
A User Oriented System for Developing

Behavior Based Agents

Paul Scerri, Silvia Coradeschi and Anders T�orne

Department of Computer and Information Science

Link�oping University, Sweden

Email: pausc@ida.liu.se, silco@ida.liu.se, ato@ida.liu.se

Abstract. Developing agents for simulation environments is usually the

responsibility of computer experts. However, as domain experts have su-

perior knowledge of the intended agent behavior, it is desirable to have

domain experts directly specifying behavior. In this paper we describe

a system which allows non-computer experts to specify the behavior of

agents for the RoboCup domain. An agent designer is presented with a

Graphical User Interface with which he can specify behaviors and acti-

vation conditions for behaviors in a layered behavior-based system. To

support the testing and debugging process we are also developing inter-

faces that show, in real-time, the world from the agents perspective and

the state of its reasoning process.

1 Introduction

Intelligent agents are used in a wide variety of simulation environments where

they are expected to exhibit behavior similar to that of a human in the same

situation. Examples of such environments include RoboCup[10], air combat sim-

ulations[14] and virtual theater[16].

De�ning agents for simulation environments is a very active research area.

The research has resulted in a large number of agent architectures being pro-

posed. Many of the proposed architectures have accompanying languages for

de�ning the behaviors, for example [1, 3, 5, 6, 11, 15, 16]. However many of these

methods for specifying behavior are oriented towards a computer experts way of

thinking, rather than to a domain experts, i.e. they use logic or other kinds of

formalisms.

The quality of the behavior exhibited by an agent is closely related to the

quality and quantity of the knowledge held by the agent. As domain, rather than

computer, experts are likely to have superior knowledge of intended agent be-

havior, it seems to be advantageous to develop methods whereby domain experts

can directly specify the behavior of the agents. It may be the case, especially

in simulation environments, that parts of the behavior of an agent change often

over the life of a system, in which case it is even more desirable to enpower

domain experts to de�ne and update behavior.

When developing agents with complex behavior for real-time complex envi-

ronments it is often hard to debug and tune the behavior in order to achieve

M. Asada and H. Kitano (Eds.): RoboCup-98, LNAI 1604, pp. 173-186, 1999.
 c Springer-Verlag Heidelberg Berlin 1999

the desired result[8, 13]. When incomplete and uncertain information are added

to the cocktail, as occurs in many domains including RoboCup, determining the

reason for unwanted behavior can become extremely di�cult.

The goal of allowing non-computer experts to specify complex behavior of

simulated agents quickly and easily is a lofty one. In this paper we present the

design of a system that addresses three aspects of the problem as it relates to

RoboCup, namely: vertical rather than horizontal decomposition of behaviors;

speci�cation of conditions and behaviors in a high level abstract natural lan-

guage manner; and a short and simple design-specify-debug cycle. The underly-

ing ideas are not new, we have mainly pieced together existing ideas simplifying

or adapting where necessary in order to create an environment that is simple

for non-computer experts. Where possible we have tried to make the way a user

speci�es behavior as close as possible to the way human coaches would explain

behavior to their players.

The system we are developing allows a user to specify the behaviors for a

layered behavior based system via a Graphical User Interface(GUI). Activation

conditions for behaviors are in the form of abstract natural-language like state-

ments, which we refer to as predicates. The runtime system maps the natural

language statements to fuzzy predicates.

The behavior speci�cation interface presents the user with a window where

they can de�ne behaviors for each layer of a behavior based decision making

system. The user can specify an appropriate activation predicate and a list of

lower level behaviors, with associated activation information, that implements

the functionality of the behavior. At runtime the behavior speci�cation is used as

input to a layered behavior based controller which uses the speci�cation, along

with world information abstracted from the incoming percepts, to turn low level

control routine skills on and o� as required. A GUI is provided to show in real

time the way an agent perceives the �eld.

The choice of a behavior based architecture as the underlying architecture

seems to be a natural choice as the structure of the architecture seems to cor-

respond well to the way a human coach would naturally explain behavior. 1 A

behavior-based architecture uses vertical decomposition of overall behavior, i.e.

into defend and attack, rather than horizontal decomposition, i.e. into navigate

and plan. For example a coach is likely to divide his discussion of team tactics

into discussions on attacking and defending - this would directly correspond to

attacking and defending behaviors in a behavior based system.

