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Abstract. An authentication protocol is a procedure by which a n  
informant tries to convey n bits of information, which we call an input 
message, to a recipient. An intruder, I, controls the network over 
which the informant and the recipient talk and may change any message 
before it reaches its destination. a If the protocol has security p, then the 
the recipient must detect this a cheating with probability at  least 1 - p .  
This paper is devoted to characterizing the amount of secret information 
that the sender and receipient must share in a psecure protocol. We 
provide a single-round authentication protocol which requires log(n) + 
5 log( i) bits of secrecy. as well as a single-round protocol which requires 
log(n)+2 log( $) bits of secrecy based on non-constructive random codes. 
We prove a lower bound of log(n) + log(:) secret bits for single-round 
protocols. 
We introduce authentication protocols with more than one round of 
communication (multi-round protocols) and present a k-round proto- 
col which reduces the amount of secret information that the two parties 
need to 10g(~)(n) + 51og($). When the number of rounds is log'{n), 
our protocol requires 210g( f )  + O(1) bits. Hence interaction helps when 
log(n) > log( f). We also show a lower bound of log(')(n) on the number 
of shared random bits in a k-round protocol. 

1 Introduction 

Authentication is one of the major issues in Cryptography. Authentication pro- 
tocols can take on a variety of forms. The the informant and recipient may or 
may not rely on complexity assumptions (e.g. that factoring is hard). They may 
or may not wish to be able to prove to third parties that the message was indeed 
sent by the informant. For a general survey of authentication issues and results, 
the reader may refer to [8]. 

This paper deals with the simple scenario where two parties A and B com- 
municate and want to assure that the message received by 3 is the one sent by 
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A .  We provide nearly tight bounds for the case of “two party unconditionally 
secure authentication without secrecy” defined as follows. A protocol is “With- 
out secrecy” if the informant and recipient make no attempt to hide the content 
of the input message from the intruder. In many cases the intruder may know 
the input message which the informant is trying to convey and wants only to 
convince the recipient that the informant is trying to communicate a different 
message. 

If a protocol is “unconditionally secure,” with security parameter p ,  then 
no intruder, regardless of computational strength, can cheat the communicating 
parties with probability more than p .  An unconditionally secure protocol does 
not rely on complexity theoretic assumptions such as “There is no polynomial 
time algorithm to invert function f”. Note that unconditionally secure protocols 
can be used in conjunction with computational hardness based protocols. 

If we desire unconditional security then clearly the two parties must share 
some secret bits. In this paper we try to characterize the number of shared 
random bits, as a function of p ,  that the two parties must share in order to assure 
that any change made to the message will be discovered with probability at  least 
1 - p .  We distinguish between single-round and multi-round protocols. Single- 
round protocols have been investigated extensively. For this case we provide 
tight bounds on the number of shared bits up to constant factors: it is O(1ogn + 
log l / p ) ,  where n is the length of the input message. More precisely, it is between 
log n + log l / p  and log n + 2 log l / p .  

In this paper, we discuss multi-round authentication protocols, a subject 
which, to  our knowledge, has not appeared in the literature. In a multi-round 
protocol, in order to authenticate an input message, the two parties send mes- 
sages back and forth for several rounds and at the end if the (uriginal) message 
has been altered it should be detected. We provide a multi-round protocol that 
requires 2 log l / p +  O(1) bits, i.e. it is independent of the message length. Hence 
we can conclude that interaction helps, i.e that the number shared secret bits 
required by a multi-round protocol is smaller than the number required by a 
single-round, when log l /p < log n. 

We also investigate the number of rounds required to  achieve these bounds. In 
general, O(log* n)  round suffice to  achieve the 2 log 1/p bound, but no constant 
round protocol can achieve them, since we have a lower bound of log(k) n for a 
k-round protocol. 

1.1 Previous Work 

The one-round case has received a lot of attention in the literature. Gilbert, 
MacWilliams, and Sloane [4] , who were the first to  formally consider the problem, 
provided in 1974 a protocol requiring 2 max{ n, log l / p }  shared secret bits. Weg- 
man and Carter [14] suggested using c-almosi strongly universal2 hash functions 
to achieve authentication. They described a protocol that  requires O(log n log l / p )  
secret bits. 

