
Inductive Veri�cation and Validation of the

KULRoT RoboCup Team

Kurt Driessens, Nico Jacobs,

Nathalie Cossement, Patrick Monsieurs, Luc De Raedt

Dept. of Computer Science, K.U.Leuven,
Celestijnenlaan 200A, B-3001 Heverlee, Belgium

http://www.cs.kuleuven.ac.be/~nico/robocup

Abstract. As in many multi-agent applications, most RoboCup agents

are complex systems, hard to construct and hard to check if they be-
have as intended. We present a technique to verify multi-agent systems

based on inductive reasoning. Induction allows to derive general rules

from speci�c examples (e.g. the inputs and outputs of software systems).
Using inductive logic programming, partial declarative speci�cations of

the software can be induced. These rules can be readily interpreted by

the designers or users of the software, and can in turn result in changes
to the software. The approach outlined was used to test the KULRoT

RoboCup simulator team, which is brie
y described.

1 Introduction

The RoboCup simulator o�ers a rich environment for the development and com-

parison of multi-agent systems (MAS). These systems are often very complex. An

agent must cope with incomplete and partially incorrect data about the world it

acts in, the goal of the agent isn't formally de�ned (`play good football') and the

system operates in real-time as a consequence of which the timing-issue is very

important. Because of all this, the design and programming of a single agent is a

di�cult task; verifying that the agent behaves as described in the design is even

harder as is the veri�cation and validation (V&V) of MAS (see section 3).

In the area of veri�cation and validation of knowledge based systems there

have been attempts to adjust the V&V systems towards the problem of verify-

ing and validating MAS (see for instance [13]). However most of these systems

assume that the agents act upon a knowledge base and that one can specify the

intended behavior of the knowledge base, which is not the case for many MAS.

The V&V method we propose is based on induction. Rather than starting

from the speci�cation and testing whether it is consistent with an implementa-

tion, inductive reasoning methods start from an implementation, or more pre-

cisely, from examples of the behaviour of the implementation, and produce a

(partial) speci�cation. Provided that the speci�cation is declarative, it can be

interpreted by the human expert. This machine generated speci�cation is likely

to give the expert new insights into the behaviour of the system he wants to

verify. If the induced behaviour is conform with the expert's wishes, this will

M. Asada and H. Kitano (Eds.): RoboCup-98, LNAI 1604, pp. 193-206, 1999.
 c Springer-Verlag Heidelberg Berlin 1999

(partly) validate the system. Otherwise, if the expert is not satis�ed with the

induced speci�cation, he or she may want to modify the knowledge based system

and repeat the veri�cation or validation process.

This paper addresses the use of inductive reasoning for veri�cation and vali-

dation of MAS. The employed techniques originate from the domain of inductive

logic programming, as these methods produce declarative speci�cations in the

form of logic programs. The sketched techniques are tested in the RoboCup do-

main. This paper is organized as follows: in section 2, we introduce inductive

learning through inductive logic programming; in section 3 we show how this

technique can be used in veri�cation. In section 4 we show how we used our

technique to verify our agents, after which we discuss related work and con-

clude. The agents are described in appendix A. For the remainder of this article

we assume the reader is familiar with Prolog [18].

2 Inductive Logic Programming

Inductive logic programming [15] lies at the intersection of machine learning

and computational logic. It combines inductive machine learning with the rep-

resentations of computational logic. Computational logic (a subset of �rst order

logic) is a more powerful representation language than the classical attribute-

value representation typically used in machine learning. This representational

power is necessary for veri�cation and validation of knowledge based systems,

because such knowledge based systems are in turn written in expressive pro-

gramming languages or expert system shells. Another advantage of inductive

logic programming is that it enables the use of background knowledge (in the

form of Prolog programs) in the induction process.

An ILP system takes as input examples and background knowledge and pro-

duces hypotheses as output. There are two common used ILP settings which

di�er in the representation of these data: learning from entailment ([7] compares

di�erent settings) and learning from interpretation [10]. In this paper we will use

the second setting. In learning from interpretations, an example or observation

can be viewed as a small relational database, consisting of a number of facts that

describe the speci�c properties of the example. In the rest of the paper, we will

refer to such an example as a model. Such a model may contain multiple facts

about multiple relations. This contrasts with the attribute value representations

where an example always corresponds to a single tuple for a single relation.

