the resulting string is of odd size, an additional padding of one
random bit is performed (this can be dealt with by the definition of the hash
function h). Remark: we assume the length of the input is known and fixed,
otherwise a byte with the actual length of the randomness can be appended
as well; this also enables dealing with encryption of small messages.

Then, the resulting string (M) is split in two equal size parts, M, M (M =
(M,||Mp)), and the slave computes:

Cy =M, ® H(M,)
Cy, =M, @H(Cb)

Master computation The slave extracts the k;, last bits of Cp (say S) and
asks the master to encrypt it. The master computes the encryption 7' of S
(T = E(S)) and sends it back. This ciphertext is k,y; bits long.

Final slave operation The slave finally erases the k;, last bits of Cj and re-
places them by T

Decryption

The decryption protocol is as follows:

Master computation Let C be the ciphertext to be decrypted. C' is split into
two equal parts (assuming the master’s encryption is non-expanding), Cy, Cj
(Y = (C,||Ch)). The slave extracts the ko last bits of Cy (say T') and asks
the master to decrypt this string. The master computes a decryption S of T’
(S = D(T)) and sends it back.

Slave computation The host replaces the ko last bits of Cp, by S to obtain
Cy (kin = kout, if not we simply adapt the lengths and the halving of the
intermediate ciphertext). The slave computes:

M, =C,® H(C)
My, = Cy, ® H(M,)

The slave finally recovers the initial random IV at the beginning of M, and
recovers M from the two parts. He checks whether the random IV part is
correct (that is if the random IV is of the form U||h(M,U)), and if so returns
the message M, else it outputs “error”.
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6 Security

We will next sketch the proof showing that our scheme is secure against an
adaptive chosen-message chosen-ciphertext attack. This will validate the design
as secure as long as the scrambling function is ideal (i.e., polynomially indis-
tinguishable from a random oracle or intuitively not easily distinguishable from
a large random table) and the master’s encryption is not easily distinguishable
from an ideal encryption. (Based on the ideal hash and encryption we can cal-
culate the attack success by calculating probability of certain detection event
performed by the attacker, such as the detection of a valid ciphertext in the
challenge).

We will analyze both attacks (challenges): valid pair creation and indistin-
guishability.

Let us first analyze the master probing phase (which is performed in both
attacks). The attacker has taken control over the slave and can query the mas-
ter without any filtering, both for encryption and decryption. Hence, at the
end of the master probing phase, he has potentially gathered a list of p; plain-
text/ciphertext pairs for the master’s inner encryption.

6.1 Against the valid pair creation attack

Informally, the core of the proof is to show that it will be possible to get in-
formation on only one valid plaintext/ciphertext pair for the global encryption
out of a valid plaintext/ciphertext pair for the master encryption, (except with
negligible probability).

With this type of challenge, there is no additional slave probing phase, as we
can assume that everything potentially done during the slave probing phase can
be done during the master probing phase.

Assume that the attacker A, after performing p; queries to the master, is
able to produce p; 4 1 valid plaintext/ciphertext pairs for the whole encryption.

Call S the part to be given as input to the master (that is, with the notations
of section 5, the k;;, last bits of H(R||M7)@® Ms). Then, we have two cases: either
for all p; + 1 pairs, S is different, or it is the same for at least two of them.

In the first case, A can be straightforwardly adapted to build an attacker
which breaks the master encryption, as it exhibits p;+1 valid encryption/decryption
pairs for the master after only p; queries. We assumed the master’s encryption
can only be inverted with probability 2~ %9 for some small constant ¢, hence in
the first case, the attacker can fulfill the challenge only with probability 2~ %9
(in the ideal cipher case this probability is easily derived from the number of
encryption probes).

In the second case, if two master’s inputs are the same, it means that A
was able to find two distinct pairs (U, M), (U, M’) such that the two values
H(U||h(M,U)||My) & My and H(U'||h(M',U")||M]) & M} match on their k;y
last bits.
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Let us analyze the probability that such a collision occurs. The above can be
rewritten:

H(U[IA(M,U)||My) & H(U'||n(M', U")[| M) = Mz & M,

In order to be able to find such a relation, the hash function H has to be
evaluated on its inputs (because of the random oracle model). This means that
M5 and M} have to be fixed prior to the evaluation of the left part. So, My and
M being fixed, A was in fact able to find two couples (U, M;) and (U’, M7)
such that H(U||h(M,U)||M1) @ H(U'||h(M',U")||M{) match on their k;, last
bits with a given constant.

Now, we consider two sub-cases, whether h(M,U) and h(M’',U’) are equal
or not. If they are not equal, the attack performed in simply a birthday attack
on a part of the hash function H, whose probability of success (based on the

assumption on H) is 9= "5 1f they are equal (which can only happen if M and
M match on their k;,, last bits), then .4 was able to find a collision on the hash
function, (which occurs only with probability 2~*=7 for some constant v given
the access limitation of the adversary).

Finally, (under concrete limited access of the adversary to the hash, and
encryption boxes, formalized as bound on the success probability), will be able
to answer the challenge with probability bounded by:

9—kind + 9—kin/2 + 9—kiny

This is a negligible and controllable concrete probability of successful attack.

