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and the center to broadcast O(k log2 k log( l/p)) messages. 
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1 Introduction 

We deal with broadcast encryption. We consider a scenario where there is a center 
and a set of users. The center provides the users with prearranged keys when 
they join the system. At some point the center wishes to broadcast a message 
(e.g. a key to decipher a video clip) to a dynamically changing privileged subset 
of the users in such a way that non-members of the privileged class cannot learn 
the message. Naturally, the non-members are curious about the contents of the 
message that is being broadcast, and may try to learn i t .  

The obvious solution is: give every user its own key and transmit an individ- 
ually encrypted message to every member of the privileged class. This requires 
a very long transmission (the number of members in the class times the length 
of the message). Another simple solution is to provide every possible subset of 
users with a key, i.e. give every user the keys corresponding to the subsets it 
belongs to. This requires every user to store a huge number of keys. 

The goal of this paper is to provide solutions which are efficient in both 
measures, i.e. transmission length and storage a t  the user’s end. We also aim 
that the schemes should be cornputationally efficient. 

To achievc our goal we add a new parameter to the problem. This parameter 
represents the number of users that have to collude so as to  break the scheme. 
The scheme is considered broken if a user that does not belong to the privileged 
class can read the transmission. For a given parameter k, our schemes should be 
resilient to any subset of k users that collude and any (disjoint) subset (of any 
size) of privileged users. 

We also consider another scheme parameter, the random-resiliency of a scheme 
which refers to the expected number of users, chosen uniformly at  random, that 
have to collide so as to break the scheme. 

measure. For example, if decryption devices are captured from random users, (or 
were assigned a t  random to  users), it is the random resiliency that determines 
how many devices need be captured so as to break the scheme. We discuss a num- 
ber of different scenarios with differing assumptions on the adversary strength. 
We show that even powerful and adaptive adversaries are incapable of circum- 
venting the protection afforded by our schemes. 

The final goal of the broadcast encryption scheme is to  securely transmit a 
message to all members of the privileged subset. If cryptographic tools such as 
one-way functions exist then this problem can be translated into the problem of 
obtaining a common key. Let the security parameter be defined to be the length 
of this key. 

In many applications, it suffices to consider only the (weaker) random-resiliency 

1.1 Definitions 

A broadcast scheme allocates keys to users so that given a subset T of U ,  the 
center can broadcast messages to all users following which all members of T have 
a common key. 
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A broadcast scheme is called resil ient to a set S if for every subset T that 
does not intersect with S ,  no eavesdropper, that has all secrets associated with 
members of S ,  can obtain the secret common to T.  We can relax the requirement 
that no adversary can obtain the secret to one that says that no adversary that 
is computationally bounded by probabilistic polynomial time can obtain the key 
with non-negligible probability (i.e. greater than inverse polynomial). 

A scheme is called k-resdzent  if it is resilient to any set S c U of size k. 
We also deal with random coalitions: a scheme is called (Ic,p)-rundona-resilneat if 
with probability at least 1 - p the scheme is resilient to a set S of size k, chosen 
at random from U. Let 1171 = n, we use R and IUI interchangeably hereinafter. 

The relevant “resources” which we attempt to optimize are the number of 
keys associated with each user, the number of transmissions used by the cen- 
ter, and the computation effort involved in retrieving the common key by the 
members of the privileged class. 

1.2 Results 

As a function of the resiliency required, we provide a large set of schemes that 
offer a tradeoff between the two relevant resources: memory per user and trans- 
mission length. 

If nothing is known about the privileged subset T ,  any broadcast scheme 
requires that the transmission be sufficiently long to uniquely identify the priv- 
ilege subset T. Otherwise, by a simple counting argument, there would be two 
non-identical sets, T and Ti ,  both of which somehow manage to obtain the same 
common key. 

Thus, in general, simply representing a subset T c U requires IVl bits. 
Using our schemes, transmitting an additional o( IUl) bits guarantees security 
against all coalitions of size 6( m) users and randomly chosen coalitions of 
d( users. The computational and memory requirements for these schemes 
are O(fi). Thus, in some sense, security is available for “free”. 