The background knowledge takes the form of a Prolog program. Using this

Prolog program, it is possible to derive additional properties (through the use of

Prolog queries) about the examples. If for instance we are working in a domain

where family-data is processed, possible background knowledge would be:

parent(X,Y) mother(X,Y). parent(X,Y) father(X,Y).

grandmother(X,Y) mother(X,Z), parent(Z,Y).

There are also two forms of induction considered here: predictive and de-

scriptive induction. Predictive induction starts from a set of classi�ed examples

194 Kurt Driessens et al.

and a background theory, and the aim is to induce a theory that will classify all

the examples in the appropriate class. On the other hand, descriptive induction

starts from a set of unclassi�ed examples, and aims at �nding a set of regularities

that hold for the examples. In this paper, we will use the Tilde system [1] for

predictive induction, and the Claudien system [9] for descriptive induction.

Tilde induces logical decision trees from classi�ed examples and background

theory. Consider for example this background knowledge:

replaceable(gear). replaceable(wheel). replaceable(chain).

not_replaceable(engine). not_replaceable(control_unit).

and a number of models describing worn parts and the resulting action (in total

15 models were used):

begin(model(1)). begin(model(2)). begin(model(3)). ...

sendback. fix. keep.

worn(gear). worn(gear). end(model(3)).

worn(engine). end(model(2)).

end(model(1)).

Tilde will return this classi�cation tree:

worn(A) ?

+--yes: not_replaceable(A) ?

| +--yes: sendback

| +--no: fix

+--no: keep

Claudien induces clausal regularities from examples and background theory.

E.g. consider the single example consisting of the following facts and empty

background theory:

human(an). human(paul). female(an). male(paul).

The induced theory Claudien returns is:

human(X) female(X). human(X) male(X).

false male(X)^ female(X). male(X)_ female(X) human(X).

Notice that this very simple example shows the power of inductive reasoning.

From a set of speci�c facts, a general theory containing variables is induced.

It is not the case that the induced theory deductively follows from the given

examples. Details of the Tilde and Claudien system can be found in [1, 9].

3 ILP for Veri�cation and Validation

Given an inductive logic programming system, one can now verify or validate

a knowledge based or multi-agent system as follows. One starts constructing

examples (and possibly background knowledge) of the behaviour of the system

195Inductive Verification and Validation of the KULRoT RoboCup Team

to be veri�ed. E.g. in a knowledge based system for diagnosis, one could start

by generating examples of the inputs (symptoms) and outputs (diagnosis) of the

system. Alternatively, in a multi-agent system one could take a snapshot of the

environment at various points in time. These snapshots could then be checked

individually and also the relation between the state an agent is in and the action

it takes could be investigated.

Once examples and background knowledge are available one must then for-

mulate veri�cation or validation as a predictive or descriptive inductive task.

E.g. in the multi-agent system, if the aim is to verify the properties of the states

of the overall system, this can be formulated as a descriptive learning task. One

then starts from examples and induces their properties. On the other hand, if

the aim is to learn the relation among the states and the actions of the agent, a

predictive approach can be taken.

After the formulation of the problem, it is time to run the inductive logic

programming engines. The results of the induction process can then be inter-

preted by the human veri�ers or validators. If the results are in agreement with

the wishes of the human experts, the knowledge based or multi-agent system

can be considered (partly) veri�ed or validated. Otherwise, the human expert

will get insight into the situations where his expectations di�er from the actual

behaviour of the system. In such cases, revision is necessary. Revision may be

carried out manually or it could also be carried out automatically using knowl-

edge revision systems (see e.g. Craw's Krust system [5], or De Raedt's Clint

[6]). After revision, the validation and veri�cation process can be repeated until

the human expert is satis�ed with the results of the induction engines.

4 Experiments in RoboCup

In this section we describe some veri�cation experiments. For this, a preliminary

version of the agents described in appendix A was used. The most important

di�erences are that the agents in the experiments did not yet used predictions

about the future position of ball and players and that the decision-network used

(�gure 2) was much simpler.

