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Abstract. Many cryptographic solutions based on pseudorandom func-
tions (for common problems like encryption, message-authentication or
challenge-response protocols) have the following feature: There is a state-
ful (counter based) version of the scheme that has high security, but if, to
avoid the use of state, we substitute a random value for the counter, the
security of the scheme drops below the birthday bound. In some situa-
tions the use of counters or other forms of state is impractical or unsafe.
Can we get security beyond the birthday bound without using counters?

This paper presents a paradigm for strengthening pseudorandom func-
tion usages to this end, the idea of which is roughly to use the XOR of
the values of a pseudorandom function on a small number of distinct
random points in place of its value on a single point. We establish two
general security properties of our construction, \pseudorandomness" and
\integrity", with security beyond the birthday bound. These can be ap-
plied to derive encryption schemes, and MAC schemes (based on univer-
sal hash functions), that have security well beyond the birthday bound,
without the use of state and at moderate computational cost.

1 Introduction

Pseudorandom functions [7] are an essential tool in many cryptographic solu-
tions. They can be used to generate a pseudorandom pad for symmetric en-
cryption, to mask a universal hash function for producing a secure message-
authentication (MAC), to implement secure challenge-response mechanisms, and
so on. In practice, one might use, in the role of pseudorandom functions, vari-
ous concrete primitives, such as block ciphers or keyed hash functions under the
assumption that they do possess the pseudorandomness properties in question.

The danger of repetition. In usages of pseudorandom functions such as
those mentioned above, the same pseudorandom function will be applied to
many values in the function's domain. In many such cases, security can be com-
promised if one applies the pseudorandom function twice to the same point.
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Consider as an example the following method of encryption. Two parties share a
key which speci�es a function f : f0; 1gn ! f0; 1gm from some �xed pseudoran-
dom function family. In order to encrypt a message M of length m, the sender
computes f on an element v 2 f0; 1gn and then sends the pair (v;M � f(v)).
Clearly, the security of such a scheme depends on never re-using the same value v
for encrypting di�erent messages. The same problem arises in other applications
of pseudorandom functions, including MACs and challenge-response protocols.

Using counters. A natural way to avoid repetition is for the sender to use
(as the points on which to evaluate the function) an increasing counter, or other
form of varying, non-repeating state, which is updated with each application of
the function. This does very well in terms of avoiding repetition, but can have
various drawbacks depending on the setting and application.

Maintaining a counter, or other state information, might in some settings
be impractical or unsafe. This can happen, for example, whenever maintaining
a synchronized state across di�erent applications of the function is unsafe or
impossible. Such is the case of a function that is used across di�erent sessions
(or invocations) of a protocol, or used (possibly simultaneously) by di�erent
users or components of a system. Additional examples include the use of smart-
cards, or authentication tokens, that store the key to a pseudorandom function
in persistent memory but are not equipped with non-volatile writeable memory
to store the varying value of a counter. Even in cases where such a varying state
can be stored, security is susceptible to system failures that may reset the value
of that counter.

Also some applications require more for security than mere non-repetitiveness
of the value to which the pseudorandom function is applied; e.g., the value might
be a challenge which should be unpredictable, and a counter value is of course
highly predictable. In this case too, the use of counters is not possible at all.

Using coins. Another possibility is to use random values as those on which to
evaluate the function. This can avoid the need to store varying information, and
also yield unpredictability, thereby avoiding the drawbacks of counters. However,
randomness might do less well at the task we �rst highlighted, namely avoiding
repetition. This is due to the \birthday" phenomenon, which means that if the
domain of the function has size N = 2n, and we apply the function to a sequence
of q points selected at random from the domain, we have probability about q2=N
of seeing a repetition in the selected points. In the encryption example discussed
above, this represents a signi�cant decrease in the number of messages that can
be safely encrypted: only

p
N if we use random values for the point v, but up

to N (depending on the security of the pseudorandom function family) if we use
counters.

Thus the birthday bound for query collisions may become the security bot-
tleneck of the whole application. This is particularly evident when using 64-bit
input pseudorandom functions, such as those based on DES. In this case a num-
ber q = 232 of queries nulli�es the quanti�ed security; even q = 225 leaves us
with an insecurity (ie. chance that the scheme may be broken) of q2=N = 2�14,
which is fairly high. Even with 128-bit blocks (such as in the AES proposals)
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Fig. 1. Input-length doubling transformations: Constructing g: f0; 1g2n ! f0; 1gn given
f : f0; 1gn ! f0; 1gn. The insecurity is the maximum adversarial success in q queries.
Both upper bounds and lower bounds (attacks) on the insecurity are shown. Here
N = 2n. \No. f -apps" is the number of applications of f used in one computation
of g, and is the main cost. \Feistel-t" means t rounds, and \CBC-2" means CBC on
two blocks. Constructions 2,3,4,6 yield maps of 2n bits to 2n bits; in our context it is
implicit that the outputs are truncated. Question marks mean we don't know. See the
text for (even) more discussion.

the probability of repeated queries leaves less security than usually intended. In
this case q = 232 provides 2�64 security which is much weaker than the usually
conjectured \128-bit security" for these ciphers.

Beating the birthday bound. The above discussion raises the natural ques-
tion of to what extent the use of varying state (e.g. counters) is essential for
avoiding the quadratic degradation in the security of the function. In other words,
can we combine the advantages of coins and counters: get security beyond the
birthday bound, yet avoid the need to maintain state?