In fact, in many contexts the privileged set may be identified by sending a 
relatively short transmission. E.g., if the set can somehow be computed from an 
old privileged set or the set representation can be compressed. Thus, we distin- 
guish between the set identification transmission and the broadcast encryption 
transmission. Our goal is the study of broadcast encryption transmissions and 
their requirements. In general, the center will identify every user with a unique 
identification number, and thus the set representation can be a bit vector. There 
are distinct advantages that the identification numbers be assigned at random 
to new users, we discuss this hereinafter in the context of random resiliency. 

We distinguish between zero-message schemes and more general schemes. 
Zero-message schemes (Section 2) have the property that knowing the privileged 
subset T suffices for all users 3: E T to compute a common key with the center 
without any transmission. Of course, to actually use a zero-message scheme to 
transmit information implies using this key to encrypt the data transmitted. 

More general schemes (Section 3) may require that the center transmit many 
messages. All the schemes we describe require that the length of the center 
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generated messages be equal in length to the security parameter. Thus, when 
counting messages transmitted by the center, each messages is s bits in length. 

Our general approach to constructing schemes is to use a two stage ap- 
proach. First, we construct low resiliency zero-message schemes and then use 
these to construct higher resiliency schemes. The latter are not zero-message 
type schemes. 

For low resiliency schemes, we describe assumption-free constructions, that 
are based upon no cryptographic assumption (the equivalent of a one-time pad). 
Then, we describe more efficient schemes based upon a some cryptographic as- 
sumptions, either the existence of a one way function or the more explicit aa- 
sumption that RSA is secure. These results are described in Theorems 1, 2, 
n 
6. 

We then deal with the more general case, and describe schemes of high re- 
siliency (Section 3). For clarity of exposition, we describe our constructions in 
terms of the number of “levels” involved in the scheme construction. Informally, 
the levels refer to a sets of hash functions that partition and group users in a 
variety of ways. Our proofs are all based upon applications of the probabilistic 
method [l]. 

To obtain a resiliency of k, it suffices to store klogklogn keys per user, 
while the number of messages transmitted by the center is O(k210g2klogn) 
(Theorem 8). To obtain a random resiliency of k, with probability p, it suffices 
to store logklog(l/p) keys per user, while the number of messages transmitted 
by the center is O(k log k log( l/p)) (Corollary 9). Other points along the tradeoff 
between memory and transmission length are given in Theorem 5 .  

2 Zero Message Schemes 

In this section we present several schemes that do not require the center to 
broadcast any message in order for the member of the privileged class to generate 
a common key. The main significance of the schemes presented in this section is 
their application as building blocks for the schemes presented in Section 3. 

2.1 The Basic Scheme 

The basic scheme we define allows users to determine a common key for every 
subset, resilient to any set S of size 5 k. The idea is very simple. 

For every set B C U ,  0 5 IBI 5 k, define a key K g  and give K B  to every 
user x E U - B. The common key to the privileged set T is simply the exclusive 
or of all keys K s ,  B c U - T .  Clearly, every coalition of S 5 k users will all 
be missing key lis and will therefore be unable to compute the common key for 
any privileged set T such that S n T is empty. 

The memory requirements for this scheme are that every user is assigned zfz0 ( i )  keys. With these requirements we need make no assumptions whatsc- 
ever. We therefore have 



484 

Theoreml. There ezists a k-resdzeni scheme that requires each user t o  store xi"=, (L) keys and the center need not broadcast any message in order t o  generate 
a common k e y  to ,the privileged class. 

2.2 l-Resilient Schemes using Cryptographic Assumptions 

We now see how to improve the memory requirements of the scheme described 
above using cryptographic assumptions such as "one-way functions exist" and 
that extracting prime roots modulo a composite is hard, The improvements are 
applicable to  any l c ,  however they are the most dramatic for lc = 1. 
A l-resilient scheme based on one-way functions. 