4.1 Modeling the Information

The �rst tests were run to study the behavior of a single agent. We supplied

the agents with the possibility to log their actions and the momentary state of

the world as perceived by them. This way we were able to study the behavior

of the agents starting from their beliefs about the world. Because all the agents

of one team were identical except for their location on the playing �eld, the log

�les were joined to form the knowledge base used in the experiments. A sample

description of one state from the log-�les looks as follows :

begin(model(e647)).

player(my,1,-43.91466,5.173167,3352).

player(my,2,-30.020395,7.7821097,3352).

196 Kurt Driessens et al.

...

player(other,10,14.235199,15.192206,2748).

player(other,11,0.0,0.0,0).

ball(-33.730022,10.014952,3352).

mynumber(5).

bucket(1).

rctime(3352).

moveto(-33.730022,10.014952).

actiontime(3352).

end(model(e647)).

The di�erent predicates have the following meaning :

player(T;N;X; Y;C) the agent has last seen the player with number N from

team T at location (X;Y) at time C.

ball(X;Y;C) the agent has last seen the ball at location (X;Y) at time C.

mynumber(N) this state was written by the agent with number N . It thus

corresponds to the observation of agent N .

bucket(N) the bucket used for bringing the agent back to its home position. The

bucket-value was lowered every input/output cycle and forced the agent to

its home-location and reset when it reached zero.

rctime(C) the time the state was written.

actiontime(C) the time the action listed was executed.

moveto(X;Y); shoottogoal; passto(X;Y); turn(X); none the agent's action.

The rctime(C) predicate was used to judge the age of the information in the

model as well as to be able to decide how recent the action mentioned in the

model is. This was done by comparing the rctime(C) with actiontime(C). Log-

ging was done at regular time intervals instead of each time an action was per-

formed, so we could not only look at why an agent does something, but also why

an agent sometimes does nothing. The time-units used were the simulation-steps

from the soccer-server.

Some of the actions that were used while logging were already higher level ac-

tions than the ones that can be sent to the soccer-server. However these actions,

such as shoottogoal for example, were trivial to implement.
To make the results of the tests easier to interpret an even higher level of

abstraction was introduced in the background knowledge used during the exper-
iments. Actions that are known to have a special meaning were renamed. For
instance a soccer-player that was looking for the ball always used the turn(85)
command, so this command was renamed to search ball. An other example of
information de�ned in the background knowledge is the following rule :

action(movetoball):- validtime, moveto(X1,Y1), ball(X2,Y2),

distance(X1,Y1,X2,Y2,Dist), Dist =< 5 .

in which the moveto(X;Y) command was merged with other information in the

model to give it moremeaning. For instance,moveto(�33:730022; 10:014952) and

ball(�33:730022; 10:014952;3352) in the model shown above, would be merged

into movetoball by this rule. Often a little deviation was permitted to take the

197Inductive Verification and Validation of the KULRoT RoboCup Team

dynamics and noise of the environment into account. The actions used to classify

the behavior of the agent were : search ball, watch ball, moveto, movetoball,

moveback, shoottogoal, passto, passtobuddy and none. Some of these actions

were not used in the implementation of the agent but were included anyway

for veri�cation purposes. For instance, although | according to speci�cations

| an agent should always \move to the ball" or \move back", the possible

classi�cation moveto was included in the experiments anyway, to be able to

detect inconsistencies in the agent's behavior..

Other background knowledge included the playing areas of the soccer-agents

and other high level predicates such as ball near othergoal, ball in penaltyarea,

haveball etc. Again, not all of these concepts were used when implementing the

agent. This illustrates the power of using background knowledge. Using back-

ground knowledge, it is possible for the veri�er to focus on high-level features

instead of low-level ones.

