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1 Introduction

The RoboCup research initiative has established synthetic and robotic soccer as
testbeds for pursuing research challenges in Arti�cial Intelligence and robotics.
This extended abstract focuses on teamwork and learning, two of the multi-
agent research challenges highlighted in RoboCup. To address the challenge of
teamwork, we discuss the use of a domain-independent explicit model of team-
work, and an explicit representation of team plans and goals. We also discuss
the application of agent learning in RoboCup.

The vehicle for our research investigations in RoboCup is ISIS (ISI Synthetic),
a team of synthetic soccer-players that successfully participated in the simula-
tion league of RoboCup'97, by winning the third place prize in that tournament.
In this position paper, we brie
y overview the ISIS agent architecture and our
investigations of the issues of teamwork and learning. The key novel issues for
our team in RoboCup'98 will be a further investigation of agent learning, and
further analysis of teamwork related issues.

2 The ISIS Architecture

An ISIS agent uses a two-tier architecture, consisting of a higher-level that makes
decisions and a lower-level that handles various time critical functions tied to
perception and action.

ISIS's lower-level, developed in C, communicates inputs received from the
RoboCup simulator (after su�cient pre-processing), to the higher level. The
lower-level also rapidly computes some recommended directions for turning and
kicking, to be sent to the higher-level. For instance, a group of C4.5 rules compute
a direction to intelligently shoot the ball into the opponents' goal (discussed
further in Section 4). The lower-level also computes a plan to intercept the ball
consisting of turn or dash actions.

The lower-level does not make any decisions with respect to its recommen-
dations however. Instead, all such decision-making rests with the higher level,
implemented in the Soar integrated AI architecture[11, 14]. Once the Soar-based
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higher-level reaches a decision, it communicates with the lower-level, which then
sends the relevant information to the simulator.

The Soar architecture involves dynamic execution of an operator (reactive
plan) hierarchy. An operator begins execution (i.e., the operator is activated),
when it is selected for execution, and it remains active until explicitly termi-
nated. Execution of higher-level abstract operators leads to subgoals, where new
operators are selected for execution, and thus a hierarchical expansion of opera-
tors ensues. Operators in Soar are thus similar to reactive plans in architectures
such as RAP[4].

3 Teamwork

There are two key aspects of ISIS's approach to teamwork. The �rst is the explicit
representation of team activities via the use of explicit representation of team
operators (reactive team plans). Team operators explicitly express a team's joint
activities, unlike the regular \individual operators" which express an agent's
own activities. Furthermore, while an individual operator applies to an agent's
private state (an agent's private beliefs), a team operator applies to an agent's
team state. A team state is the agent's (abstract) model of the team's mutual
beliefs about the world, e.g., the team's currently mutually believed strategy.
An ISIS agent can also maintain subteam states for subteam participation. Each
team member maintains its own copy of the team state, and any subteam states
for subteams it participates in. That is, there is no shared memory among the
team members.

The second key aspect of teamwork in ISIS is its novel approach to coordi-
nation and communication via the use of a general-purpose teamwork model. In
particular, to surmount uncertainties that arise in dynamic environments and
maintain coherence in teamwork, team members must be provided the capa-
bility of highly 
exible coordination and communication. To this end, general-
purpose explicit models of teamwork have recently been proposed as a promising
approach to enhance teamwork 
exibility[6, 19]. Essentially, teamwork models
provide agents with the capability of �rst principles reasoning about teamwork
to provide teamwork 
exibility. Such teamwork models also enable code reuse.

We investigate the use of STEAM[17, 18, 19], a state-of-the-art general-
purpose model of teamwork. STEAM models team members' responsibilities
and commitments in teamwork in a domain-independent fashion. As a result,
it enables team members to autonomously reason about coordination and com-
munication, improving teamwork 
exibility. Furthermore, due to its domain-
independence, STEAM has been demonstrated to be reusable across domains.
STEAM uses the formal joint intentions framework[3, 7] as its basic building
block, but it is also in
uenced by the SharedPlans theory[5], and includes key
enhancements to re
ect the constraints of real-world domains. For instance, the
Joint intentions theory requires that agents attain mutual belief in establishing
and terminating joint intentions, but does not specify how mutual belief should
be attained. STEAM uses decision-theoretic reasoning to select the appropriate
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method for attaining mutual belief. Thus, it does not rely exclusively on explicit
communication (e.g, "Say" in RoboCup simulation) for attaining mutual belief
in the team; instead, it may rely on plan-recognition.