Consider the 1-resilient version of the scheme described above. It requires 
every user to  store n +  1 different keys. However, this can be reduced to O(1ogn) 
keys per user if the keys are pseudo-randomly generated from a common seed 
where the pseudo-random function f output is twice the length of the input, as 
described below. 

Assume that one-way functions exist and hence pseudo-random generators 
exist (see [S])). We first explain how the key distribution is done. Associate the 
n users with the leaves of a balanced binary tree on n nodes. The root is labeled 
with the common seed and other vertices are labeled recursively as follows: apply 
the function f to the root label and taking the left half of the function value to 
be the label of the right subtree while the right half of the function value is the 
label of the left subtree. (This is similar to  the construction of the tree in the 
generation of a pseudo-random function in [5].) 

By the scheme of Section 2.1, every user 2 should get all the keys except 
the one associated with the singleton set B = {z}. To meet this goal remove 
the path from the leaf associated with the user x to the root. We are left with 
a forest of O(1ogn) trees. Give the user z the labels associated with the roots 
of these trees. The user can compute the all leaf labels (except ICB) without 
additional help. Therefore we have 
Theorem 2. If one-way functions exist, then there exists a l-resilient scheme 
thai requires each user t o  store logn keys and the cenier need not broadcast any 
message in  order t o  generate a common k e y  t o  the privileged class. 
A l-resilient scheme based on Computational Number Theoretic As- 
sumptions 

A specific number theoretic scheme, cryptographically equivalent to the prob- 
lem of root extraction modulo a composite, can further reduce the memory re- 
quirements for 1 - resilient schemes. This scheme is cryptographically equivalent 
to the RSA scheme [8] and motivated by the Diffie-Hellman key exchange mecha- 
nism, and the original Shamir cryptographically secure pseudo-random sequence. 
13, 93. 

The center chooses a random hard to  factor composite N = P . Q where p 
and Q are primes. It also chooses a secret value g of high index, User i is assigned 
key gi = gP*, where p ; , p j  are relatively prime for all i , j  E U. (All users know 
what user index refers to what p i ) .  A common key for a privileged subset of users 
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T is taken as the value gT = g n L e T P x  mod N Every user i E T can compute gT 
by evaluating 

ginJET-(l) p J  mod N 

Suppose that for some T c U and some j @ T user j could compute the 
common key for T. We claim that it implies that the user could also compute 9 :  
given a“ mod N and UY mod N and 2: and y one can compute a G C D ( x J )  mod N 
by performing a sequence of modular exponentiations/divisions on a2 and uY 

(see [9]). As the GCD of p j  and p h  is 1, it follows that g can be computed by 

user j in this manner. Thus, the user could compute the pj’th root of g P J  while 
knowing only the composite N .  Therefore if this is assumed to be hard, then the 
scheme is 1-resilient and we have 
Theorem3. If extractzng root modulo composites is  hard, then there exists a 1- 
resilient scheme that requires each user to  store one key (of length proportzonal 
t o  the compostie) and the center need not broadcasi any message i n  order lo 
generate a common key to  the privileged class. 
Clearly, this scheme is not 2-resilient since any two user can collude and compute 
9. 

h€T 

3 Low Memory k-Resilient Schemes 

The zero message k-resilient schemes described in the proceeding section require 
for k > 1 a great deal of memory, exponential in‘ k. In this section we provide 
several efficient constructions of k-resilient schemes for k > 1. Our schemes are 
based OR a method of converting 1-resilient schemes into k-resilient schemes. 
Throughout this section we assume the existence of a 1-resilient scheme for any 
number of users. This can be taken as the no-assumption scheme, or any of the 
cryptographic assumption variants. 

Let w denote the number of keys that a user is required to store in the 
1-resilient scheme. 1.e w = n + 1 if no cryptographic assumptions are made, 
w = logn if we assume that one-way functions exists and w = 1 if we assume 
that it is hard to extract roots modulo a composite. The efficiency of our schemes 
will be measured by how many w’s they require. 