4.2 Verifying Single Agents

The �rst tests were performed with Tilde, which allowed the behavior of the

agent to be classi�ed by the di�erent actions of the agent. The knowledge base

used was the union of the eleven log-�les of the agents of an entire team. The

agents used in the team all had the same behavior, except for the area on the

�eld. The area the agent acted in depended on the number of the agent and also

was speci�ed in the used background knowledge. The resulting knowledge base

consisted of about 17000 models (14 Megabyte), collected during one test-game

of ten minutes. The �rst run of Tilde resulted in the following decision tree

seeball ?

+--yes: ball_in_my_area ?

| +--yes: haveball ?

| | +--yes: ball_near_othergoal ?

| | | +--yes: action(shoottogoal) [15 / 15]

| | | +--no: action(passtobuddy) [122 / 124]

| | +--no: action(movetoball) [1007 / 1015]

| +--no: bucket_was_empty ?

| +--yes: action(moveback) [342 / 347]

| +--no: action(watch_ball) [2541 / 3460]

+--no: action(search_ball) [7770 / 7771]

Only about 12000 models were classi�ed. We did not include the action none as

a classi�cation possibility because although a lot of models corresponded to this

action, it's selection was a result of the delay in processing the input information

instead of depending on the state of the agent's world. Most of the classi�cations

made by Tilde were very accurate for the domain. However, the prediction of

the action(watch ball) only reached an accuracy of 73,4%.
To get a better view on the behavior of the agent in the given circumstances

Claudien was used to describe the behavior of the agent in case \seeball,
not(ball in my area); not(bucket was empty)." Claudien found two rules that

198 Kurt Driessens et al.

describe these circumstances. The �rst rule was the one Tilde used to predict
the watch ball action.

action(watch_ball) if not(action(none)), seeball,

not(ball_in_my_area), not(bucket_was_empty).

Claudien discovered the rule had an accuracy of 73%. The other rule that was
found by Claudien was the following :

action(moveback) if not(action(none)), seeball ,

not(ball_in_my_area), not(bucket_was_empty).

which reached an accuracy of 26%. It states that the agent would move back

to its home location at times it was not supposed to. Being forced to go back

to its home-location every time the bucket was emptied, this behavior was a

result of the bucket getting empty while the player was involved in the game

and therefore not paying immediate attention to the contents of the bucket.
To gain more consistency in the agents behavior, the bucket mechanism was

removed and replaced by a new behavior where the agent would move back
when it noticed that it was to far from its home location. The new behavior,
after being logged and used in a Tilde-run resulted in the following tree :

seeball ?

+--yes: ball_in_my_area ?

| +--yes: haveball ?

| | +--yes: ball_near_othergoal ?

| | | +--yes: action(shoottogoal) [48 / 48]

| | | +--no: action(passtobuddy) [85 / 85]

| | +--no: action(movetoball) [796 / 810]

| +--no: at_place ?

| +--yes: action(watch_ball) [3826 / 3840]

| +--no: action(moveback) [384 / 394]

+--no: action(search_ball) [7180 / 7318]

in which the action(watch ball) was predicted with an accuracy of 99,6 %. The

increase in consistency in the behavior in the agent, improved its performance

in the RoboCup environment. Because the agent only moved back to its home-

location when necessary it could spend more time tracking the movement of the

ball and fellow agents and therefore react to changing circumstances faster.

4.3 Verifying Multiple Agents

In agent applications it is often important that not only all agents individually

work properly, the agents also have to cooperate correctly. One important point

in this is to check if the beliefs of the di�erent agents more or less match. In

the case of our RoboCup agents we want to know for instance if there is much

di�erence between the position where player A sees player B and the position

where player B thinks it is1. So we used Claudien to �nd out how often agents

have di�erent believes about there positions, and how much their beliefs di�er.

1 it is impossible to know what the real position of a player is, so we can only compare

the di�erent believes the agents have.

199Inductive Verification and Validation of the KULRoT RoboCup Team

To do these tests, we transformed the data�le so that one model contains
the believes of multiple agents at the same moment in time. Claudien found
multiple rules like the one below:

Dist < 2 if mynumber(A,Nr), vplayer(A,my,Nr,X1,Y1), vplayer(B,my,Nr,X2,Y2),

mynumber(B,Nr2), vplayer(B,my,Nr2,X3,Y3), not(A=B),

distance(X1,Y1,X2,Y2,Dist),distance(X2,Y2,X3,Y3,Dist2),Dist2<10.