A typical example of STEAM in operation is the DEFEND-GOAL team op-
erator executed by the defender subteam. In service of DEFEND-GOAL, players
in this subteam normally execute the SIMPLE-DEFENSE team operator to po-
sition themselves properly on the �eld and to try to be aware of the ball position.
Of course, each player can only see in its limited cone of vision, and particularly
while repositioning itself, can be unaware of the approaching ball. Here is where
teamwork can be bene�cial. In particular, if any one of these players sees the ball
as being close, it declares the SIMPLE-DEFENSE team operator to be irrele-
vant. Its teammates now focus on defending the goal in a coordinated manner via
the CAREFUL-DEFENSE team operator. Should any one player in the goalie
subteam see the ball move su�ciently far away, it again alerts its team mates
(that CAREFUL-DEFENSE is achieved). The subteam players once again ex-
ecute SIMPLE-DEFENSE to attempt to position themselves close to the goal.
In this way, agents coordinate their defense of the goal.

3.1 New Issues

Several issues have been brought forward due to our application of the team-
work model in RoboCup. First, RoboCup is a highly dynamic, real-time domain,
where reasoning from �rst principles of teamwork via the teamwork model can
sometimes be ine�cient. Therefore, to improve e�ciency, we plan to compile
the teamwork model, so that the typical cases of reasoning about teamwork
are speeded up. This can be achieved via machine learning methods such as
chunking[11] (a form of explanation-based learning)[10]. The teamwork model
itself will be retained however, since unusual cases may still arise, and require
the �rst principles teamwork reasoning o�ered by the teamwork model.

Second, the teamwork model may sometimes enforce a rigid coherence con-
straint on the team, always requiring mutual belief to be attained. However, it is
not always straightforward to attain such mutual belief. In RoboCup simulation,
the shouting range (i.e., the range of the "say" message) is limited. A player may
not necessarily be heard at the other end of the �eld. A tradeo� in the level of
coherence and team performance is therefore necessary. We plan to investigate
this tradeo�, and suggest corresponding modi�cations to teamwork models.

Finally, we are extending the capabilities of agents to deal with potential
inconsistencies in their beliefs. Currently in STEAM, if an agent discovers new
information relevant to the team goal, it will use decision-theoretic reasoning to
select a method for attaining mutual belief. In particular, it may inform other
agents by communicating the belief. However, the recipients of such communica-
tions accept the acquired belief without examination even if there are inconsis-
tencies between this belief and a recipient's existing \certain" beliefs. This can
be a problem.

For instance, in RoboCup if a defender sees the ball as being close and tells
other defenders, all the defenders will establish a joint intention to approach the
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ball; if at the same time the player is informed by another defender who stands
far away from the ball that the ball is far, an inconsistency occurs. The joint
goal will be terminated, and there will be recurring processes to form and end
the joint intentions, and the whole team will get stuck at this point.

To address this problem, we have taken an approach whereby agents model
the beliefs of other agents in order to detect inconsistencies and to decide whether
to negotiate. A key idea in our approach is that negotiation itself takes time,
which can be a signi�cant factor in RoboCup. Thus, it is often the case that an
agent should decide not to argue with its disagreeing teammates and, instead,
go along with the temporary inconsistency.

To detect an inconsistency, the agent receiving a message has �rst to compare
its own beliefs with the belief conveyed in the message sent. Since the conveyed
belief may not con
ict explicitly with the agent's existing beliefs, the agent uses
belief inference rules to �gure out the relevant beliefs of the message sender.
Further, since both senders and recipients may have beliefs which they are more
or less certain about, the detection of inconsistency takes into account whether
beliefs are \certain" (e.g., supported by direct sensory evidence as opposed to
plausible default beliefs).

To decide whether to negotiate over inconsistencies, an agent uses a decision-
theoretic method to select an approach to addressing the inconsistencies. Brie
y,
the agent always has three choices. First of all it can just keep its own belief and
work on it without any argument with its teammates. Second, it can choose to
accept without argument what the sender says. Finally, the third option is to
expend the e�ort both to detect a clash in beliefs and to negotiate a resolution. In
that case, the negotiation may lead to agreement with the sender's observation
or alternatively may persuade the sender to accept the recipient's belief.