3.1 One Level Schemes 

Consider a family of functions f l ,  . . . , f,, fi : U H (1, . . . , m),  with the following 
property: For every subset S c U of size k, there exists some 1 5 i 5 1 such 
that for all 2 ,  y E S: fii(z) # fi(y). This is equivalent to the statement that the 
family of functions { j i }  contains a perfect hash function for all size k subsets of 
U when mapped to the range { 1,. . . , m). (See [7] or [4] for more information on 
perfect hash functions.) 

Such a family can be used to obtain a k-resilient scheme from a 1-resilient 
scheme. For every 1 5 i 5 I and 1 5 j _< m use an independent 1-resilient scheme 
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R(i, j). Every user z E U receives the keys associated with schemes R(i, fi(z)) 
for all 1 5 i 5 l .  In order to send a secret message M to  a subset T C U 
the center generates random strings M ' ,  . . . , M' such that @ f = ,  Ma = M .  The 
center broadcasts for all 1 5 i 5 .l and 1 5 j 5 m the message M i  to  the 
privileged subset (z E Tl f , ( z )  = j }  using scheme R(i, j) .  Every user z E T can 
obtain all the messages M ' ,  . . . M L  and by Xoring them get M .  

The number of keys each user must store is m time the number needed in 
the 1-resilient scheme. The length of the transmission is l? . rn times the length 
of the transmission for a zero message 1-resilient scheme, equal to  the security 
parameter. 
Claim 4 T h e  scheme described above i s  a k-resil ient s cheme  

We now see what values can m and .t take. It turns out that setting m = 2 k 2  
and B = k log R is sufficient. This can be seen via a probabilistic construction. 
Fix S c U of size I c .  The probability that a random f i  is 1-1 on S is a t  least 
1 - cfg; & 2 $.  Therefore the probability that for no i we have that fi is 1-1 
on S is a t  most 1/4' = l / n Z k .  Hence the probability that for all subsets S C U 
of size k there is a 1-1 fi is at least 1 - (i) . 2 1 - 5 ,  We therefore conclude 
Theorem5. There exists a k-resil ient scheme that requires each user  t o  store 
O(k log n - w )  keys and the center  t o  broadcast O(k3 logn) messages.  Moreover,  
the scheme can be constructed eflectively wi th arbitrarily high probabili ty by in- 
creasing the scheme parameters  appropriately.  

The proof implies that against a randomly chosen subset S c U of size k we 
can have a much more efficient scheme: 
Corollary6. For a n y  1 5 k 5 n and 0 5 p 5 1 there e z i s t s  a ( k , p ) - r a n d o m -  
resilient scheme that requires each user t o  store O(log(l/p) . w) keys and the 
center  t o  broadcast O(k210g(l/p)) messages.  S imply  choose m = k 2  and P = 
logp. Moreover,  the scheme can be constructed eflectively w i t h  arbitrarily high 
probability b y  i n  creasing the scheme param el ers app ropriai  el y .  

As for explicit constructions for the family ti,. . .ff,  they seem to be at least 
a factor of k more expensive. Consider the family 

F = { f p ( z )  = z modplp 5 k2 logn and is a prime} 

F satisfies the above requirement. 
The number of keys stored per user in this explicit construction is O(k2 log n/ log log n) 

and the number of messages that the center broadcasts is O(k4 log2 n/ log log n) .  

3.2 Remarks 

After having seen the single-level schemes above, we wish to clarify certain points 
that can be discussed only after seeing an example of the types of schemes we 
deal with. We will continue with more efficient multi-level schemes in the next 
section, the remarks of this section are clearly applicable to  both single and m d t i  
level schemes. 
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Representing the Functions. In some applications using probabilistic con- 
structions is problematic because of representation problem, i.e that storing the 
resulting structure may be prohibitively expensive. However, as described above, 
our schemes do not absolutely require that the fi functions be computable, the 
user could simply be assigned f;(x). This could be chosen at random. The center 
could in fact generate all required functions from a pseudo-random function and 
a single seed. 