This rule, which has an accuracy of 78% states that if two players are less then

10 units apart, the di�erence in the believes of the position of one of those

two players is less then 2 units. From all the rules we could conclude useful

information, for instance, we found out that our agents can best estimate a

team mate's position from distance 10. All rules found were `acceptable' rules

(e.g. for distances larger than 10, the error is positively correlated with the

distance between the players), so we can conclude from the observed behavior

that the beliefs of the di�erent agents do not di�er much.

5 Related work

This work builds upon earlier ideas on combining veri�cation and validation with

inductive logic programming [8]. It is also related to other approaches applying

machine learning with validation and veri�cation. This includes the work of

Susan Craw on her Krust system for knowledge re�nement [5], the work by

Bergadano et al. and the work by De Raedt et.al. [11]. The approach taken

in Krust is complementary to ours. Rather than starting from examples of

the actual behaviour of the system, Krust starts from examples of the desired

behaviour of the system. Whenever the two behaviours do not match, Krust

will automatically revise the knowledge based system. It is clear that the Krust

approach could also be applied within our methodology, at the point where the

human discovers inconsistencies between the two behaviours. If the human then

speci�es examples of the intended behaviour, Krust might help revising the

original knowledge base. The approach of Bergadano et. al. and De Raedt et. al.

using inductive machine learning to automatically and systematically generate

a test set of examples that can be used for veri�cation or validation. Finally, our

work is also related to the work by William Cohen [3] on recovering software

speci�cations from examples of the input-output behaviour of the program.

6 Conclusions

We sketched a novel approach to veri�cation and validation, based on inductive

reasoning rather than deduction. We reported a number of experiments in the

domain of MAS (RoboCup) which prove the concept of the approach.

Further work on this topic could involve applying the veri�cation and valida-

tion technique also to other multi-agent systems (such as e.g. Desire [2]), and

also to extend the inductive method to other representations. For instance, it

seems very well possible to apply inductive techniques in order to automatically

construct decision tables starting from the knowledge base. Such decision tables

200 Kurt Driessens et al.

are already popular in V&V, but they are typically made by the human expert

(in collaboration with the machine), see e.g. [19].

Acknowledgements: The authors wish to thank Hendrik Blockeel and Luc

Dehaspe for their help with the Tilde and Claudien system. Nico Jacobs is

�nanced by a specialisation grant of the Flemish Institute for the promotion

of scienti�c and technological research in the industry (IWT). Luc De Raedt is

supported by the Fund for scienti�c research, Flanders. This work is supported

by the European Community Esprit project no. 20237 (ILP 2).

A Team Description

A.1 Introduction

In this appendix we describe the KULRoT team for the RoboCup '98 simulator

league [12]. It is the result of some preliminary experiments in the domain, and

the main emphasis is on detecting problems related to building multi agent sys-

tems for the RoboCup task and using machine learning techniques to overcome

these problems. To simplify the building of a RoboCup team the complete team

consists of identical players2 which only di�er in their �eld position.

The agents are implemented in Java for di�erent reasons. The main reason is

that Java is platform independent, an important aspect for code being simulta-

neously developed on di�erent operating systems. Moreover using Java it's easy

to use multi-threading. The use of the UDP protocol [17] is also embedded in

Java.

This description is structured as follows: in section A.2 a general overview of

the structure of the soccer agent is presented, in section A.3 we discuss the beliefs

held by an agent. The acting of the agent is split up in low level skills (section

A.4) and high level skills (section A.5). Finally in section A.6 we describe some

timing problems and how we tackled these.

A.2 General overview of the soccer agent

The general structure of each player is presented in �gure 1. It consists of �ve

main parts:

{ Communicator: this module acts as an intermediate layer between the real

agent and the soccer server; it mainly manages the sockets for communica-

tion.

{ Sensors: this thread parses the incoming information about what the agent

sees and hears. At the moment the full input string gets parsed and the

information stored in the world model.