Using input-length doubling transformations.One approach is to change
the pseudorandom function and use instead one with a larger domain. For
example, instead of f : f0; 1gn ! f0; 1gm, we use a pseudorandom function
g: f0; 1g2n ! f0; 1gm. This however can be impractical, or may not increase
security in the desired way, as we now discuss.

Since total redesign of the function is typically not desirable, one would
usually try to build g in a generic way from f . Figure 1 summarizes the main
known designs. (It sets m = n for simplicity.) For example, one can use the
popular CBC-MAC construction. Another alternative is to use one of many
known transformations of pseudorandom functions on n bits to pseudorandom
permutations (or functions) on 2n bits, and simply drop all but the last m
bits of the output. (Constructions 2,3,4,6 of the table fall in this class, while
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construction 5 is directly of 2n bits to n bits.) Figure 1 indicates the best known
analyses upper bounding the insecurity, the best known attacks lower bounding
the insecurity, and the cost measured in terms of the number of applications
of f needed to make one computation of g. As the table indicates, the most
e�cient known constructions are still vulnerable to attacks that in q queries
achieve success related to q2=N where N = 2n is the domain size of the original
function. (In particular 1,2,3). The last three constructions have better bounds
on the insecurity, but as the table shows, their computational cost (the number
of f -applications) is relatively high. In particular, as we will see (Figure 2), it is
higher than the cost of our methods discussed below.

Construction. In this paper we propose and investigate a simple mechanism
to go beyond the birthday barrier without using counters or state information.
We call it the \parity method". Instead of computing the function at a single
random point, compute it at several random (but distinct) points (typically two
or three points will su�ce) and take the parity of the results (namely, XOR these
values). For instance, in the above encryption example, if the sender wants to
encrypt plaintext M , he will choose two di�erent random values r1; r2 from the
domain of the function, and send to the other party as the ciphertext the triple
(r1; r2;M � f(r1) � f(r2)). Similar methods will be used for other applications
such as challenge-response, message authentication, or key derivation. As a result
our methods o�er a sateless alternative to achieve the high security of stateful
schemes at a moderate computational cost but with increased use of random
bits.

Security.We are interested in proving general security properties of the parity
method that can later be applied to prove the security of speci�c encryption
schemes (such as the one discussed above) or MAC schemes (such as we will
discuss below). Accordingly, we begin by considering the probabilistic function
that embodies the parity construct, namely

F (r1; : : : ; rt) =
Lt

i=1 f(ri) (1)

where the ri's are uniformly chosen di�erent n-bit numbers. The �rst security
property we consider is pseudorandomness, or \distinguishability distance" from
true randomness, of the (randomized) function F . This corresponds to passive
attacks. The second security property we call \integrity", and it corresponds
to certain kinds of active attacks. (In the coming sections we will discuss these
properties in more depth, and see how they apply to encryption and MAC re-
spectively.) In either case we are interested in how the security of this randomized
function degrades after q queries relative to the security of the original pseudo-
random function f . Our analyses reduce this question to a purely information-
theoretic setting, and show that the parity method ampli�es security at quite a
high rate, enabling one to move well beyond the birthday barrier. Our results
are displayed in Figure 2 and discussed below.

Pseudorandomness amplification and encryption. An adversary sees q
vectors (r1; : : : ; rt) and the output of the parity function on them. We de�ne
a certain \bad" event and show that subject to its not happening, the outputs
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Property Insecurity No. f-appls.

Upper bound Lower bound

1. Pseudorandomness O(t!) � q
2

Nt 
(t!) � q
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Nt t

2. Integrity (t lgN)O(t) � q
3

Nt 
(tt) � q
3

Nt t

Fig. 2. The two security properties of the t-fold parity construction for t � 1: Parameters
are as in Figure 1. This is true for q < N=O(t), and t is odd in 2.. Bounds shown are
approximate.

look uniform. Exploiting and extending a connection of [4], the bad event is that
a certain matrix associated to the vectors is not of full rank. Lemma 2 bounds
this probability roughly by:

d1(t) � q
2

N t
for q � N

e2t and d1(t) = 0:76 � t!, (2)

where N = 2n is the size of the domain of the function. (The bound on q is
necessary: given the q sequences of (r1; :::; rt)'s, the randomness in the process of
Equation (1) is only due to f itself which hasN bits of randomness.) Remarkably,
the bound Equation (2) shows that if f is chosen as a truly random function then
the e�ect of the parity construct of Equation (1) on limiting the degradation of
security due to repeated queries is, for q < O(N=t) and small t, close to the
e�ect of applying a random function on single inputs of length tn. Indeed, in
the latter case the distance from randomness is, using the birthday argument,

of the order of q2

Nt . That is, we approximate the e�ect of a t-fold increase in the
queries size without necessitating any change to the underlying function f . We
note that the bound is tight.