Alternatively, instead of using completely random functions one can use log k- 
wise independent functions such as degree log k polynomials. The results regard- 
ing the probabilistic construction remain more or less true. The advantage is that 
there is a succinct representation for the functions now. Storing such function 
representations in the user decryption devices is not much more expensive than 
storing the keys required in the above schemes. 

Reducing Storage. Suppose that we are interested in limiting the number of 
keys that a user must store (at the the expense of the number of keys that the 
center must broadcast). We can get a certain tradeoff instead of hashing to a 
range of size 2k2 we hash to range of size m = a - k2. The results that we get 
in this case are that the memory requirements are smaller by a loga factor and 
the broadcast requirements are larger by a factor of a. This is true for both 
k-resilient schemes and for (k , p)-random-resilient schemes. 

We now describe yet another tradeoff that may reduce storage requirements. 
Every R(i, j) scheme above deals with a subset of the users. If we assume that 
the fi functions can be computed by anyone (e.g., k-wise independent functions 
as described above), then the R(i , j )  1-resilient schemes can be devised SO as to 
deal with the true number of users associated with the scheme, depending on the 
underlying 1-resilient scheme, this leads to a saving in the memory requirements 
described in the scheme, at the expense of some additional computation. 

Adversary Limitations and Resiliency. A k-resilient scheme is resilient to 
any coalition of size k, this means that irrespective of how the adversary goes 
about choosing the coalition, no coalition of size smaller than k will be of any 
use to the adversary. However, the scheme is resilient to many sets of size much 
larger than k. 

The adversary may capture devices at random, in this case the random re- 
siliency measure is directly applicable. Given a (V, 1/2) randomized resilient 
scheme, the expected number of devices that the adversary must capture to 
break the scheme is at least V/2. 

A possibly legitimate assumption is that the user of the decryption device 
does not even know his unique index amongst all users. For example, the user 
index and all user secrets could be stored on a (relatively) secure smartcard, 
such a smartcard is probably vulnerable but not to a casual user. Thus, if user 
indices are assigned at random any set of devices captured will be a random set 
irrespective of the adversary strategy used. 
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The definition of (k, p )  random resiliency is somewhat problematic for two 

1.  The probability p is an absolute probability, this does not make sense if the 
underlying one resilient schemes we are using can be themselves broken with 
relatively high probability (e.g., by guessing the short secret keys). 

2. The assignment of users ids (index numbers) to users is assumed to be ran- 
dom and secret. But, it may be possible to learn the user identification by 
monitoring transmissions and user behavior. 

To avoid both these problems we define a new notion of resiliency and say that 
a scheme is (k,p)-immune if for any adversary choosing adaptively a subset 
S of at  most k users and a disjoint subset T we have: the probability that 
the adversary (knowing all the secrets associated with S) guesses the value the 
center broadcasts to T is larger by at most (additive) p than the probability the 
adversary would have guessed it without knowing the secrets of S. 

If we assume that the functions f are kept secret then the results we can 
get for (k, p)-immune schemes are very similar to the results for (k,p)-random- 
resilient schemes. However, we do not know whether this holds in general for all 
random-resilient schemes. This is true since the random constructions for both 
single level schemes and multi level schemes (described in the next section), the 
analysis fixes the subset S and evaluates the probability that it is good for a 
random construction. Since the adversary does not know the values of the hash 
functions (f, for single level schemes) when adding a user to  S ,  any choice of S 
has the same probability of being bad. 