6.2 Against the distinguishability attack

Note that, for the distinguishability attack, the attacker can always guess the
challenge and due to the challenge being random it has probability 1/2 of being
correct. The only other way for the attacker is to probe and perform encryptions
and decryptions and match them against the challenge.

In this type of attack, A first performs p; master probes. Then, in the second
phase, the attacker has lost control of the slave. He is presented a challenge pair
(of which he can choose the plaintext which we call the target plaintext.) His goal
is to guess with probability substantially larger than 1/2 whether the challenge
pair represents a valid encryption pair (i.e. whether the ciphertext is a correct
encryption of the plaintext).

We first consider the security without the third slave probing phase. We will
show afterwards that this phase does not help the attacker.

Again, we have two cases: either the k,,; last bits of the ciphertext match a
ciphertext from the master ciphertext list or not. In the first case (which happen
with probability p;2~%eut), A will be able to decrypt and to answer the challenge.

In the second case, in order to be able to answer correctly to the challenge,
he as to be able to find out whether the following relations hold:
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Cy® My, = H(M,)
Co®M, = H(Cb)

However, he has no information about the k;, last bits of Cp (but with
probability 27%in9 if he successfully inverts the master’s encryption), and he
has no information on the k;, first bits of M, (because the slave was reset after
the intrusion, and thus he cannot predict the value or the random number chosen
by the slave).

So, in order to be able to check with some advantage if the above relations
hold, the attacker has to guess the value of H on M, (to validate the first eq.
based on partial availability of Cj) or the value of H on Cj, (to validate via the
second eq.). This can be done with probability 2% for each (since only if the
right string is guessed it is validated via the random oracle hash).

Hence, with only the initial master probing phase, the probability that A can
correctly answer the challenge is 1/2 + 27Fin® 4 p; 27 Four 4 9=kintl,

Now, let us analyze what the attacker can do after the last slave probing
phase.

Recall, that A is allowed to perform ps slave probes. He is allowed to query the
encryption of any message, and the decryption of any message but the ciphertext
challenge.

Of course, we assume that the ciphertext challenge has not already been
decrypted, that is the k,,; last bits of the challenge do not appear in any of the
p1 pairs previously obtained.

If he queries for encryption on a different plaintext than the challenge plain-
text, he will not get any information (at best, he will obtain a ciphertext which
he can decrypt (with the help of the p; pairs previously obtained), and will be
able to retrieve the random IV of the slave).

If he queries for encryption on the target plaintext, then he will obtain infor-
mation on the challenge only if he actually obtains the target ciphertext (which
happens if the random IV (which is totally under the control of the slave now)
is the same as in the challenge, which happens with probability 2=%i.

If he queries for decryption, the best he can try is to query for a decryption
of a ciphertext which matches the challenge on its k,,; last bits. In this case, he
will be able to find the decryption of the master’s encryption on these bits if he
can guess the random IV of the slave, that is, again, with probability 27,

Finally, the probability that he can answer the challenge is:

1/2 + Q—km5 _|_p12_kout + Q—km-‘rl _|_p22—km

This is, again, a controllable probability (due to the actual limitations of the
adversary) that can be made as close to 1/2 as we want as we allow probing, by
proper choice of Ky, kout-
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7 Experimental results

We now briefly comments on the efficiency of our scheme within the suggested
context of hardware assisted encryption. We implemented it on a personal com-
puter (a PentiumPro(tm) 200). We chose our security parameters (ki and koyt)
to be 128 bits long. Times for the scrambling part are summarized in the table
below.

length (bits)|1024|2048|4096]8192|16384[32768 65536
time (ms) | 0.6] 1.0| 1.8 3.6] 7.1 142 283

These speeds are not at first very impressive, but they have to be compared
to a case where the master device (typically a smartcard) performs all the com-
putation alone. Taking the DES as an example, implementations on smartcards
theoretically range from 5 ms to 20 ms per block, but are often in the vicinity of
40 ms in order to prevent differential fault analysis [Nac]. Taking 40 ms for two
DES blocks as an optimistic average value, we summarize the encryption speed
of a smartcard based DES for messages of the same size as above.

length (bits)|1024]2048]4096|8192|65536 |
time (ms) | 320 640[1280[2560[20480]

Assuming that the encryption is pipelined, and choosing to encrypt 98304 =
3.216 bits blocks (which makes the master and the slave computation workload
about equal), we can encrypt with our scheme at a rate of about 2460 kbits/s,
which has to be compared to the 3.2 kbits/s rate of the smartcard alone. We
comment that in the context of public-key encryption, assuming that a smartcard
can perform an 1024 bit RSA encryption in about one second, our design allows
the encryption in one second of a 300 kilobyte message with the smart card’s
public-key.

8 Conclusion

We have presented the notion of “scramble all, encrypt small.” We showed how it
fits within the “remotely keyed encryption.” The principle demonstrated by the
notion can be employed elsewhere as a sub-structure, for example if the scram-
bling is not “ideal” we may iterate the basic overall encryption many times
(adding randomness only at the first iteration, or avoiding adding randomness).
Also, we may first perform more “Feistel scrambling” rounds. These types of vari-
ations and extensions and their impact on security (and its proof) under differ-
ent assumptions about the scrambling component are interesting open questions.
Variations on attacks, challenges and notions of security are also of interest.
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