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Abstract. The RoboCup simulator competition is one of the most challenging
international proving grounds for contemporary Al research. Exactly because of
the high level of complexity and a lack of reliable strategic guidelines, the per-
vasive attitude has been that the problem can most successfully be attacked by
human expertise, possibly assisted by some level of machine learning. This led,
in RoboCup'97, to a field of simulator teams all of whose level and style of play
were heavily influenced by the human designers of those teams. In contrast, our
1998 team was “designed” entirely by the process of genetic programming. Our
evolved team placed in the middle of the pack at Robocup98, despite the fact
that it was largely machine learned rather than hand coded. This paper presents
our motivation, our approach, and the specific construction of our team that cre-
ated itself from scratch.

1 Introduction

Imagine a group of human programmers attempting to create a team for RoboCup-98.
Not only do they have to think on the level of strategies, but also on the level of com-
plex behaviors to achieve simple tasks. They have to learn the details of the simulator,
not just as it ought to work, but as it actually works when these two are not the same.
These human programmers have to try to not only impart their own soccer experiences
to these procedures, but also to imagine ways in which the simulator differs from the
real world and so too should the individual player and team strategies. On top of all
this, the human programmers of such a RoboCup-98 team must design all this under
the changing conditions of new rules, new simulator characteristics, and all of the
noise and sensory limitations built into the fundamental model of the simulated world.

If a technique existed that allowed all of these issues to be solved automatically,
such a technique would have certain advantages in the competition. In addition, such a
technique would also be of immediate interest outside the soccer simulator domain, a
claim that is more difficult to make for hand-coded solutions to the soccer simulator
domain. It has been repeatedly been asserted that this problem is just too difficult for
such a technique to exist. “Because of the complexity of the [soccer server] domain, it
is futile to try to learn intelligent behaviors straight from the primitives provided by
the server [Stone and Veloso., 1998].

M. Asada and H. Kitano (Eds.): RoboCup-98, LNAI 1604, pp. 346-351, 1999.
[J Springer-Verlag Berlin Heidelberg 1999
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The motivation for team Darwin United was to demonstrate that this claim is not
true and that, in particular, genetic programming can be used successfully as a tech-
nique for training a team using the basic percepts and actions of the simulator. Luke's
impressive results (1997a) at RoboCup-97 showed that genetic programming could
tackle the task of generating competitive strategies, given a suite of hand-coded com-
plex, low-level behaviors. Obviously, it is desirable that a technique for program in-
duction work on multiple levels when applied to difficult problems. Thus, our goal has
been to evolve a team to compete in the simulator league at RoboCup-98 that attacks
the problem "from the ground up." This paper discusses our research, the techniques
that we are using to achieve the stated goals, and our results at Robocup98.

It seemed highly unlikely that we would get superlative behavior on a known-to-be
difficult problem without some modification to the standard genetic programming
(GP) paradigm. We replaced the standard suite of hand-coded behaviors with a com-
plex fitness function that provides reward for good play even when no goals are
scored. As Koza, Andre, Bennett, and Keane have noted in their research on evolving
analog circuits [Koza et al., 1997], it is significantly easier to write specifications for
complex behavior than to write the programs to achieve the behavior. As part of the
specifications, we introduced a graduated fitness function that tests each individual for
increasing levels of skill, described in more detail in section 2. Additionally, although
we would like GP to solve the entire problem of team soccer play, it turns out that GP
is remarkably slow to learn generalizable routines to reliably run to and kick the ball
when given only the most basic of primitives. Thus, we give each of the teams in the
initial generation a set of automatically defined functions (ADFs) [Koza, 1994] that
encode some simple functionality such as running to and kicking the ball. These sub-
routines are very simple and highly non-optimal. At first, these subroutines seem to
violate the basic premise of our work, that we want Darwin United to learn to play
soccer in the simulator in a style all its own. Two factors when taken together, show
that this is still the case. The first is that a total of perhaps 2 hours of human time was
spent creating these ADFs. More importantly, these ADFs are subject to evolution as
are each of the players. The hand-created solutions are simply seeds from which the
learning process begins.

2 The Coach: Specifications vs. Programming

To avoid the problem of attempting to learn only from games won or points scored,
we wrote a list of specifications that describe the desired behavior.