We use natural language statements which map to fuzzy predicates as a

way of allowing an agent designer to specify conditions for behavior in his/her

own language. The use of abstract natural language statements about the world

as behavior activation mechanisms attempts to mimic the way a human might

describe the reason for doing something. For example, a coach may tell a player

1 This may or may not correspond to the way human decisions are actually made.

However, the relevant issue is trying capture the experts explanation of the behavior

rather than copying the decision making process.

174 Paul Scerri et al.

to call for the ball when he is in free space. The idea of free space is a vague one,

hence the natural choice of fuzzy predicates as an underlying implementation.

An artifact of behavior based systems is that they are di�cult to predict

before testing and, usually, also di�cult to explain when observed. The process

is further complicated in environments where incoming information is incom-

plete and uncertain. Consequently behavior based systems must go through a

design-test cycle many times. To assist in the development process we have de-

veloped a real-time GUI interface that shows the world as the agent sees it and

we have developed an interface that shows the state of the agents reasoning pro-

cess i.e. which behaviors are executing and the activation level of non-executing

behaviors.

Developing systems which allow non-computer experts to de�ne agents is

an active research area. Di�erent approaches are often successful at simplifying

the speci�cation of behavior for a particular domain. Strippgen has developed

a system for de�ning and testing behavior-based agents called INSIGHT [13].

It is claimed that a graphical representation of the internal state of an agent

coupled with a visualization environment aids in testing and debugging agents.

The INSIGHT system also includes an interface for incremental development

of behaviors. Firby's RAP's system uses Reactive Action Packages to turn low

level control routines on and o�[6]. Our system is similar in that it provides an

abstract method for deciding which skills to turn on and o�, however we believe

that RAP's is more suited to relatively static domains where the activities to

be performed involve sequential tasks, with possibly a number of di�erent avail-

able methods for achieving the goal, whereas our system is more suited to very

dynamic domains. Moreover the usability aspect is not especially considered in

RAPS. Harel has developed an extension of state machines called Statecharts[7]

which is a powerful formalism for the representation of system behavior. How-

ever Statecharts are usually only used for the speci�cation of complex physical

system behavior. HCSM [4] is a framework for behavior and scenario control

which uses similar underlying ideas to Statecharts. Like Statecharts HCSM is a

very powerful way of representing behavior however it is not designed for easy

speci�cation by non-expert users. At the other end of the ease-of-use spectrum

is KidSim [12] which allows speci�cation of only simple behavior. As the name

suggests, KidSim allows children to specify the behavior of agents in a dynamic

environment via a purely graphical interface. An alternative way of specifying

the behavior of agents is to have agents follow scripts like actors in a theater

[16]. In [3] a system is presented that also has the aim of making behavior speci-

�cation easier, however in that system no GUI is present and a di�erent decision

making mechanism is used.

Currently we are applying our system to the speci�cation of RoboCup agents.

However, we intend in the future to adapt it for specifying agents for air-combat

and rescue simulations.

175A User Oriented System for Developing Behavior Based Agents

2 How a User Perceives the System

We are developing a system which allows users who are not necessarily pro-

grammers to specify the complex behavior of an agent for a complex domain.

An agent designer can de�ne complex agents by de�ning layers of behaviors,

specifying activation conditions and testing agents all without having to write

or compile any code.

An agent de�nition is in the form of an arbitrary number of layers of behaviors

where behaviors on higher levels are more complex and abstract. At any time a

single behavior on each level is executing. In higher levels the executing behavior

implements its functionality by specifying the lower level, less abstract behaviors

that should be considered for execution. The bottom level behaviors execute

by sending commands to an interface which in turn turns on or o� low level

skills. The selection of the behavior to execute is determined by �nding the

behavior with the highest activation at that point in time. The activation level

of a behavior is a time dependent function that depends on the truth of the

fuzzy predicate2 underlying the natural language statement and user speci�ed

activation parameters associated with the behavior.