{ World model: the information received from the sensors is used to update

the world model. This model is however an active model in the sense that it

is able to predict the (approximate) position of objects in the future using

the formulae the server uses to calculate the trajectory of objects. This is

explained in more detail in section A.3.

2 except for the goalie.

201Inductive Verification and Validation of the KULRoT RoboCup Team

Fig. 1. General overview of the soccer agent

{ Body: this module contains the low level skills of the agent. These are skills

like turning with a ball, moving to a certain position or intercepting a ball.

It uses the world model for this. See section A.4 for a description of these

low level skills.

{ Brain: this is the module in which the real decision making occurs. This

module decides based on the world model which actions need to be executed

and translates these to low level commands, which are then sent to the body

module. This is explained in more detail in section A.5.

The player class only starts up the other modules and is used to let the other

modules communicate with each other.

A.3 Beliefs and World Model

The information about the world stored within the agent is modeled using ab-

solute coordinates. The see-messages arriving from the soccer server are parsed

by the Sensors class and transformed to absolute coordinates.

Although the modeling in absolute coordinates requires extra work during

the processing of the sensor information, it limits the updates required when

changing the position of the agent and enables easier reasoning about future

locations of moving objects.

The algorithm available in the libsclient library [16] was translated and used

to calculate the absolute coordinates and facing direction of the agent. This

information is then used to triangulate the absolute coordinates of the other

objects present in the see-string.

The memory of the player consists of �eld objects that represent the twenty-

two players and the ball. They hold the information needed to calculate their

position at a given time in the near future, i.e. the coordinates they were last seen

by the agent, the speed and direction they were traveling in at that moment and

the simulator time they were last seen at. This, together with the mathematical

formulas that represent the course of the object that are used within the soccer

server allows the �eld objects to estimate their future positions. This information

will become more and more inaccurate when the object hasn't been seen a long

202 Kurt Driessens et al.

time or when looking far into the future. Also the estimations will be wrong

when the object deviates from its course at which it was last seen.

Because every object on the �eld has its own representation as an object of

the �eld object class, it is not easy to use information about players of which

the number or even the team is not visible. As a consequence, this information

is not used. Seen objects are only considered by the player when all identifying

information is available. This of course limits the long range view of the agent

and may be changed in the future. For the same reason, the low quality setting

for the sensor information which is available in the soccer server is not used by

the agent at the moment, because it supplies the sensory information without

the identifying information necessary to use it.

A.4 Low Level Skills

The low level skills of the agent are represented by, and implemented in the

Body class. Most of the low level skills implemented in the agent are concerned

with transforming actions in the used coordinate system to actions which can

be performed by the agent through the soccer-server.

Such actions aremoveTo(x; y), passTo(x; y) or shootToGoal(). Starting from

the agents own position and direction, either as observed or predicted, the nec-

essary actions are calculated and performed. During these calculations, consid-

eration is also paid to the fact whether the player stands between the ball and

the target. For timing issues discussed later, the time the action will end is also

calculated and returned as a result of the action.

Based on these actions, it was possible to supply the agent with a bit more

complicated actions on a low level. Such actions as markP layer(number; team),

dribble(), moveAndCheck(x; y) or turnWithBall() which are independent of

the current �eld- or team-situation were implemented at this level were checks

about own and target position could be evaluated half way during the action.

Successfully intercepting the ball requires a combination of three things the

agent must performs. First it must estimate the time it will take to reach the ball.

Then the player must estimate the position of the ball at that time. To complete

the intercept, it must move to that position. The last two actions are already

discussed above. The tricky part is estimating the best future time-instance to

intercept the ball at.

Di�erent strategies were tried to accomplish this. The �rst implementation

looked a �xed number of simulator steps ahead and moved the agent to the

estimated position of the ball at that time. Because neither the distance to the

ball, nor its speed, nor the direction it is traveling in are considered this way,

the method was not very accurate nor successful.

The second strategy calculated the intercept-time by starting from an under-

estimation and increasing this value by one simulator step until a time-instance

was found at which the soccer-agent could reach the estimated position of the

ball at that same time. This method was more successful but had computation

requirements too large to be useful in the real time environment of RoboCup.