The encryption scheme discussed above, a special case of the CTR scheme
in [2], was shown by the latter to have insecurity (under a chosen-plaintext
attack of q < N messages) at most �, the maximum possible attainable advan-
tage in breaking the underlying pseudorandom function in q queries and time
related to that allowed the encryption attacker. The insecurity of the random-
ized (stateless) version is only bounded by �+ q2=N due to birthday attacks. In
Section 3 we consider the (counter-less) encryption scheme in which to encrypt
plaintextM , we choose t distinct random values r1; : : : ; rt and set the ciphertext
to (r1; : : : ; rt; F (r1; : : : ; rt)�M). Theorem 1 bounds its insecurity by the term of
Equation (2) modulo an additive term corresponding to the insecurity of F un-
der tq queries. Considering the case t = 2 discussed above, for q = O(

p
N),

the new scheme has security which is close to the counter-version of the basic
CTR scheme, whereas the coin-version of the basic scheme is totally insecure at
q =
p
N . Furthermore the security gets even better with larger t.
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Integrity amplification and message authentication. In the Carter-
Wegman paradigm [16], the MAC of messageM is (C; h(M)�f(C)), where C is a
counter value, f is a pseudorandom function (PRF), and h is a �-AXU hash func-
tion [9]. When trying to make this stateless by substituting a random string for C,
security drops to the birthday bound. The same situation arises in the XORMAC
schemes of [4]. A counter based variant of their scheme has high security, but the
stateless version substitutes a random value for the counter and security drops
to the birthday bound. The modi�ed (stateless) Carter-Wegman MAC scheme
we propose is that the MAC of message M be (r1; : : : ; rt; h(M)�F (r1; : : : ; rt))
where r1; : : : ; rt 2 f0; 1gn are random but distinct points, and f; h are as before.
Here t is a parameter, and the higher we set it, the more security we get, though
each increment to t costs one extra application of the PRF.

The pseudorandomness of the parity construct does not by itself guarantee
security of the above due to the fact that an adversary in a MAC setting is
allowed an active attack, and can attempt a forgery in which the values r1; : : : ; rt
are of its own choice. We propose another property of the parity construct we call
\integrity". We again reduce the analysis to the question of whether the matrix
associated to the points on which the parity function is evaluated has a certain
property, which we call \vulnerability" and is de�ned in Section 4. Improvement
over the birthday bound occurs only at t � 3. Speci�cally, for odd t, Lemma 4
bounds the probability of vulnerability by

d0(t; lgN) � q
3

N t
for q � N

2e2t , (3)

where N = 2n and d0(t; lgN) is a polynomial in lgN for each �xed t, whose
value is speci�ed by Equation (13). (Curiously enough, the bound for even t � 4
is typically inferior to the bound for t � 1. Speci�cally, for even t our bound is

d0(t; lgN) � q2

Nt=2 , which is tight.) Note that this expression is inferior to the one
obtained in Equation (2). Still, it su�ces for our applications. We apply this to
get Theorem 2, an analysis of the security of the MAC scheme discussed above.

Discussion and related work.One should note that getting security beyond
the birthday bound (both in the case where one uses counters, and in our setting
where one does not) requires that we use a pseudorandom function family which
itself has security beyond the birthday bound. This precludes the direct use of
block ciphers; since they are permutations, their security does not go beyond
the birthday bound. The question of designing pseudorandom functions (with
security beyond the birthday bound) out of pseudorandom permutations (which
model block ciphers) was �rst considered by Bellare, Krovetz and Rogaway [6]
and later by Hall, Wagner, Kelsey and Schneier [8]. These two works provide
several constructions that one might use. The works of [6, 8] were also motivated
by the desire to get beyond the birthday bound for encryption, but were using
a counter-based encryption scheme: their applications are not stateless.

Shoup [15] considers various ways of providing better security tradeo�s when
using pseudorandom functions or permutations as masks in universal-hash func-
tion based MACs. He gets the security to decrease slower as a function of the
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number of queries, but does not get security beyond the birthday bound without
the use of state.

2 De�nitions

Primitives discussed in this paper include pseudorandom function families [7],
symmetric encryption schemes, and MACs. Security of all these will be treated
in a concrete framework along the lines of works like [5, 2]. Since this approach is
by now used in many places, we will brie
y summarize the concepts and terms
we need.

The de�nitional paradigm we employ is to associate to any scheme an insecu-
rity function which, given some set of parameters de�ning resource limitations,
returns the maximum possible success probability of an adversary limited to
the given resources. The de�nition of \success" various with the goal of the
primitive, as do the resources considered. The following will su�ce either for an
experienced reader or for one wanting to understand our results at a �rst, high
level. More precise de�nitions can be found in [3].

Pseudorandom function families. [Notion of [7], concretized as per [5]]. To
a family F of functions (in which each function maps f0; 1gn to f0; 1gm) we
associate an insecurity function InSecprf(F; �; �) de�ned as follows: For integers
q; T the quantity InSecprf(F; q; T ) is the maximum possible \advantage" that an
adversary can obtain in distinguishing between the cases where its given oracle
is a random member of F or a truly random function of f0; 1gn to f0; 1gm, when
the adversary is restricted to q oracle queries and running time T .

Symmetric encryption schemes. [Following [2]]. To a symmetric encryption
scheme ENC (consisting of a probabilistic encryption algorithm and deterministic
decryption algorithm) we associate an insecurity function InSecenc(ENC; �; �)
de�ned as follows: For integers �; T the quantity InSecenc(ENC; �; T ) is the
maximum possible probability that an adversary can \break" the encryption
scheme under a chosen-plaintext attack in which a total of � plaintext bits are
encrypted and the running time of the adversary is restricted to T . (\Break"
here means in the sense of real-or-random security [2] .)

MACs. [Following [4]]. To a message authentication scheme MAC (consisting
of a probabilistic mac generation algorithm and deterministic mac veri�cation
algorithm1) we associate an insecurity function InSecmac(MAC; �; �; �) de�ned as
follows: For integers qa; qv; T the quantity InSecmac(MAC; qa; qv; T ) is the max-
imum possible probability that an adversary can forge a mac of a new message
under an attack in which it obtains valid macs of qa texts of its choice, veri�es
up to qv candidate message/mac pairs of its choice, and runs in time at most T .