The development process consists of developing behaviors for lower levels,

testing the partially speci�ed agent, then using previously developed behaviors

to specify behaviors for higher layers. Lower layers, even incomplete lower layers,

can be fully tested and debugged before higher level behaviors are speci�ed.

A behavior is de�ned by specifying a name, the level of the system the be-

havior is at, a predicate for the behavior and a list of, possibly parameterized,

lower level behaviors with associated activation parameters that together im-

plement the functionality of the behavior. This is all done via a graphical user

interface. At runtime the user can observe, via another GUI, the interactions

between behaviors.

Another window provides real time feedback on exactly how the player per-

ceives the world. This enables an agent developer to better understand the in-

formation upon which the agents reasoning is being done and therefore design

a better set of behaviors. The GUI is relatively decoupled from the rest of the

system and is in our intention to make it publicly available for other developers

to use.

2.1 Creating Behaviors

When the users �rst starts up the speci�cation system a main window opens

up. This window gives the user the opportunity to open previously saved agent

behavior speci�cations or to start a new behavior speci�cation. The main win-

dow shows the behaviors that have been created previously for this agent. These

behaviors can be used to implement the functionality of new higher level behav-

iors.

2 We use this term very loosely to indicate a function that returns a value between

true and false to indicate the perceived truth of some statement.

176 Paul Scerri et al.

The user can choose to edit an existing behavior or create a new behavior.

Clicking on either the New Behavior or the Edit Behavior button pops up a

second window (see Figure 1). Here the user speci�es information about the

nature of the behavior.

Fig. 1. The Behavior Speci�cation Window. This is how the window appears when the

New Behavior button is pressed. The list on the right shows the predicates that can

be used by the behavior. The, initially empty, list on the left shows names of behaviors

that can be used to implement the functionality of the behavior. The middle of the

window will show selected behaviors and their associated activation parameters.

Once the user has �nished specifying the behavior he can click OK and the

behaviors name appears in the main window. The speci�cation can then be

saved and tested in the RoboCup simulator. Alternatively the user may directly

begin work on other behaviors or a new higher level behavior which uses the

previously de�ned behavior. There is no compilation required when the behaviors

for an agent are changed.3 However, real-time performance is still achieved as

the control system that executes the behaviors is compiled and acts su�ciently

quickly.

The way a user perceives di�erent elements of a behavior speci�cation does

not necessary correspond to the actual underlying implementation. The intention

is that the users are presented with an interface that allows them to express their

ideas as naturally as possible and the underlying system takes the speci�cation

and uses it to make decisions.

The information required to fully specify a behavior is the following:

- Name

- Level

- Predicate

- List of Behaviors

3 It is anticipated that eventually the behaviors will be able to be changed on line.

However, at present the agent must be restarted when behaviors are modi�ed.

177A User Oriented System for Developing Behavior Based Agents

Fig. 2. The Behavior Speci�cation Window with a behavior almost fully de�ned. In the

middle is the list of behaviors that implements the functionality of Attack Goal. The

numbers associated with each behavior are activation parameters (described below).

In the list there are two instantiations of Go to position. The �rst Go to position

is preferred as its maximum applicability, 75, is higher.

Each of these elements is discussed seperately below.

Name

Each behavior has a unique name. A designer specifying an agent can use names

that abstractly represent the idea the behavior is trying to capture. Examples

of behavior names for the RoboCup domain are kick goal - at a relatively low

level of abstraction, attack down left - at a higher level of abstraction or our

free kick - at an even higher level of abstraction. The names of behaviors on

low levels are then used to specify behaviors on the next level up. The idea

is that an agent designer can implement a behavior such as our free kick in

terms of behaviors like attack left and kick to open space. The underlying

system uses the behavior name as an identi�er for the behavior.

Level

The level speci�es which layer of the behavior based structure the behavior is to

be used at. Di�erent agents may have di�erent numbers of levels depending on

the design. The agent designer uses the level number to capture the intuitive idea

that behaviors occur at di�erent levels of abstraction - moving to the ball is

at a low level of abstraction whereas attacking is at a high level of abstraction.