Stinson [9] improved upon this result, using €-almost strongly universal2 hash 
functions to  produce a protocol which requires approximately (Zlog(n) + 3 - 
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2 log log( ;))(log( b)) secret bits. 
A fair amount of work has also been devoted to  the question of designing 

protocols where the probability of cheating is exactly inversely proportional to 
the number of authenticators (the information sent in addition to  the message) 
(see [3], [5], [lo], [ll], [12], [13]). Adding this constraint makes the task much 
harder. The number of secret bits required is Q(n) ,  and it is only possible to  
construct such protocols for values of p = 1. : q a prime power. 

We apply the idea of c-almost strongly universal2 hash functions to  obtain a 
near optimal one round protocol. One version of this protocol uses hash functions 
based on non-constructive codes and requires only log(n) + 2log(k) secret bits. 

As for lower bounds, still in the single-round case, Gilbert, MacWilliams, 
and Sloane [4] showed that the number of secret bits must be at  least 2 log( i), 
a factor of 2 higher than the obvious bound implied by the intruder simply 
guessing the secret bits. In 1991, Stinson [9] showed that the size of a family of 
c-almost strongly universal hash functions, mapping a set of size a into a set of 

Blum et al. [2] worked on the problem of checking the correctness of (un- 
trusted) memories. They showed that a processor who wishes to  store n bits of 
information in an untrusted (adverserial) memory must have a private, trusted 
memory of at  least log(n) bits. This lower bound argument can be converted to 
the authentication scenario considered in this paper. 

We use ideas from coding theory to improve this lower bound on single-round 
protocols to  log(n) +log(;). 

The multi-round case has not been considered previously in the literature. 
We show that allowing k rounds of interaction between the sender and recipient 
enables them to get by with as few as log(')(n) + 5 log($) bits of secret informa- 
tion, or l ~ g ( ~ ) ( n )  + 2 log( $) bits using non-constructive codes. When k = log' n 
we have a protocol requiring 21og(;) + 2 secreet bits. The protocols achieving 
these bounds reduce in every round the effective length of the message by a 
logarithmic factor. 

We obtain a lower bound of log(')(n) for k round protocols by showing that 
the existence of a k round authentication protocol using 1 secret bits implies the 
existence of a k - 1 round aut.hentication protocol using 1 + 2' secret bits. 

P 

size b ,  is at  least bcrail)+)b-o. a b - 1  

1.2 Organization of the paper 

In the next section we define the model and the parameters involved. Section 3 
describes the single-round protocols and Section 4 the multi-round protocols. 
Section 5 shows the lower bounds on the number of shared random bits, both 
for the single-rounds and for the multi-round protocols. Section 6 shows a lower 
bound on the redundancy, i.e on the the length of the authenticator (the parts 
of the transmissions that are not the input message). The full paper contains 
bounds for authentication series, i.e. schemes that are designed to  authenticate 
several messages and also a discussion on the issue of the definitions of security. 
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Some of the lower bounds proofs are not included here and will appear in the 
full paper. 

2 The Model 

Definition 1. A k-round, secrecy I ,  probability p-authentication scheme 
for a message of n bits is a protocol in which informant A and recipient 
B alternate sending each other k messages (altogether) over an insecure line 
controlled by an intruder I .  A and B share I bits of secret information and each 
of them has a separate private source of random bits. Their goal is for A to 
communicate an arbitrary n bit input message m to B. The intruder I ,  which 
has unbounded computational power, may intercept any of their communications 
and replace these communications with whatever I wishes. The intruder does 
not have to keep A and B synchronized and can feed A with a message before 
B has sent it. 

For all input messages rn: 
- If there is no interference in the transmissions, then B must output m and 

both A and B must accept with probability at least 1 - p .  
- If B receives a message m‘ # m, then with probability at least 1 - p :  A or 

B must output F A I L .  
In the first round, A sends the input message rn and authenticator XI. In 

subsequent rounds i > 1, only an authenticator xi is sent. A sends authenticators 
X I ,  x3 . . . and B sends ~ 2 ~ x 4  . . .. The adversary I receives each of these messages 
zi and replaces it with xi. B receives m’, xi, zk.. . and A receives xi, xi.. .. If 
3i : xi # xi then we say I cheats in that round. 