Conventions. In any insecurity function, we might drop the time argument
T , and it is to be understood then that the time allowed the adversary is not

1 Traditional MACs are deterministic, so veri�cation can be done by mac re-
computation. Our mac generation process is probabilistic, so a separate veri�cation
procedure must be prescribed.

276 M.Bellare, O. Goldreich, H.Krawczyk



restricted, meaning we are in an information theoretic setting. Indeed, this will
be the important case in analyses.

3 Pseudorandomness of Parity

We need a bit of terminology. A sequence R = (r1; : : : ; rt) of n-bit strings is called
non-colliding if the t strings r1; : : : ; rt are all distinct. We let D(n; t) denote the
set of all non-colliding t-sequences of n-bit strings. We let R(n;m) denote the
set of all functions of f0; 1gn to f0; 1gm.
Parity distribution. Consider the following game. A random function f from
R(n;m) is chosen and �xed. Then q non-colliding sequences, Ri = (ri;1; : : : ; ri;t)
for i = 1; : : : ; q, are chosen randomly and independently. An adversary is pro-
vided these sequences together with the q corresponding output values of the
parity function, namely bi = f(ri;1)� � � ��f(ri;t) for i = 1; : : : ; q. In applica-
tions, it is typical that as long as b1; : : : ; bq look like random independent m-bit
strings (given the other information), the adversary will not be able to derive
any \advantage" in \breaking" the security of the application, whatever that
may be. This will be seen more clearly and speci�cally later, but for the moment
we wish only to give some clue as to the motivation for what we now look at.
Namely, the experiment which produces the output just described, which we call
Par(n; q; t). We wish to \compare" this to the output of the experiment which
picks R1; : : : ; Rq the same way, and b1; : : : ; bq randomly. The experiments are
described below.

Experiment Par(n; q; t)

f
R R(n;m)

For i = 1; : : : ; q do

Ri = (ri;1; : : : ; ri;t)
R D(n; t)

bi  
Lt

j=1f(ri;j)

End do
Output (R1; b1; : : : ; Rq; bq)

Experiment Rnd(n; q)
For i = 1; : : : ; q do

Ri = (ri;1; : : : ; ri;t)
R D(n; t)

bi
R f0; 1gm

End do
Output (R1; b1; : : : ; Rq; bq)

A natural comparison measure is the statistical distance between the output
distributions of these experiments, and we would like to upper bound it. In fact
we will need a stronger claim. We will de�ne a certain \bad" event, and upper
bound its probability. We will also assert that conditioned on the bad event not
occurring, the outputs of the two experiments are identically distributed. (The
bad event will depend only on the choices of R1; : : : ; Rq hence is de�ned and has
the same probability under both experiments.) In other words, when the bad
event does not occur, the outputs b1; : : : ; bq of the parity experiment are random
and uniform. It follows in particular that the statistical distance between the
output distributions of the two experiments is bounded by the probability of the
bad event, but applications will in fact exploit the stronger assertion.

Matrix to pseudorandomness connection. The de�nition of the bad event
is based on an association of a matrix to the parity distribution. This connection
is taken from [4], where it is used to analyze a MAC construction based on the
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XOR operation. We adapt it for our purposes. Then the bulk of our analysis
focuses on this matrix. Let us now describe the matrix and explain more precisely
the connection to the pseudorandomness of parity.

To any non-colliding sequence R = (r1; : : : ; rt) of n-bit strings is associated
its characteristic vector of length N = 2n, denoted ChVec(R). Namely, if we
consider the values ri as representing integer numbers between 0 and N � 1
then the characteristic vector of r1; : : : ; rt will have a value of 1 in the positions
corresponding to these t numbers and 0 elsewhere. If R1; : : : ; Rq are non-colliding
sequences we denote by MTXN;q(R1; : : : ; Rq) the q by N matrix (of zeros and
ones) whose i-th row is ChVec(Ri) for i = 1; : : : ; q. We are interested in the
rank of our matrix when it is viewed as a random variable over the choices of
R1; : : : ; Rq from D(n; t). This is captured by the following quantity:

NFRProb(N; q; t)

= Pr
h
MTXN;q(R1; : : : ; Rq) is not of full rank : R1; : : : ; Rq

R D(n; t)
i
:

Now, let bi = f(ri;1)�� � � �f(ri;t) for i = 1; : : : ; q. View the values b1; : : : ; bq
as arranged in a column vector consisting of q strings, each m-bits long. Then
notice that this vector is given by the following matrix vector product, where as
before we identify f0; 1gn with f0; 1; : : : ; N � 1g for simplicity:

MTXN;q(R1; : : : ; Rq) �

2
6664

f(0)
f(1)
...

f(N � 1)

3
7775 =

2
6664
b1
b2
...
bq

3
7775 : (4)

Namely b1 = f(r1;1)� � � ��f(r1;t) =
P

j f(j), the sum being taken over all values
j for which the j-th coordinate of ChVec(R1) is 1, and so on.

The following lemma says that as long as the matrix has full rank, the entries
of the output vector are uniformly and independently distributed over f0; 1gm.
That is, they look like the outputs of a random function with range f0; 1gm
being evaluated at q distinct points. It is an adaption of a lemma of [4] to our
setting, and is informally stated.