Under di�erent circumstances, the cost and utility of a decision will vary a
lot. In the RoboCup case proposed above, the cost of the \negotiation" may
be substantial, not only because of the large amount of resources consumed,
but more importantly because of the time pressure in the soccer competition.
Furthermore, since the situation may change greatly (the ball may have rolled to
a far-away position) after the agents are set with their arguments, the possibility
and bene�t of the "right" decision will decrease signi�cantly. All these lead to
a rather low expected utility of negotiation. So in this speci�c case, the player
involved will either stick to its own belief or turn to other's observation directly,
rather than bothering to argue to resolve the disagreement.

4 Lower-level skills and Learning

Inspired by previous work on machine learning in RoboCup[15, 9], we focused
on techniques to improve individual players' skills to kick, pass, or intercept the
ball. Fortunately, the two layer ISIS architecture helps to simplify the problem
for skill learning. In particular, the lower-level in ISIS is designed to provide
several recommendations (such as various kicking directions) to the higher-level,
but it need not arrive at a speci�c decision (one speci�c kicking direction). Thus,
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an individual skill, such as a kicking direction to clear the ball, can be learned
independently of other possible actions.

Learning has currently been applied to (i) selection of an intelligent direction
to shoot a ball when attempting to score a goal and (ii) selection of a plan to
intercept an incoming ball.

Scoring goals is clearly a critical soccer skill. However, our initial hand-coded,
approaches to determining a good direction to kick the ball, based on heuristics
such as "shoot at the center of the goal", or "shoot to a corner of the goal",
failed drastically. In part, this was because heuristics were often foiled by the
fact that small variations in the con�guration of players around the opponent's
goal or a small variation in the shooter's position may have dramatic e�ects on
the right shooting direction.

To address these problems, we decided to rely on automated, o�ine learning
of the shooting rules. A human expert created a set of shooting situations, and
selected the optimal shooting direction for each such situation. The learning
system trained on these shooting scenarios. C4.5[12] was used as the learning
system, in part because it has the appropriate expressive power to express game
situations and can handle both missing attributes and a large number of training
cases.

In our representation, each C4.5 training case has 39 attributes, such as the
shooters angles to the other visible players. The system was trained on over
roughly 1400 training cases, labeled by our expert with one of UP, DOWN,
and CENTER (region of the goal) kicking directions. The result was that given
a game situation characterized by the 39 attributes, the decision tree selected
the best of the three shooting directions. The resulting decision tree provided a
70.8%-accurate set of shooting rules.

These learned rules for selecting a shooting direction were used successfully in
RoboCup'97. The higher-level typically selected this learned shooting direction
when players were reasonably close to the goal, and could see the goal.

In contrast to the o�ine learning of shooting direction, we have also begun
to explore online learning of intercept plans. In our initial implementation, ISIS
players used a simple hand-coded routine to determine the plan for intercepting
the ball. Our experience at RoboCup97 was that the resulting intercept plans
work �ne under some playing conditions, but fail under others. The result often
depends on such external factors as network conditions, frequency of perceptual
updates from the soccer server and the style of play of the opposing team. Unlike
real soccer players, our ISIS players' intercept skills were not adapting very well
to di�ering external factors.

To address this problem, we are exploring how players can adapt their in-
tercept online, under actual playing conditions. Of course, an adaptive intercept
has inherent risks. In the course of a game, there are not many opportunities
to intercept the ball, and worse, inappropriate adaptations can have dire conse-
quences. Therefore, it is important for adaptation to be done rapidly, reasonably
and smoothly.

To assess these risks and the overall feasibility of an adaptive intercept, we
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have started to explore simple adaptive approaches. In keeping with the risks, our
current approach uses hill-climbing search in the space of plans where evaluation
of success or failure is driven by an \oracle", ISIS's higher-level, decision-making
tier. In addition, we have adopted a conservative approach of using distinct
searches for distinct input conditions, so for instance balls that are moving to-
wards the player may be treated separately from balls moving away.

As a player uses the intercept assigned by some input condition, failure to
meet expectations will result in a new intercept plan for this input condition if
there has been a history of similar failures. ISIS's higher-level drives the evalua-
tion since it has the necessary context to model the failure. For instance, failure
due to a blocking player is treated di�erently from failure due to an improper
turn angle.