If A or B outputs F A I L ,  then either A or B has detected the intruder and 
knows that the message delivered in the first round may not be valid. For the 
single-round protocols it is B who detects any intrusion. For the multi-round 
protocols it may be either A or B who detects the error. Note that if we desire 
to  have both parties alerted in the case of an intrusion, then we could add the 
stipulation that, at the end of the protocol, they exchange log $ bit passwords 
which are appended to the secret string. 
Definition2. An authentication protocol P is sound, if, whenever there is no 
interference, A and B accept with probability 1. 

2.1 Synchronization 

For single-round protocols, synchronization is not an issue. The recipient simply 
waits for some authenticator, message pair to arrive and then either accepts or 
FAILS. For multi-round protocols, the intruder is able to carry on two separate, 
possibly asynchronous, conversations, one with the informant and one with the 
recipient. However, the party that is supposed to  send the message in the i+ 1st 
round always waits until it receives the intruder’s ith-round message. Therefore, 
for each of the two conversations, the protocol forces the intruder to commit to 
any possible ith-round cheating before soliciting the i + 1st round message. This 
is used in the proof of validity for our lc-round protocol. 
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3 Single-Round Protocols 

3.1 

For single-round protocols, Wegman and Carter [14] observed that we can view 
the secret shared information as a hash function, s, secretly chosen by A and B 
from a publicly known family of hash functions ‘FI. If s E 7-i then s maps the set 
M of possible input messages into the set X of authenticators. The requirement 
for the family of hash functions is that ,  given the value of a hash function at any 
one point, it must be impossible to  predict the value at any other point with 
probability greater than p .  
Definition 3. We call a hash function family 31 an +almost strongly universal2 
if Vm, m‘ E M : m # m’, Vz, y E X ,  P r s E x [ s ( m ‘ )  = X I  s(m) = y] 5 E .  

The single-round protocols which we present are based on the following idea: 
A and B choose the secret string s as a description of a member of palmost- 
universal2 family of hash functions. In order for A to send B the input message 
m , it sends the authenticator pair m,s(m). Upon receiving the pair m ’ , ~ ’ ,  B 
checks that 2‘ = ~ ( m ’ ) .  
Claim 4 The probability that the intruder succeeds in fooling B in the above 
protocol is at  most p .  
Proof: From the definition of +almost strongly universal2 hash functions, know- 
ing only the value of s (m)  for one value of m, I can guess the value of ~ ( m ’ ) ,  for 
m’ # m, with probability at  most p .  0 

€-Almost Strongly Universal, hash functions 

3.2 A Single-Round Protocol 

Theorem5. V p  > 0 ,  there is a sound single-round, secrecy [log(n)l+5[log(k)+ 
11), probability p authenticatam scheme. 
Proof: The idea behind the protocol is that  A and B share a secret hash function 
s : (0, l}n -+ GF[Q] : Q = $ chosen uniformly at random from a palmost  
strongly universal2 family of hash functions 3c such that 1x1 = nQ5. G F [ Q ]  
refers to the field containing Q elements. Given an input message m, A sends 
m,  s(m) to  B .  Since IH is palmost  strongly universalz, I has little idea what the 
value of s(m’) is for any m’ such that m’ # m. 

We now describe the construction of the palmost  strongly universal2 hash 
function s. Let C be a code C : {0,1}” -+ GF[Q]”’ with the properties: 
- Q is roughly equal t o  2 
- n’ is roughly equal t o  nQ3 
- Vml, m2, with ml # m2, C(m1) and C(m2) differ in at least 1 - p fraction 

of their entries. 
The best known construction for such a code C is described by Alon et al. 

in [l]. The shared string s = ( i , a , b )  consists of three random values where: 
i Er (1, .  .n’}, a Er GF[Q]  - { 0 } ,  b E r  GF(Q1. Using those three values s(m) is 
evaluated a4: s(m) = aCi(m) + b .  

P 

The single-round protocol P1 is: 
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PI: A Sound Single-Round, Secrecy rlog(n)l + S[log(:) + 11, 
Probability p Authentication Protocol 
A and B share random secret string s = ( i , a , b ) .  
A :  sends to B the message, authenticator pair: m,s(m) 
B :  receives m’,d and accepts rn‘ iff d = s(rn’) 

I 

To see that PI is a single-round probability p authentication protocol, we 
show: 
Claim 6 3-1 is  p-almost strongly universalz. 
Proof: Fix messages m and m’, m # m‘. Let s E, H ,  y = s(m). Let x E Q .  We 
will separate the analysis into two cases, x = y and x # y. 