Lemma 1. Conditioned on the event that MTXN;q(R1; : : : ; Rq) is of full rank,
the outputs of experiment Par(n; q; t) and experiment Rnd(q; t) are identically
distributed.

The implication in terms of the usage of the parity construct is that as long as
the matrix maintains full rank, seeing the outputs of the parity construct yields
no information at all to an adversary. It is just like seeing values of a random
function on distinct points. Accordingly, adversarial success will only happen
when the matrix is not of full rank. For this reason, our e�orts are concentrated
on upper bounding NFRProb(N; q; t).

The heart of our analysis reduces by the above to upper bounding the prob-
ability that the matrix MTXN;q(R1; : : : ; Rq) is not of full rank when R1; : : : ; Rq

are randomly and independently chosen non-colliding vectors. The bound is given
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in terms of N = 2n; t and q in the following lemma. Here e is the base of the
natural logarithm.

Lemma 2. Let t be such that 1 � t �
p
N=(e lgN), then for any q < N=(e2t)

we have

NFRProb(N; q; t) � d1(t) � q
2

N t
+

8>><
>>:
d2(t; lgN) � q3

N3t=2
if t is even

d2(t; lgN) � q
4

N2t
if t is odd ;

(5)

where d1(t) = 0:76 � t! and

d2(t; n) =

�
3e3+3t=22�3t�3+3tn�3+3t=2 if t is even
e4+2t2�4t�4+4tn�4+2t if t is odd.

(6)

Discussion of the bounds. Let us now interpret the bounds a bit. First, the
upper bound on t is a technicality insigni�cant in practice, and safely ignored.
(For example if N = 264 it says roughly that t � 229, and we are interested in
values like t = 2; 3; 4; 5.) The bound on q indicates that we are not expecting
security for q above N ; in fact q must be O(N). This is necessary, as noted
in the introduction, for entropy reasons alone. The main thing is Equation (5)
which says that NFRProb(N; q; t) is roughly bounded by q2=N t. This is modulo
a small constant factor, and also an additive term. The additive term has a
factor of qs=Nst=2 with s � 3, which is small enough to make the whole additive
term negligible, even given the somewhat large seeming coe�cient d2(t; lgN).
Accordingly it is safe to view the above bound as essentially d1(t) � q2=N t.

Example 1. Take for example N = 264 and t = 3. Then d1(t) � 4:6 and
d2(3; 64) < 231 so

NFRProb(N; q; 3) � 4:6 � q
2

N3
+ 231 � q

4

N6
� 4:6 � q2

264�3
+

q4

264�6�31
� 5 � q

2

N3
:

as long as q � N=23. Thus, we are o� from q2=N3 by only the small factor of 5.
Note in particular the bound is essentially equal to d1(t) � q2=N t.

Tightness of the above bound. The above upper bound can be proven to be
approximately tight by considering the event in which two rows in MTXN;q(R1;
: : : ; Rq) are identical. This is an instance of the usual birthday paradox: We are

selecting q rows from a universe of
�
N
t

�
possible rows. Then a standard birthday

calculation (we take the speci�c estimates used here from [4]) says that for

2 � q �
q�

N
t

�
the probability of collisions is at least

0:16 � q
2�
N
t

� � 0:16 � q2

N t=t!
� 0:16 � t! � q

2

N t
:

Comparing with the �rst term in the bound of Lemma 2 we see that the bounds
are tight to within a constant that is independent of N; t; q.
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Proof of Lemma 2: The case of t = 1 corresponds to the well-known birthday
bound (i.e., we are interested in the probability that two rows have their single
1-entry in the same column). The proof thus focuses on (and assumes) t � 2.
In the following, it is understood that the probabilities are over the choices of
R1; : : : ; Rq uniformly and independently from D(n; t).

NFRProb(N; q; t)

=

q�1X
i=2

Pr[MTXN;q(R1; : : : ; Rq) has rank i ]

�
q�1X
i=2

X
1�j1<���<ji�q

Pr[Rows j1; : : : ; ji of MTXN;q(R1; : : : ; Rq) sum to zero ] :

Let p(N; i; t) denote the probability that a i-by-N matrix over Z2, in which
each row is a random N -string with exactly t ones, has row-sum zero. Since the
probability above does not depend on which rows we consider we have

NFRProb(N; q; t) �
q�1X
i=2

�
q

i

�
� p(N; i; t) :

Notice that if t is odd then three rows of the matrix cannot sum to zero. So set
s = 3 if t is even and s = 4 if t is odd. Then our bound becomes

NFRProb(N; q; t) �
�
q

2

�
� p(N; 2; t) +

q�1X
i=s

�
q

i

�
� p(N; i; t) : (7)

Claim: For any 2 � i � q � 1 we have

p(N; i; t) �

8>>><
>>>:

2d1(t)

N t
if i = 2

�
eti

2N

�ti=2

if i � 3 :

Proof of Claim: Let R denote a matrix selected according to the above distribu-
tion. If i = 2 then p(N; 2; t) is just the probability of a collision when two balls
are thrown into

�
N
t

�
buckets. This is

1�
N
t

� =
t!(N � t)!

N !
=

t!

N(N � 1) � � � (N � t+ 1)
� t!