The solution used by the KULRoT team was obtained by generating a large

set of examples of intercept-times together with seven relevant values : distance

203Inductive Verification and Validation of the KULRoT RoboCup Team

to the ball, the relative view-angle of the ball, the relative travel direction of

the ball, the travel direction of the player, the speed of the ball, the speed of

the player and the player's current e�ort. This set of examples was then used to

generate a decision tree with Tilde [1] which predicted the intercept time based

on the values given. The success rate of the intercept using this decision tree

was comparable with the one that calculated the correct time | 59% vs. 63%,

the reason for the failing of the intercept with the correct calculations being the

error in the estimations of the ball speed and location | but the calculation

time was much lower.

Preliminary tests using neural networks resulted in a lower success rate. Other

strategies (e.g. using perpendicular intercept trajectories) were tested as well, but

with bad results. More information can be found in [4].

A.5 High Level Skills

In the previous section we discussed some actions that the agent can perform.

In this section we discuss how we decide which action to perform at a certain

moment in time. The basic decision structure is based on a network structure

depicted in �gure 2, which can also be seen as a tree with the rightmost node as

the root.

Fig. 2. Selecting high level actions

The network consists of two types of nodes: value-nodes and conditional

nodes. A basic value node returns a value based on the world model. All leaves

of the tree are basic nodes. For instance the basic node GoalFree returns a higher

value if there are less `obstacles' between itself and the opponents' goal. Besides

basic value nodes there are also combined value nodes. These nodes combine

values from other nodes into a new value. For instance the combined value node

LookForBall combines the values of BallMissing and PlayerPosition: if the value

for PlayerPosition is low (this means the player is close to its standard �eld

position) and the value for BallMissing is high (which means it has been a long

time since the player last saw the ball) the value for LookForBall will be high.

204 Kurt Driessens et al.

Results of value-nodes can also be the inputs for conditional nodes, of which

there are two types. A mutex node takes multiple values as input and returns

the highest value as output. A switch node takes three value-nodes as input and

returns either the �rst or the third value, based on whether the value of the

second node is below some threshold.

Everytime the agent can act, the tree is evaluated. The value nodes in the

second column are each related to one high level action. The root node will return

the value of one of those value nodes, and the high level action corresponding to

this value node will be executed. This high level action (for instance looking for

the ball) has to be translated to low level actions (e.g. multiple turn commands)

which are then sent to the body of the player to be executed.

An important question is how to weigh all the values in combined value nodes.

For instance: is the negative in
uence of PlayerPosition larger than the positive

in
uence of BallMissing on the combined value node LookForBall? To solve

this problem all input links to combined value nodes are given a weight (either

positive or negative), which makes this a parameter optimization problem.This is

solved by implementing a genetic algorithm, with the weight vector as elements

of the population, and the result of a RoboCup simulator game with a team

of players using these weights in their network as the �tness function. More

information on the subject of high level skills can be found in [14].

A.6 Timing the Actions

One of the most di�cult tasks for the agent was making sure it was working

with up-to-date information. Because all the actions of the agent depend on the

correct estimation of the agents own position and other �eld objects position, it

is important to have the agents the world information correct and up-to-date at

the time a new action is chosen.

Because of the non continuous way the see-information is provided to the

agent, a possibility of delay between the actions performed and the related vi-

sual information exists. This delay can originate from visual information which

originated during the agent's action and was not interpreted as such.

To take care of this problem, the agent now estimates the end-time of every

action it performs. Then, if it wants to be sure the information about the world

is accurate and up to date, it can wait for visual information that originated in

the soccer server after the end-time of its last action.

To make this possible the current simulator step was kept in a clock within

the agent which updated itself every 100 milliseconds and synchronized itself

with the time given in see- or sensebody-messages. This enabled the agent to

know the precise time an action was chosen and the time it was started by

sending it to the soccer server and as a consequence to calculate the time the

action should be performed.

This solution was preferred above the more obvious one of comparing the

position of the agent or other �eld objects | such as the ball | to the target

position of the action. The choice was based on the fact that actions cannot be

guaranteed to succeed so an agent moving to a �eld location (x; y) could wait

205Inductive Verification and Validation of the KULRoT RoboCup Team

inde�nitely for its action to end if, for instance, another player was standing in

its way.