Perhaps slightly less intuitive is the idea that very abstract behaviors are a result

of interactions between a number of slightly less abstract behaviors. 4

Predicate

To the agent designer a predicate is a statement about the world for which the

4 This is an underlying concept in behavior based systems that has yet to be conclu-

sively shown to be correct. However, as the underlying agent architecture for this

system is a behavior based one, it is necessary that the agent designer uses this idea.

178 Paul Scerri et al.

level of truth changes as the world changes. These statements occur at di�er-

ent levels of abstraction. Some example predicates for the RoboCup domain are

ball close enough to kick - at a low level of abstraction, good position

to shoot at goal, and attacking position - at a higher level of abstraction.

The activation level of the behavior increases as the truth of the predicate state-

ment increases. To the underlying system a predicate is merely the name of an

abstraction of information received from the server. It is implemented as a func-

tion that maps data from the environment to a fuzzy truth value according to a

programmer de�nition. An example of a mapping is a predicate close to ball

which is implemented as a polynomial function of the last seen distance to the

ball.

List of Behaviors

The list of behaviors is a list of behaviors less abstract than the one being de�ned

that together implement the functionality of the behavior. E�ectively the list of

behaviors forms a hierarchical decomposition of the behaviors functionality. The

behaviors in the list should interact in such a way that the intended complex be-

havior emerges. The process of choosing the behaviors and activation conditions

is a di�cult one. The short design-test cycle and the interfaces to aid analysis of

the interactions can make the process of choosing appropriate behaviors simpler.

Each of the behaviors in the list may have some associated parameters which

determine, along with the predicate that was speci�ed when the less abstract

behavior was created, the activation characteristics of the behavior. In order to

in
uence the activation of each of the behaviors the user speci�es four values:

Maximum Activation, Minimum Activation, Activation Increment, and Activa-

tion Decrement.

To a user Maximum Activation is the highest activation a behavior can have.

Intuitively, when more than one behavior are applicable the applicable behavior

with the highest Maximum Activation will be executed. This allows represen-

tation of priorities between behaviors. To the system Maximum Activation is a

hard limit above which the controller does not allow the runtime activation level

of the behavior above.

To the user MinimumActivation is the lowest activation a behavior can have.

Intuitively when no behaviors are applicable the behavior with highest Minimum

Activation is executed. To the system Minimum Activation is a hard limit below

which the controller does not let the runtime activation level of the behavior

below.

To a user Activation Increment is the rate at which the activation level of the

behavior increases when its predicate is true.5 The Activation Decrement is the

rate at which the activation of the behavior decays over time. These two values

are closely related. High values for both the Decrement and Increment create

a very reactive behavior, i.e. it quickly becomes the executing behavior when

its predicate statement is true and quickly goes o� again when the statement

becomes false. Relatively low values for the Increment and Decrement result in

5 As the predicate is actually a fuzzy predicate the activation increase is actually a

function of the \truth" of the predicate.

179A User Oriented System for Developing Behavior Based Agents

a behavior that is not activated easily but temporarily stays active even after

its predicate has become false. In the RoboCup domain a behavior such as Kick

Goal may have high Increment and Decrement values, i.e quick reaction, so

that when the predicate statement ball close enough to kick becomes true

the behavior immediately starts executing and quickly stops executing when the

predicate becomes false, i.e the ball is not close enough to kick. Behaviors such as

Attackmay have low values for Increment and Decrement so that the player does

not start executing the Attack behavior until the appropriate predicate, possibly

something like We are in an attacking position, has been consistently true

for some time. However, it maintains the Attack behavior even if the predicate

becomes false for a short time - perhaps due to temporarily incorrect information.

It was the authors experience with previous behavior based systems for RoboCup

that much instability is caused by temporarily incorrect information mainly due

to incomplete and uncertain incoming information.

The use of a list of behaviors and corresponding activation parameters allows

multiple uses of the same lower level behavior in a single higher level behavior

speci�cation. For example, an attack behavior may use two instances of the lower

level behavior move to position (having predicate Position is empty) with

di�erent activation parameters and position to move to. The result may be that

the agent \prefers" to move to one position over another.