(N � t+ 1)t
:

By assumption t �pN=(e lgN) so we can lower bound the numerator by�
N �

p
N
�t

= N t�
�
1� 1p

N

�t

� N t�
�
1� tp

N

�
� N t�

�
1� 1

(e lgN)1=2

�
:

The lowest value of N meeting the conditions in the lemma statement is N = 9
and hence the above is at most 0:659 �N t. Putting all this together we get

p(N; 2; t) � 1:517 � t!
N t

� 2d1(t) �N�t

as desired.
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Now consider i � 3. Each column in R having some 1-entry, must have at least
2 such entries. Thus, the probability that the rows of R sum to zero is upper
bounded by the probability that R has 1-entries in at most it=2 columns. We
can view the choice of a row as that of picking at random a subset of exactly t
columns in which to place ones. Thus

p(N; i; t) �
�
N

ti=2

�
�
"�

ti=2
t

�
�
N
t

�
#i

=

�
N

ti=2

�
�
"Qt�1

j=0
ti
2
� jQt�1

j=0N � j

#i
:

Now use the fact that a � b implies (a � 1)=(b� 1) � a=b. This can be applied
since ti=2 � N=2, the latter being true because i � q � N=(2e2t). This bounds
the above by �

N

ti=2

�
� (ti=2N)ti �

�
Ne

ti=2

�ti=2

� (ti=2N)ti :

Simplifying the last term yields the claim. 2

From Equation (7) and the Claim we get

NFRProb(N; q; t) �
�
q

2

�
� p(N; 2; t) +

q�1X
i=s

�qe
i

�i
�
�
eti

2N

�ti=2

=

�
q

2

�
� 2d1(t)

N t
+

q�1X
i=s

"
eq �

�
et

2N

�t=2

� i t2 � 1

#i
: (8)

The �rst term of Equation (8) is at most q2=2 � 2d1(t)=N t = d1(t) � q2=N t. This
yields the �rst term in the bound claimed in the lemma statement. Now we
consider the sum

S =

q�1X
i=s

"
eq �

�
et

2N

�t=2

� i t2 � 1

#i

and show it is bounded by the second term in the lemma statement.

Let � be a value to be determined. Then some calculations show that

S �
� lgNX
i=s

"
eq �

�
et

2N

�t=2

� (� lgN)
t
2
� 1

#i
+

qX
i=1+� lgN

"
e �
�
etq

2N

�t=2
#i

(9)

We will impose upper bounds on q that guarantee

A
def
= eq �

�
et

2N

�t=2

� (� lgN)
t
2
� 1 � 1

2
and B

def
= e �

�
etq

2N

�t=2

� 1

2
: (10)

In that case, each of the sums of Equation (9) is bounded by twice its �rst term,
so we can bound the sum itself by

2 �
"
eq �

�
et

2N

�t=2

� (� lgN)
t
2
� 1

#s
+

"
e �
�
etq

2N

�t=2
#� lgN
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�
h
2e

st
2
+s(t=2)st=2(� lgN)

st
2
�s
i
� qs

Nst=2
+ 2�� lgN :

Now set � = 2t. The second term is N�� = N�2t and hence we get

S �
h
3e

st
2
+stst�s2�s(lgN)

st
2
�s
i
� qs

Nst=2
:

To complete the proof, put this together with the above, plug in the appropriate
value of s = 3 if t is even and s = 4 if t is odd, and simplify. This yields the
bound in the lemma statement.

It remains to see what conditions on q; t are imposed by Equation (10). Recalling
that � = t, some calculations show that the conditions imposed by A � 1=2 and
B � 1=2 are, respectively,

q � t lgN

e

�
N

et2 lgN

�t=2

and q � N

e2t
:

As long as N � et2 lgN , some more calculation shows that

N

e2t
� t lgN

e

�
N

et2 lgN

�t=2

:

To ensure N � et2 lgN we have made the requirement t �pN=(e lgN). Now if
q � N=e2t then we are ensured A;B � 1=2. The proof is complete.

CTR mode encryption. Let F be a family of functions with domain f0; 1gn
and range f0; 1gm. In this section we look at the problem of encrypting a message
of m-bits. (In [3] we discuss how to encrypt messages of longer and varying
lengths.)

A standard mode to encrypt anm-bit messageM is to pick a value r 2 f0; 1gn
and set the ciphertext to (r; f(r)�M). Here f 2 F is the (secret) key under
which encryption and decryption are performed. The counter version sets r to
a counter value that is incremented with each message encrypted. Denoting it
by StandardENC-Ctr, the insecurity is shown in [2] be be bounded as indicated
below. For any number q < N of m-bit messages queried in a chosen-plaintext
attack, setting N = 2n{

InSecenc(StandardENC-Ctr; qm; T ) � 2 � InSecprf(F; q; T 0) + 2�m : (11)

Here T 0 = T + O(q(n +m)). When a stateless scheme is desired, the standard
paradigm would pick r at random. A chosen-plaintext attack of q messages
results in a collision in r values with probability �(q2=N), and when this happens
the encryption scheme is broken, in the sense that partial information about the
plaintext is leaked. We wish to apply the parity construct to get better security,
comparable or superior to that of the counter version.

Our scheme. The idea is that instead of picking one point r, the encryp-
tor picks t distinct random points r1; : : : ; rt, and sets the ciphertext of M to
(r1; : : : ; rt; f(r1)�� � � �f(rt)�M), the setting being the same as above.