References

1. H. Blockeel and L. De Raedt. Lookahead and discretization in ILP. In Proceedings
of the 7th International Workshop on Inductive Logic Programming, volume 1297

of Lecture Notes in Arti�cial Intelligence, pages 77{85. Springer-Verlag, 1997.

2. F. Brazier, B. Dunin-Keplicz, N. R. Jennings, and J. Treur. Desire: Modelling
multi-agent systems in a compositional formal framework. International Jour-

nal of Cooperative Information Systems, 6:67{94, 1997. Special Issue on Formal

Methods in Cooperative, Information Systems.
3. W. Cohen. Recovering Software Speci�cations with ILP. In Proceedings of the 12th

National Conference on Arti�cial Intelligence (AAAI-94), pages 142{148, 1994.

4. N. Cossement. Robocup: developing low level skills. Master's thesis, Department
of Computer Science, Katholieke Universiteit Leuven, 1998.

5. S. Craw and D. Sleeman. Knowledge-based re�nement of knowledge based sys-

tems. Technical Report 95/2, The Robert Gordon University, Aberdeen, UK, 1995.
6. L. De Raedt. Interactive Theory Revision: an Inductive Logic Programming Ap-

proach. Academic Press, 1992.

7. L. De Raedt. Logical settings for concept learning. Arti�cial Intelligence, 95:187{
201, 1997.

8. L. De Raedt. Using ILP for veri�cation, validation and testing of knowledge based
systems, 1997. invited talk at EUROVAV 1997.

9. L. De Raedt and L. Dehaspe. Clausal discovery. Machine Learning, 26:99{146,

1997.
10. L. De Raedt and S. D�zeroski. First order jk-clausal theories are PAC-learnable.

Arti�cial Intelligence, 70:375{392, 1994.

11. L. De Raedt, G. Sablon, and M. Bruynooghe. Using interactive concept learning
for knowledge-base validation and veri�cation. In Validation, Veri�cation and Test

of Knowledge-based Systems, pages 177{190, 1991.

12. H. Kitano, M. Veloso, H. Matsubara, M. Tambe, S. Coradeschi, I. Noda, P. Stone,
E. Osawa, and M. Asada. The robocup synthetic agent challenge 97. In Proceed-

ings of the 15th International Joint Conference on Arti�cial Intelligence, pages

24{29. Morgan Kaufmann, 1997.
13. N. Lamb and A. Peerce. Veri�cation of multi-agent knowledge-based systems. In

Proceedings of the ECAI-96 Workshop on Validation, Veri�cation and Re�nement

of Knowledge Based Systems, 1996.
14. P. Monsieurs. Developing high level skills for robocup. Master's thesis, Depart-

ment of Computer Science, Katholieke Universiteit Leuven, 1998.

15. S. Muggleton and C. D. Page. A learnability model for universal representations.
In S. Wrobel, editor, Proceedings of the 4th International Workshop on Inductive

Logic Programming, pages 139{160, Sankt Augustin, Germany, 1994. GMD.

16. I. Noda. Libsclient (for c language). URL:
http://ci.etl.go.jp/~noda/soccer/client/index.html.

17. J. Postel. RFC 768: User datagram protocol, 1980.

18. Leon Sterling and Ehud Shapiro. The art of Prolog. The MIT Press, 1986.

19. J. Vanthienen, C. Mues, and C. Wets. Inter-tabular veri�cation in an interactive

environment. In Proceedings of the '97 European Symposium on the Validation and

Veri�cation of Knowledge Based Systems (EUROVAV-97), pages 155{165, 1997.

206 Kurt Driessens et al.

	Introduction
	Inductive Logic Programming
	ILP for Veri cation and Validation
	Experiments in RoboCup
	Modeling the Information
	Verifying Single Agents
	Verifying Multiple Agents

	Related work
	Conclusions
	Team Description
	Introduction
	General overview of the soccer agent
	Beliefs and World Model
	Low Level Skills
	High Level Skills
	Timing the Actions

	References