2.2 Debugging

Behavior based agents interact very closely with their environment. Interactions

between the world and relatively simple behaviors combine in complex ways to

produce complex observed overall behavior[2]. Although the resulting behavior

may exhibit desirable properties the complex interactions that occur make be-

havior based systems extremely di�cult to analyze and predict especially when

they exist in dynamic, uncertain domains[9]. It can often even be di�cult to

determine the reasons for unwanted behavior simply by observing the overall,

complex behavior of the agent. Therefore an important part of any system for

creating behavior based agents is a mechanism for allowing the user to quickly

test and debug agents. To this end we have developed a graphical interface which

shows in real-time the world as the agent see it. We have also developed an in-

terface which graphically shows the reasoning of the agent, i.e. the currently

selected behaviors at each level and the activation levels of all behaviors.

The world information interface draws the soccer ground as the agent sees

it, displaying information such as the agents calculated position, the calculated

position of the ball, the position and team of other players and the status of the

game. This interface is intended to make it easier for developers to determine

the causes for unwanted behavior in an agent.

The designers can make more informed behavior designs when they have a

better understanding of the information the agent has available.6 For example,

6 During the overall system development the interface has also proved useful in deter-

mining errors in the way the agent processes information.

180 Paul Scerri et al.

Fig. 3. The GUI showing how the agent perceives the world. The dark colored circle

near the top of the screen is the agent whose world view is shown. Other circles represent

the players in view. In the middle are team mates and on the right are opponents. Player

of unknown team are shown in a di�erent color (all players are known on the above

diagram). Notice that the player that appears directly next to the agent of interest in

the SoccerMonitor (See Figure 4) window does not appear in the agents perception of

the world.

Fig. 4. The RoboCup Simulator showing the actual state of the world. Notice the two

players close together near the top of the �eld. The player on the right does not appear

in the player on the lefts view of the world - see Figure 3.

181A User Oriented System for Developing Behavior Based Agents

in Figure 3 the darker player near the top of the window perceives that he is in

an empty space on the �eld although it is not, as can be seen from the RoboCup

Soccermonitor (see Figure 4). The teammate with the ball can see that the player

is not alone. This may possibly indicate to a designer that it is better for a player

with the ball to look around for someone to pass to rather than relying on team

mates to communicate that they would like to get the ball.

Also developed is an interface that displays in real-time the currently execut-

ing behavior on each level and the activation levels of all available behaviors (see

Figure 5). This interface will allow designers to quickly determine the particular

interactions that are resulting in undesirable behavior.

Fig. 5. A snapshot of the behavior activation window for an attacking player. Hori-

zonatal lines represent the relative activation of the behaviors. Behaviors near the top

of the window are higher level behaviors.

3 Underlying Agent Architecture

Many agent architectures have been developed, each with properties that make

them suitable for some type of domain or some type of activity. For this system

we use a layered behavior oriented architecture. The behavior activation mech-

anisms and behavior speci�cations are designed to allow the agents behavior to

be speci�ed without programming. Furthermore the entire agent system archi-

tecture is designed in such a way that it can accommodate a behavior based

182 Paul Scerri et al.

decision making system that uses abstract predicates and acts by turning skills

on and o�.

The system is divided into seven sub-systems (see �gure 6):

- Information Processing: The information processing sub-system is respon-

sible for receiving incoming perceptual information and creating and main-

taining an accurate view of the world for the agent.

- Predicates: The Predicate sub-system forms the interface between Infor-

mation Processing sub-system and Behavior Based Decision Making sub-

systems and consists of a number of di�erent fuzzy predicate objects. Pred-

icates abstract away the details of the incoming information so that behav-

iors, and therefore agent designers, can use high level information for decision

making.Rather than being precisely true or false predicates have a value

that ranges between true and false.

- Skills: The Skills sub-system consists of a number of low level control routines

for achieving particular simple tasks.The skills can have a very narrow scope

such as moving towards a ball that has been kicked out of play.

- Behavior Based Decision Making: The Behavior based Decision Making sys-

tem is responsible for the decision making of the agent. When the agent

is started up an agent behavior description is loaded. At each layer of the

system there is a controller which continually executes the following loop:

{ Check if the layer above has speci�ed a new set of behaviors. If so remove

the old set of behaviors and get the new set.