More precisely, we associate to F an encryption scheme ENCRXt[F ], param-
eterized by the integer t � 1. It consists of two algorithms, one to encrypt and
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ENCRXt[F ]: encryption procedure

Input: Key f , plaintext M

Pick distinct, random points
r1; : : : ; rt 2 f0; 1gn

Let mk = f(r1)�f(r2)�� � � �f(rt)
Let mdM = mk�M
Return (r1; : : : ; rt;mdM)

ENCRXt[F ]: decryption procedure

Input: Key f , ciphertext (r1; : : : ; rt;mdM)

Let mk = f(r1)�f(r2)� � � � �f(rt)
Let M = mdM�mk

Return M

Fig. 3. ENCRXt[F ]: Our encryption scheme: Here M 2 f0; 1gm is the plaintext and
f 2 F is the key.

the other to decrypt. These algorithms are described in Figure 4. The encryp-
tion algorithm takes as input a key f and a message M 2 f0; 1gm, while the
decryption algorithm takes the same key and a ciphertext. Here f is a random
member of F . It is understood that f is accessible as an oracle. (When F is
pseudorandom, a seed explicitly supplied to the algorithms names a particular
function in the family and thus enables computation of the oracle. But the view
of f as an oracle better suits the analysis.)

The security of our scheme can be analyzed via a connection to matrix rank
and Lemma 2, as detailed in [4], to yield the following.

Theorem 1. Let F be a family of (pseudorandom) functions with domain f0; 1gn
and range f0; 1gm, and let N = 2n. Let t � 1 and let ENCRXt[F ] be the associ-
ated encryption scheme as de�ned above. Assume 1 � q � N=(e2t). Then

InSecenc(ENCRXt[F ]; qm; T ) � d1(t) � q
2

N t
+ 2 � InSecprf(F; tq; T 0) ;

where T 0 = T +O(tq(n +m)) and d1(t) is as in Equation (2).

4 Integrity of Parity and Application to MACs

When the parity construct is used in an application such as MAC where the
adversary is active, further properties are required to ensure security. It turns
out we need to consider the following. An adversaryA sees an output (R1; b1; : : : ;
Rq ; bq) of experiment Par(n; q; t). Now A tries to create a non-colliding sequence
Rq+1 = (rq+1;1; : : : ; rq+1;t) and a value bq+1 such that Rq+1 62 fR1; : : : ; Rqg and
bq+1 = f(rq+1;1)�� � � �f(rq+1;t). Notice that this is easy for A to do if there is
some subset S of the rows of MTXN;q(R1; : : : ; Rq) which sums up to a N -vector
v of exactly t ones, because then A can de�ne Rq+1 via v = ChVec(Rq+1) and
then set bq+1 to �ibi, the XOR being over all i such that ChVec(Ri) is a row in S.
We will see that in fact this is the only condition under which A can do it. Thus
we want to make sure no subset of rows S has this property. This will imply that
if A creates some non-colliding sequence Rq+1 62 fR1; : : : ; Rqg, then A's chance
of predicting f(rq+1;1)� � � � �f(rq+1;t) correctly is at most 2�m. Based on this
it will be possible to prove the security of our MAC scheme.
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The problem can be formulated by extending the experiments Par(n; q; t)
and Rnd(n; q) to consider an adversary as discussed above. However since we
went through that approach before, we will not do it again. Rather we will
skip to the essential step and lemma based on which we can directly prove the
security of the applications. This lemma is again about the probability that
MTXN;q(R1; : : : ; Rq) has certain properties.

We need to consider the probability that one may augment the given matrix
MTXN;q(R1; : : : ; Rq) by a row with t 1-entries, di�erent from all current rows,
so as to result in a matrix of rank at most q. Actually, we will ask for a little
more, to simplify the analysis.

We say a subset S of its rows sums is bad if it sums up to a N -vector v such
that v 62 S but v contains exactly t 1-entries. We say that MTXN;q(R1; : : : ; Rq)
is t-vulnerable if one of the following is true: (1) It has two identical rows, or (2)
some subset of its rows is bad. We let

VulProb(N; q; t)

= Pr
h
MTXN;q(R1; : : : ; Rq) is t-vulnerable : R1; : : : ; Rq

R D(n; t)
i
:

The following lemma considers an arbitrary adversary that given an output of
experiment Par(n; q; t) attempts to create a new Rq+1 and the corresponding f
value. It says that A has no better strategy than to guess, as long as the matrix
is not t-vulnerable.

Lemma 3. Fix any adversary A that on any input (R1; b1; : : : ; Rq ; bq) 2 D(n; t)
� f0; 1gm � � � � �D(n; t) � f0; 1gm outputs some Rq+1 = (rq+1;1; : : : ; rq+1;t) 2
D(n; t) � fR1; : : : ; Rqg and a string bq+1 2 f0; 1gm. In experiment Par(n; q; t),
conditioned on the event that MTXN;q(R1; : : : ; Rq) is not t-vulnerable, the prob-
ability that bq+1 = f(rq+1;1)� � � ��f(rq+1;t) is at most 2�m.

Motivated by this we proceed to bound VulProb(N; q; t) (the proof of next lemma
is omitted { see [3]).

Lemma 4. Let t be such that 1 � t �
p
N=(2e lgN), then for any q < N=(2e2t)

we have

VulProb(N; q; t) �

8>><
>>:
d0(t; lgN) � q2

N t=2
if t is even

d0(t; lgN) � q
3

N t
if t is odd ;

(12)

where

d0(t; n) =

�
e2+3t=223t=23�t=2t�2+3t=2nt�2 if t is even

e3+2t2�3t�3+5t=2nt�2 if t is odd.
(13)

Notice the di�erence in the bounds for odd versus even t. We will focus on odd
t. In comparison with Lemma 2 the main term in the bound, namely q3=N t, has
an extra factor of q. Other than that things are pretty similar. To get an idea of
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the relative values of the various terms, consider N = 264 and t = 3. Then the
lemma says that for q � N=46 we have VulProb(N; q; 3) � 224 � q3=N3.