There are two ways in which the specifications are ordered. First, we specify that
each team is to play in a graduated series of games, where if the team's performance in
any game is too poor, it does not proceed to later games and gets a maximal value of
fitness for those games that it does not play (in GP, lower fitness is better). This tech-
nique limits the amount of time spent evaluating poor teams and is reminiscent of
many previous techniques for focusing computation on individuals with reasonable
chances of success (e.g., [Teller and Andre, 1997]). Second, within each game, there
is a ordered list of scores where each score is a kind of success in the game, and each
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successive element in the list is more important than all the previous elements com-

bined. Scoring more than the opponent is the last, and therefore most important ele-

ment of the list. The lexical ordering is achieved by scaling each element to a single
place value in a decimal score. In other words, the smallest score is scaled to be less

than a thousandth, the next is scaled to be less than a hundredth, and so on. It is im-

portant to repeat that lower fitness is better.

Below are the elements of the scoring list from least important to most important.

[ Getting Near the Ball. Each player gets a value of 1.0 to begin with (given that its
initial distance from the ball is X) and can reduce this value only by moving at least
once and seeing the ball at distance X' (X' < X). Scale: 1/1000

[1 Kicking the Ball. This score factor ranges from 0.0 to 1.0 and encourages kicking
the ball and penalizes not kicking it when it is kickable. Scale 1/100.

[1 Sides. Each player on a team gets a value that expresses the amount of time that
the ball was on their half. Scale 1/10.

[ Being "Alive'. Each player receives a penalty of 1.0 unless it turns at least once
and runs forward at least once during the game. Scale 0.1 to 1.0.

[1 Scoring a Goal. Each player on a team receives a negative bonus fitness point for
each goal scored. Scale I to 10.

[1 Winning The Game. Each player on a team receives 10 fitness points for a win,
30 points for a tie, and 40 points for a loss.

The following point can not be overstated. Because of this lexical dominance (each
successive element in the list being more important than all previous elements com-
bined), once a team gets the hang of scoring goals against an opponent, none of
these other factors has any appreciable effect on fitness. Since winning is the only
real metric for success, it should be (and is here) the final and dominant measure of
fitness. This technique allowed us to help Darwin United get up to speed in the do-
main, but then allowed it to create its own unbiased solution, and all this without a
human ever writing detailed code to teach Darwin United how to play.

Thus we can obtain a score for each game that a team plays in. If the team does
well enough in a given game, it can move on to play a more difficult game (or set of
games). A team's total fitness is an average over these separate game's measures. Each
team in the population follows the following schedule. First, the team is tested against
an empty field. It passes this test if it scores within 30 seconds, and fails otherwise.
Although this sounds easy, it requires a bit of evolution to obtain a team that reliably
dribbles and shoots the ball into the opposing goal, rather than shooting out of bounds,
towards one's own goal, etc. Second, the team plays against a hand-coded team of
"kicking posts" - players that simply stay in one spot, turn to face the ball, and kick it
towards the opposite side of the field whenever it is close enough. This promotes
teams that can either dribble or pass around obstacles. When a team scores against the
kicking posts, it then plays the winning team from the 1997 RoboCup championships,
the team from Humboldt University, Germany. Then, only if the team does well
enough against the German team (i.e., scores at least one goal), is the team allowed to
play three games in a tournament with other winning teams.
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3 Team Structure and Team Transformations

This section provides an overview of how each team is represented in the evolutionary
process and how teams are changed in the exploration phase of the machine learning
(search) process. Each team is composed of eleven distinct members. Each member is
represented by an evolved program written entirely using the primitives shown in
Table 1. Notice that all eleven team members in a team share the same set of 8 ADFs.
Each team, however, has its own set of evolving subroutines. In this way each team
can develop and share a certain style of play, but there is still diversity of these styles
across the population of teams. This structure is shown in Figure 1.

In evolution, the two dominant forms of search operators are crossover and muta-
tion. Crossover takes multiple (usually two) individuals, and exchanges "genetic mate-
rial" between them. Mutation typically selects some aspect of the evolving individual
to be changed and replaces that aspect with a new, randomly generated piece of "ge-
netic material." In this case, "genetic material" is the lisp-like code written using the
primitives shown in Table 1.

TEAM 1 TEAM 200
player 1 player 11 player 1 player 11
Q@O ... 1 O@WO
Y Y
GorD D

Fig. 1. The population and team structures

There are no looping constructs in the primitives list for the evolving programs,
because the evolved program for each team member is run every 100ms and returns
one of three primitives actions (turn, dash, kick). Notice also that two of the primitives
listed in Table 1 are READ and WRITE, which give the evolving programs access to
an indexed memory. This memory is not cleared between executions of the program,
which allows the evolving programs to learn to act in ways more complex than as
purely reactive agents. Now when a team is selected for "recombination” (a search
step), either crossover or mutation is selected. If crossover is selected then a second
team is also included with which genetic material can be exchanged. The details are
not appropriate for this paper, but the key insight is that most of the time, when ge-
netic material is exchanged between teams, genetic material from player 6 is ex-
changed with player 6 from the other team. This creates what is referred to (in both
biology and in evolutionary computation) as a set of "niches." Niches tend to foster
diversity of behavior, which is exactly what we desire of such a system. The goalie
and the center forward should not act in similar ways, so it is appropriate that those
two "types" of players rarely exchange piece of their code.