For completeness, we note that yet another attack is theoretically possible, 
although it may be rather difficult in practice. The adversary may attempt to  
actively subvert the system by publishing a solicitation for dishonest users that 
meet certain criteria. Specifically, it would be very useful for the adversary to 
capture pairs of devices that belong to  the same 1-resilient R ( i , j )  scheme de- 
scribed above, if he captures t' pairs (a;, b;)  such that fi(ai) = f i ( b j )  then he has 
corrupted our scheme above. In this case, a true k-resilient scheme is the only 
prevention. If k is sufficiently large and the number of traitors does not exceed 
k then the scheme is secure. 

reasons: 

3.3 Multi-Level Schemes 

We now describe a general multi-level scheme that converts a scheme with small 
resiliency to one with large resiliency. Consider a family of functions fi , . . , , fr , 
fi : U - { 1, . . . , m} and a collection of sets of schemes, 

{ R W l l  5 i i I ,  1 5 j 5 m), 

where each R(i, j )  consists of I' schemes labeled R ( i , j ,  l),  . . . , R(i,  j ,  l'). These 
functions and schemes obey the following condition: For every subset S C u 
of size k, there exists some 1 5 i 5 1 such that for all 1 5 j 5 m there 
exists some 1 5 rj 5 I' such that the scheme R(i,j, r j )  is resilient to  the set 
1. E Slfi(.) = j } .  
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We claim that such a structure can be used to obtain a k-resilient scheme: 
Generate independently chosen keys for all schemes R ( i , j , ~ ) .  A user x E U 
receives for every 1 5 i 5 1 and every 1 5 r 5 I’ the keys associated with 1: in 
scheme R(i, f i ( x ) ,  r ) .  Given a subset T c U and a secret message M ,  the center 
generates: 

M i  = M and M I , .  . . , M’-l are chosen - Strings M’, . . . , M’ such that 
at  random. 

that @ill Miitj) = M i .  
The center broadcasts for all 1 5 i 5 4 and 1 5 j 5 rn and 1 5 r 5 I’ the 

message Adi”) to the privileged subset {x E T l f i ( x )  = j }  using scheme R(i, j ,  r ) .  
( i J l ( X ) )  Every user I E T can obtain for all 1 5 i 5 4 and 1 5 r 5 I‘ messages M, 

To reconstruct the message M ,  the user x E T takes the bitwise exclusive or of 
all messages transmitted to the user in all schemes to which the user belongs, 
i.e., in all schemes R(i, j, r )  such that fi(x) = j. 

The number of keys associated with user 1: is therefore the number of keys 
associated with a scheme R(i , j ,  T )  times I x 1’. The length of a broadcast is equal 
to the number of messages transmitted in an R(i, j, r )  scheme times 1 x m x 1’. 
Claim 7 T h e  scheme described above i s  a k-resil ient scheme.  

We now describe a concrete two level scheme using this method. Set C = 
2k logn ,  m = k/logk, t = 2elogk and I‘ = logk + 1. The first level consists 
of a family of C functions f l ,  . . . , f i ,  f, : U H (1, . .  . , m}.  At the second level 
we have function : U I--+ {I, . . . 2 t2 }  for all 1 5 i 5 t ,  1 5 j 5 rn and 
1 5 r 5 1’. Every such ( i l j , r )  and 1 5 h 5 2t2 defines a 1-resilient scheme 
R ( i , j ,  V ,  h )  as in the scheme of Section 3.1. Every user r receives the keys of 
schemes R(i, fj(Z),  T ,  g ! ‘ l f ’ ( x ) ) ( l : ) )  for all 1 5 i 5 l and 1 5 r 5 1’. 

- For every 1 5 i 5 1, and 1 5 j 5 m random strings M l i ’ J ) ,  ( ‘  . . . , M?”), such 

For a set S c U of size k we say that i is good if for all 1 5 j 5 rn 

2. there exists 1 5 r 5 1’ such that g?”) is 1-1 on {x E Slfi(1:) = j } .  
1. I{. E Slfi(z) = j } l  5 t .  

By Claim 7 we can show that if for every set S E U of size Ic there is a good 

We prove that randomly chosen fi and g;?’) constitute a good scheme with 

Fix a subset S c U of size k and j E { 1 . . . m}. The probability that Condition 

i ,  then the scheme is k-resilient. 

reasonably high probability. 