{ Increase the activation level of all currently available behaviors by

the value of the behaviors predicate times the Activation Increment value

for the behavior.

{ Decrease the activation level of all currently available behaviors by

the Activation Decrement value for the behavior.

{ If any behaviors activation level has gone above its Maximum Activation

or below its Minimum Activation adjust the activation level so it is

back within the legal range.

{ Find the behavior with the highest activation level and send the be-

havior list for this behavior to the next layer down (or in the case of the

bottom level send a command to the interface).

{ Sleep until next cycle.

- Interface:Interfaces between symbolic decision making systems and contin-

uous control routines are an active area of research, e.g. [6]. We have imple-

mented a very simple interface that may need to be extended in the future.

The Interface receives strings representing simple commands from the deci-

sion making sub-system and reacts by turning on an appropriate skill in the

Skills sub-system.

- Debugging: The Debugging sub-system acts as an observer of the rest of the

agent architecture. The debugging sub-system works by periodically check-

ing prede�ned information in the agent and representing the information

graphically.

183A User Oriented System for Developing Behavior Based Agents

- Server Interface: The Server Interface is the sub-system responsible for com-

municating with the Soccer Server. The Server Interface sends incoming per-

cepts to the Information Processing sub-system. Commands from the skills

come to Server Interface to be sent to the Soccer Server.

Information

Processing

Server Interface

Soccer Server

Skills

Interface

Behavior Based

Decision Making
Predicates

Debugging

Fig. 6. An abstract view of the system architecture. The architecture of the agent is

shown inside the dotted bow. Each box inside the agent represents a separate sub-

system of the architecture. Arrows between sub-systems represent information
ows.

The system was implemented in Java. Object Oriented techniques have been

used in a way that allows new Skills and new Predicates to be quickly added by

a programmer without changes being required to other parts of the system. For

example the creation of a new predicate simply requires creating a subtype of

an abstract Predicate class.

4 Evaluation

At the time of RoboCup98 in Paris the system was not su�ciently complete to

allow evaluation with end users. However the authors used the GUI to specify a

team which reached the quarter �nals of the World Cup. During the development

of the team and its subsequent use an evaluation based on observations was

made. During the evaluation there were two main areas which were focused on,

namely: the overall behavior of a �nished agent; and the development process.

The overall observed behavior of the agent was reasonable. The agents con-

sisted of around 40-50 di�erent behaviors arranged into �ve or six levels. The

agents were smoothly able to handle a range of di�erent siutations at di�erent

levels of abstraction, for example agents exhibited di�erent behavior in reponse

184 Paul Scerri et al.

to almost all referee calls. A plesantly surprising aspect of the behavior of the

agents was the way they handled uncertainty in information. During testing

bugs in the timing of updates on the agents memory were noticed. However with

some tuning of the activation increment and activation decrement parameters

the bugs made little di�erence to the players behavior. A considerable weakness

in the behavior was the inability of agent to combine output of active behaviors.

The winner-take-all arbitration strategy of the layer controller means that only

one behavior can act at any time. Although careful tuning of the speci�cation

avoided oscillations between behaviors, behaviors that should have been concur-

rently acting, most notably move to position and avoid obstacle, required extra

programming at the skill level.

The development system, although promising, had a number considerable

weaknesses. The GUI made it relatively simple and fast to make farily consider-

able changes to the behavior of an agent. The major problem with the interface

was the need for an expert programmer to de�ne predicates. Early in develop-

ment almost every new behavior required low level coding of a new predicate. As

the list of predicates became longer the need for the creation of new predicates

became rarer but managing the list became more di�cult. The requirement that

each behavior be given a �xed level turned out to be rather inconvienient often

requiring that dummy behaviors were created so that lower level behaviors could

be used by higher layers.

The testing and debugging interfaces proved valuable when debugging a sin-

gle agent however they were inadequate for debugging teams of agents. The

interface showing what the player sees was mainly used for debugging infor-

mation processing aspects of the agents rather than for debugging behavior of

agents. The interface showing the state of the agents reasoning proved extremely

valuable for determining the reason for incorrect behavior of an agent. The de-

bugging interfaces turned out to be inadequate when trying to determine reasons

for undesirable behavior in teams or team situations. The problem seemed to

stem from the fact that it was impossible for a user to monitor the reasoning of

11 agents in real-time. Some system for focusing a users attention on important

aspects of the reasoning process, or more simply record and playback facilities

would be required to make the interfaces useful for multiagent debugging.