1. Let x = y. Since b is chosen uniformly at random, independent of i and 
a, the distribution on i given y = s(m) = aC;(rn) + b is the same as the 
original uniform distribution on i. Due to the definition of the code C ,  we 
have: P ~ ~ ~ ~ [ ~ , . . ~ q [ C i ( m )  = Ci(m’)] 5 p .  This implies that  

PhErZ[S(rn’) = xls(m> = Y1 
= P T , E ~ B [ u C ~ ( ~ ’ )  + b = ~(rn’) = s(m) = aCi(rn) + b] 5 p 

2. Let z # y. Choose and fix random values for i and b. The distribution on 
a given the knowledge y = s(m) = aCi(rn) + b is the same as the original 
uniform distribution on a .  Since m’ # m, 

3.3 

We note here that V p  > 0, there exists a sound single-round, secrecy [log(n)l 4- 
2[log( $) + 11 ), probability p authentication scheme. 

This better upper bound on the number of secret bits is attained by using 
a smaller family of p-almost strongly universal2 hash functions based on a more 
powerful family of codes which exist, but are not necessarily constructible. 

Using probabilistic arguments one can show, as was done by Roth [7 ] ,  that 
there exists a code C* with the following properties: 

Existence of a Single-Round, Secrecy log(n) + 2 log($) Protocol 

- C’ maps (0, l}n into GFIQln‘ 
- Q is roughly equal to  $ 
- n‘ is roughly equal to nQ2 
- Vml,m2, with ml # m2, and Vyl,yz E GF[Q] ,  if 1 5 i 5 n’ is chosen at  

random, then Pri[Ci*(rnl) = y1,C:(rn2) = yz] 5 &. 
In this case, we could define s = i where s(m) = Cr(rn). 



36 1 

4 Multi-Round Protocols 

The multi-round protocols which we present in this section are based on the idea 
that  the informant can send the input message in the first round and then the 
recipient can carry on the authentication by using a k - 1-round protocol to  send 
back a small, random "fingerprint" of the input message it has received. If the 
intruder has changed the input message that the informant sent t o  the recipi- 
ent, then with a very high probability the random fingerprint computed by the 
recipient will not match any fingerprint for the message that the informant sent 
in the first round. If the intruder will not alter any message sent in subsequent 
rounds, then the informant will be aware of the bad fingerprint sent back by the 
recipient. 

4.1 The k- round  p ro toco l  

The protocol applies codes similar to  those used for the single-round protocol. 
Let Ck be a code Ck : (0 , l ) "  + GF[QkInk with the properties: 

- Q k  is roughly equal to  2" 
- n k  is roughly equal to  nQi 
- Vml,mz, with ml # m2, C'((m1) and C'(rn2) differ in at least 1 - $k 

fraction of their entries. 

P 

P k :  a &Round, Secrecy [ iog(k) (n) l  + 5[1og($) + 11, 
Probab i l i t y  2( 1 - $ ) p  Authen t i ca t ion  Protocol 
For k = 1 the use protocol PI to authenticate m. 
Otherwise: 
A and 3 share the random secret string necessary for 
a (k - 1)-round protocol on inputs of size log(n) + 4k + 4 log(;). 
A :  Send only the input message m to B 
B :  (after receiving m') 

Choose a random index, ik E,. (1 . .  .nk} .  
Use the protocol Pk-1 to send 
ik,C,k(m') to A 

A :  (after the authentication of ik,Cfk(m') is complete) 

If neither party finds an inconsistency, then ACCEPT 
Otherwise, FAIL 

Verify that C!k(m') = C,",(m) 

Theorem7. For al l  n ,  rE and 0 < p 5 1 the above protocol is  a sound k-round, 
secrecy [!0g(~)(n)1+5[log($)+11), probability 2(1-&)p authentication protocol. 