This work is preliminary and has not been fully evaluated. However, it has
been tested under �xed, ideal conditions (e.g., reliable perceptual updates). In
these tests, the method exhibits consistent and rapid convergence on simple turn
and dash plans that are at least as good as the manually derived plans used at
RoboCup97. In addition to more extensive evaluation under varying conditions,
we are now considering enhancements such as allowing the learning under one
input condition to in
uence similar input conditions.

5 Evaluation

There are several aspects to evaluation of ISIS. As mentioned earlier, ISIS
successfully participated in RoboCup'97, winning the third-place prize in the
simulation league tournament, in the 29 teams that participated. Overall at
RoboCup97, ISIS won six out of the seven games in which it competed, outscor-
ing its components 37 goals to 19.

Another key aspect of evaluation is measuring the contribution of the explicit
teamwork model (STEAM) to ISIS. STEAM's contribution is both in terms of
improved teamwork performance and reduced development time. To measure
the performance improvement due to STEAM, we experimented with two dif-
ferent settings of communication cost in STEAM. At \low" cost, ISIS agents
communicate a signi�cant number of messages. At \high" communication cost,
ISIS agents communicate no messages. Since the portion of the teamwork model
in use in ISIS is e�ective only with communication, a \high" setting of commu-
nication cost essentially nulli�es the e�ect of the teamwork model.

For each setting of communication cost, ISIS played 7 games against a �xed
opponent team of roughly equivalent capability. With low communication cost,
ISIS won 3 out of the 7 games. It scored 18 goals against the opponents, and had
22 goals scored against it. With high communication cost, ISIS won none out of
the 7 games it played. It scored only 3 goals, but had 20 goals scored against it.

The results clearly illustrate that the STEAM teamwork model does make
a useful contribution to ISIS's performance. Furthermore, by providing general
teamwork capabilities, it also reduces development time. For instance, without
STEAM, all of the communication for jointly initiating and terminating all of
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the team operators (about 20 in the current system) would have had to be
implemented via dozens of domain-speci�c coordination plans.

6 Related Work

In terms of work within RoboCup, ISIS was the only team at RoboCup'97 that
investigated the use of a general, domain-independent teamwork model to guide
agent's communication and coordination in teamwork. Some researchers investi-
gating teamwork in RoboCup have used explicit team plans and roles, but they
have relied on domain-dependent communication and coordination. Typical ex-
amples include [2, 1]. Other investigations of teamwork in RoboCup have used
implicit or emergent coordination. A typical example is Yokota et al.[20].

Our application of learning in ISIS agents is similar to some of the other
investigations of learning in RoboCup agents. For instance, Luke et al.[8] use
genetic programming to build agents that learn to use their basic individual
skills in coordination. Stone and Veloso[16] present a related approach, in which
the agents learn a decision tree which enables them to select a recipient for a
pass.

In terms of related work outside RoboCup, the use of a teamwork model
remains a distinguishing aspect of teamwork in ISIS. The STEAM teamwork
model used in ISIS, is among just a very few implemented general models of
teamwork. Other models include Jennings' joint responsibility framework in the
GRATE* system[6] (based on Joint Intentions theory), and Rich and Sidner's
COLLAGEN[13] (based on the SharedPlans theory), that both operate in com-
plex domains. STEAM signi�cantly di�ers from both these frameworks, via its
focus on a di�erent (and arguably wider) set of teamwork capabilities that arise
in domains with teams of more than two-three agents, with more complex team
organizational hierarchies, and with practical emphasis on communication costs
(see [19] for a more detailed discussion).

7 Summary

We have discussed teamwork and learning, two important research issues in
multi-agent systems. The vehicle for our research is ISIS, an implemented team
of soccer playing agents, that successfully participated in the simulation league
of the RoboCup'97 soccer tournament. We have taken a principled approach
in developing ISIS, guided by the research opportunities in RoboCup. Despite
the signi�cant risk in following such a principled approach, ISIS won the third
place in the 29 teams that participated in the RoboCup'97 simulation league
tournament.

There are several key issues that remain open for future work. One key issue is
improved agent- or team-modeling. One immediate application of such modeling
is recognition that an individual, particularly a team member, is unable to ful�ll
its role in the team activity. Other team members can then take over the role
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of this failing team member. Team modeling can also be applied to recognize
opponent behaviors and counter them intelligently.
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