5 Conclusion

In this paper we have described a system that allows non-computer experts to

specify the behavior of agents for the RoboCup domain. We also describe an

interface that shows in real-time the world as the agent sees it and an interface

that shows the state of the agents reasoning process. Future research will look at

user acceptance of the system and work towards making the interface more intu-

itive to designers. Agents developed with this system competed at RoboCup'98

reaching the quarter �nals.

185A User Oriented System for Developing Behavior Based Agents

Acknowledgments

Paul Scerri has been supported by the NUTEK project \Speci�cation of agents

for interactive simulation of complex environments". Silvia Coradeschi has been

supported by the Wallenberg Foundation project \Information Technology for

Autonomous Aircraft".

References

1. Bruce Blumberg and Tinsley Galyean. Multi-level control of autonomous animated

creatures for real-time virtual environments. In Siggraph '95 Proceedings, 1995.

2. Rodney Brooks. Intelligence without reason. In Proceedings 12th International

Joint Conference on AI, pages 569{595, Sydney, Australia, 1991.

3. Silvia Coradeschi and Lars Karlsson. RoboCup-97: The First Robot World Cup

Soccer Games and Conferences, chapter A Role-Based Decision-Mechanism for

Teams of Reactive and Coordinating Agents. Springer Verlag Lecture Notes in

Arti�cial Intelligence, Nagoya, Japan, 1998.

4. James Cremer, Joseph Kearney, and Yiannis Papelis. HCSM: A framework for

behavior and scenario control in virtual environments. ACM Transactions on Mod-

eling and Computer Simulation, 1995.

5. Kieth Decker, Anandeep Pannu, Katia Sycara, and Mike Williamson. Designing

behaviors for information agents. In Autonomous Agents '97 Online Proceedings,

1997.

6. James Firby. Task networks for controlling continuous processes. In Proceedings

of the Second International Conference on AI Planning Systems, June 1994.

7. D. Harel. Statecharts: A visual formalism for complex systems. Sci. Comput.

Program, 8:231{274, 1987.

8. Maja Mataric. Behavior-based systems: Main properties and implications. In IEEE

International Conference on Robotics and Automation, Workshop on Architectures

for, pages 46{54, Nice, France, May 1992.

9. Maja Mataric. Interaction and Intelligent Behavior. PhD thesis, Massachusetts

Institute of Technology, 1994.

10. Itsuki Noda. Soccer server: A simulator of RoboCup. In Proceedings of AI Sym-

posium'95, Japanese Society for Arti�cial Intelligence, December 1995.

11. Itsuki Noda. Agent programming in Gaea. In RoboCup '97 Proceedings, 1997.

12. David Smith, Allen Cypher, Jim Spohrer, Apple Labs, and Apple Computer. Soft-

ware Agents, chapter KidSim: Programming Agents without a Programming Lan-

guage. AAAI Press/The MIT Press, 1997.

13. Simone Strippgen. Insight: A virtual laboratory for looking into behavior-based

autonomous agents. In Autonomous Agents '97 Online Proceedings, 1997.

14. Milind Tambe, W. Lewis Johnson, Randolph Jones, Frank Koss, John Laird, Paul

Rosenbloom, and Karl Schwamb. Intelligent agents for interactive simulation en-

vironments. AI Magazine, 16(1), Spring 1995.

15. Sarah Thomas. PLACA, An Agent Oriented Programming Language. PhD thesis,

Dept. Computer Science, Standford University, 1993.

16. Peter Wavish and David Connah. Virtual actors that can perform scripts and

improvise roles. In Autonomous Agents '97 Online Proceedings, 1997.

186 Paul Scerri et al.

	Introduction
	How a User Perceives the System
	Creating Behaviors
	Debugging

	Underlying Agent Architecture
	Evaluation
	Conclusion
	Acknowledgments
	References