Tightness of the above bound. Suppose that q < N (which is required and
assumed anyhow). Consider, �rst, an even t. Then the probability that a q-by-N
matrix is t-vulnerable is lower bounded by 
(q2) times the probability that two
t-vectors add-up to another t-vector. The probability for this event is computed
by �rst selecting and �xing the �rst vector, and next computing probability that
the second vector agrees with it on exactly t=2 1-entries. The latter probability
is �((t=N)t=2).

For odd t, we consider the event that three distinct t-vectors add up to a
di�erent t-vector. Fix any random non-overlapping choice for the �rst two t-
vectors, and consider the probability that the third resides fully in these 2t
columns (but does not equal any of the �rst two vectors). The latter probability
is �((2t=N)t). Considering all

�
q
3

�
choices of the rows, the claim follows.

Universal hash based MACs. We now discuss the application to message
authentication. Let D be some domain consisting of messages we want to au-
thenticate. (For example D could be f0; 1g�, or all strings of length up to some
maximum length.) We �x a family H of �-AXU hash functions in which each
function h 2 H maps from D to f0; 1gn. We also let F be a family of functions
with domain f0; 1gn and range f0; 1gm.

The standard paradigm is that to authenticate messageM 2 D, pick a value
r 2 f0; 1gn and set the mac to (r; f(r)�h(M)). Here hh; fi is the (secret) key
under which macs are created and veri�ed, where h 2 H and f 2 F . The
counter version sets r to a counter value that is incremented with each message
authenticated. Denoting it by StandardMAC-Ctr,

InSecmac(StandardMAC-Ctr; qa; qv; T )

� qv�+ InSecprf(F; qa + qv; T
0) :

where qa < N , qv � 1, N = 2n and T 0 = T + O((qa + qv)(n + m)). When
a stateless scheme is desired, the standard paradigm would pick r at random.
A chosen-message attack of q messages results in a collision in r values with
probability �(q2=N), and when this happens forgery is possible. We wish to
apply the parity construct to get better security, comparable or superior to that
of the counter version.

Our scheme. The idea is that instead of picking one point r, the generator
of the mac picks t distinct random points r1; : : : ; rt, and sets the mac of M to
(r1; : : : ; rt; f(r1)�� � � �f(rt)�h(M)), the setting being the same as above.

More precisely, with H �xed we associate to F a message authentication
scheme MACRXt[F ], parameterized by the integer t � 1. It consists of two algo-
rithms, one to generate macs, and the other to verify candidate macs. (The dis-
tinction is necessary since the mac generation algorithm is probabilistic.) These
algorithms are described in Figure 4. The mac generation algorithm takes as
input a key hh; fi and a message M 2 D, while the veri�cation algorithm takes
the same key, a message, and a candidate mac for it. Here h is a random hash
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MACRXt[F ]: mac generation

Input: Key hh; f i, message M

Pick distinct, random points
r1; : : : ; rt 2 f0; 1gn

Let mk = f(r1)�f(r2)�� � � �f(rt)
Let mhM = mk�h(M)
Return (r1; : : : ; rt;mhM)

MACRXt[F ]: mac veri�cation

Input: Key hh; fi, M;�

Check that � has form (r1; : : : ; rt; �) for
t distinct strings r1; : : : ; rt 2 f0; 1gn

and some � 2 f0; 1gm

Let mk = f(r1)�f(r2)� � � � �f(rt)
Let mhM = mk�h(M)
If mhM = � then return 1 else return 0

Fig. 4. MACRXt[F ]: Our message authentication scheme: Here M 2 D is the text to be
authenticated and hh; fi 2 H � F is the key.

function from H while f is a random member of F . It is understood that f is
accessible as an oracle. (When F is pseudorandom, a seed explicitly supplied to
the algorithms names a particular function in the family and thus enables com-
putation of the oracle. But the view of f as an oracle better suits the analysis.)

We stress one aspect of the veri�cation procedure, namely to check that the
candidate tag really contains t points (not more or less) and that these are
distinct. Without this check, forgery is possible.

The security of our scheme can be analyzed via a connection to matrix vul-
nerability and Lemma 4, as detailed in [4], to yield the following.

Theorem 2. Let H be a family of �-AXU hash functions with domain D and
range f0; 1gn. Let F be a family of (pseudorandom) functions with domain
f0; 1gn and range f0; 1gm. Let N = 2n and assume t is an odd integer satis-
fying 1 � t �

p
N=(2e lgN). Let MACRXt[F ] be the associated MAC as de�ned

above. Assume 1 � qa � N=(2e2t) and qv � 1. Then

InSecmac(MACRXt[F ]; qa; qv ; T ) �
qv�+ d0(t; n) � q

3
a

N t
+ InSecprf(F; t(qa + qv); T

0) ;

where T 0 = T +O(t(qa + qv)(n+m)) and d0(t; n) is as in Equation (13).

Thus, MACRX3[F ] o�ers better security than MACRX1[F ], and for qa < 22n=3

its security is comparable to the counter-version as given in Equation (14).
MACRX5[F ] is comparable in security to the counter-version.
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