350 David Andre and Astro Teller

Notice though that because Darwin United is evolved from scratch, there are not
notions of "positions" (aside from the goalie). That is to say that if one player wants to
(evolves to) play on the left side of the field, it will do this independent of whether a
teammate is already in this space. It has been our experience however that positioning
is not something that tends to evolve in the way that humans enforce it. However,
whether this is a deficiency in how evolution makes soccer players or whether it is a
deficiency of how human's think about soccer is still an open question.

It would initially seem reasonable to do "All Star" teams, that is, taking the "best"
player from each "position” and making a team out of those individuals. First, this is
to imply that the best team is always composed of the best individuals. This is known
not to be the case among human soccer teams. Second, as has just been pointed out,
there is no enforced relation between player number and position, so there is some
danger that this process would selected "too many" forwards or "too many" defenders.
Furthermore, each of a team’s players share certain behaviors (or parts of behaviors)
through the common ADFs. This is a form of implicit communication through coordi-
nation of activity. There are a number of reasons to think that this will be useful in this
domain and has certainly been useful in related domains (e.g. the predator- prey do-
main). Additionally, the relation of team members through the ADFs makes it much
harder to separate them in a way that is likely to produce an all star team.

Table 1. The list of primitives for the evolving soccer players

Inputs: Player.{X,Y }.Pos, {DIST,DIR}.To.{BALL, GOAL},
Ball.{DIST,DIR }.Delta, T-{ DIST,DIR }(a), O-{ DIST,DIR } (a)

Constants: Real Valued Constants

Memory: READ(x), WRITE(x,y)

Calculations: | ADD, SUB, MULT, DIV, SIN, COS, IFLTE

Actions: KICK(a,b), TURN(a), DASH(a), GRAB (for goalie)

Team: ADF(1-8)

4 Program Primitives for Evolution

To minimize the design time (which is, after all, part of the point of automatic pro-
gramming) we use libsclient and give GP some of the inputs provided by libsclient.
Specifically, each player has access to both the X and Y components of its position
(XPOS and YPOS), its direction (DIR), the distance to the ball (BDIST), the angle to
the ball (BDIR), the change in distance to the ball from the last time step (BCHNG),
and the change in angle to the ball from the last time step (BDIRCHNG). Addition-
ally, the players have access to a function that can provide them information about the
distances and angles to each of the other players that can be seen. T-DIST(a) is a one
argument function that returns the distance to the player that is the 'a'th far away. If the
argument is larger than or equal to the number of teammates seen, then undefined is
returned. If the argument is below zero, the value of T-DIST(0) is returned. O-
DIST(a) is similarly defined for the opponents. T-DIR(a) and O-DIR(a) give the di-
rections to the visible players. For any value that cannot be determined (such as the
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ball direction if the ball is out of view), a value of -999 is returned. The function set
for the players consists of a variety of functions for computation, memory, and setting
the command to be executed. The programs can use the four argument IFLTE func-
tion (if x ! y then u else v) as a conditional. Random constants are also included. Each
player has access to its own array of indexed memory with 10 cells of memory. The
one argument READ function allows the player to access the memory, and the 2 ar-
gument WRITE function allows the player to set the values of the memory cells.

The player also has access to three functions to set the command that will be exe-
cuted on the next time step. KICK(a,b) sets the command to be a kick, with power a
and direction b. DASH(a) sets the command to be a running movement, with power a.
TURN(a) sets the command to be a turning movement with power a. The last of these
functions to be executed is set to be the actual command issued to the server. There
are also eight two argument functions ADF1 through ADF 8. For the ADFs, the termi-
nal set additionally consists of the 2 zero argument functions ARGO and ARG (i.e.,
"first parameter” and "second parameter"). All these primitives for the evolution of the
soccer playing programs are shown in Table 1.

5 Results

At Robocup98, only 17 other teams placed above Team Darwin. We had one win, one
loss, and one draw. The draw was particularly interesting. Against the team that won
our initial group, Team Darwin forced a draw by utilizing an offsides trap that had
evolved when playing against the 1997 champion team. This non-human style pro-
gram was able to force a draw against a much better team by not following the stan-
dard human-like strategies. Overall, we found our performance respectable given that
we focused on machine learning and not on robocup specific strategies.
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