1 above is not satisfied is at most 

( ’  . 

Suppose that condition 1 is satisfied, then for any 1 5 r 5 I‘ the probability that 
g?”) is 1-1 on {x 6 ,!?If;(.) = j }  is at  least 1-t& = 4. Hence the probability that 
condition 2 is not satisfied is at most 1/2“ = l/2k and therefore the probability 
that Conditions 1 and 2 are both satisfied for every 1 5 j 5 m is at least 1/2. The 
probability that no i is good for S is at most 1/2! = l /nZk.  Hence the probability 
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1 that all subsets S c U of size k have a good i is at least 1 - ( i )  . 1 1 - 2. 
We therefore conclude 
Theorem8. There  exists a k-resil ient scheme that requires each user  t o  s tore 
O ( k  log k log n . w )  keys and the center  to  broadcast O(k2 log2 k log n) messages.  
Moreoirer, the scheme can be constructed eflectively w i t h  high probabili ty.  
Corollary9. For any 1 5 k 5 n and 0 _< p 5 1 there ezisls a ( k , p ) - r a n d o m -  
resil ient scheme wi th  the property  that the number of keys  each u s e r  should store 
i s  O(1og k log(l/p) w) and the center  should broadcast O(k  log2 k log( l /p)) mes-  
sages.  Moreover,  the scheme can be cons tme led  effectively wi th high probabili ty.  

4 An Example and Practical Considerations 

The schemes described in this paper are valid for all possible values of the pa- 
rameters. However, if random resiliency suffices, and if one seeks a solution to a 
concrete example then other considerations creep in. 

Say we’ve got a user group of one billion subscribers. Also, assume that our 
goal is that to discourage any possible pirate box manufacturer, and thus the 
expectation should be that he is required to capture k = 100,000 devices before 
seeing any return on his investment. 

Basing our 1-resilient scheme on the number theoretic scheme, and using 
our randomized (100000,1/2)-resilient scheme, the number of keys stored in 
every subscriber decryption device is less than 20, and the length of a broadcast 
enabling transmission is on the order of two million keys. (Vs., one billion keys 
transmitted for standard schemes). 

However, there is a major problem, with the set identification transmission. 
It seems that all subscribers will have to listen to one billion bits of set identifica- 
tion transmission without making a single error. In fact, the subscriber is apathic 
to the presence or absence of most of the users. It is only users that belong to 
the same underlying 1-resilient schemes that he belongs to that matter. Thus, 
there are advantages to splitting up users into independent broadcast encryp- 
tion schemes, determining what user gets assigned to what scheme at random. 
By appropriately resynchronizing and labeling schemes, the decryption device 
will only have to deal with the set identification transmission dealing with one 
(smaller) scheme. 

There is a tradeoff between error control issues and security. If the number of 
broadcast encryption schemes gets too large, and the resiliency gets too small, 
then the (multiple) birthday paradox enters into consideration. (We say such 
a scheme is broken if any of it’s component broadcast encryption schemes is 
broken). 

Say we split the billion users above into randomly assigned broadcast encryp- 
tion groups of 1000 users. We use a non-random 5-resilient broadcast encryption 
scheme which requires about 10 keys stored per user, and 100 keys transmis- 
sion per broadcast encryption scheme, for a total of lo8 key transmissions. The 
total random resiliency is approximately 1,000, OOO5I6 = 100,000. (The adver- 
sary must randomly select devices until he has 5 different devices from the same 
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broadcast encryption scheme). Transmissions are 50 times longer than before, 
but still significantly shorter than individual transmissions. This is a practical 
scheme since there is no longer any serious error control problem. 

Another advantage of the scheme presented in this section is that if the 
adversary is in fact successful, after collecting 100,000 decryption devices, and if 
we have captured one of the adversary eavesdropping devices, all is not lost. It is 
still a relatively simple matter to  disable all adversary devices by disabling one 
group of 1000 users, splitting these users amongst other groups, the adversary 
effort has been in vain. 
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