Claim 8 For all  k 2 1, Pk is  a k round security 2(1 - & ) p  authentication 
scheme. 
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Proof: We have shown previously that  PI is a single-round security p = 2 ( 1 -  
+ ) p  authentication scheme. Assume inductively that P k - 1  is a valid (k - 1) 
round security 2(1-  &)p authentication scheme. 

When I commits to  message m', I has no idea what the value of index ik will 
be. This is true because B chooses ik uniformly at  random only after receiving 
m'. If m' # m then by the definition of the code Ck, we have: 

P 
Prik  ['i", (m) # 'ak, (m'>l ?.? 

- 2.k-l 
If C;k*(m) # CfJm') then I must cheat in the second round, i.e. not send to  A 
the message (ik, C:k(m)) or I will surely be caught. If 1 cheats in the second 
round, then i t  is caught with probakility at least 1 - 2(1 - &)p.  Therefore 
the probability that I can cheat successfully is at most 2( 1 - h ) p  -t- $%i = 

Claim 9 Pk uses log('))(n) + 5 log( $) secret bits t o  au then t i ca te  m e s s a g e s  of 
l eng th  n.  
Proof: For k > 1, the number of secret bits used by P k  to  authenticate an 
hit message is the same as the number of secret bits Pk-- l  uses to authenticate 

4 
a message ( i k l  cfk(rn')) of length 4k + 41og(i) + log(n). So long as n 2 (:) , 

the length of the message decreases to roughly log(n). If n < (i) then 5 log( i) 
dominates other terms in the expression for the number of secret bits used. 0 

Corollary10. For all  n and p there  exists a s o u n d  log*(n) round, secrecy 
2 log( $1 + 2, probabili ty p au then t i ca t ion  protocol.  
Proof: We will use the protocol Pi,,+(n) except that  we modify the last level of 
recursion, using the following 1-round authentication protocol instead of Pi. 

Consider the following single-round protocol €or a message of the form m 
(2, y) where 2, y E GF[Q].  The secret string is (a ,  b )  where a ,  b E GF[&].  To 
authenticate m = ( r ,  y) send a 2 z  + ay + b .  It is not hard to verify that this is a 
protocol for messages of length 2 log &! the security of this protocol is 2/& and 
i t  uses a shared secret string of length 2 log Q. 

Set p' = p / 2  and k = log*(n) and run the protocol p k  with security P'. 
When the length of the message becomes smaller than '2log($) (as it would 
eventually), use the above one round protocol. 

2 (1-  &>P. 0 

4 

This concludes the proof of theorem 7. 0 

0 

5 Lower Bounds 

We now consider lower bounds on the number of secret bits which A and B 
require. 

Gilbert, Macwilliams and Sloane [4] showed that any single-round probability 
p authentication protocol requires at least 2 log( k) secret bits. Their argument 
was based on lower bounding H ( s ) ,  the entropy of the secret string S. They 
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showed that H ( s )  = H(sx1rn) = H(xlm) + H(slrnx), where H ( X ( Y )  is the 
conditional entropy of X given Y ,  averaged over all possible Y’s. 

Blurn et. al. [a] showed that any single-round probability p authentication 
protocol requires at least log(n) secret bits for any p < f. We improve this 
second lower bound here. 

5.1 

We now show a lower bound on the number of shared secret bits in single-round 
protocols. The bound is achieved via a reduction from an authentication scheme 
to an error-correcting code. 
Theoremll. There exists a function f such that f(z) = o(log(x)) and such 
that &re is no sound single-round, secrecy log(n) + log($) - f($), probability 
p authentication proiocol for p < 1. 
Proof: Let P be a single-round, probability p authentication protocol. The out- 
line of the proof is: 
1. We define one probability distribution Dm,z on the secret strings for each 

input message, authenticator pair, (m, x). 
2. We argue that some large subset of these distributions must be “far apart”. 
3. We convert this subset of distributions into a set of codewords which forms 

a code with high minimum distance. 
4. We use a lower bound from coding theory to show that the alphabet of the 

code (which has the same size as the set of possible secret strings) is large. 
Let L be the number of possible secret strings. We will show that Llog(L) 
at least z. 

The rest of the proof appears in the full paper. Recently, Noga Alon (private 

better lower bound, using a bound on distances for codes with maximum weight. 

Lower Bound for Sound Single-round protocols 

P 

communication) improved the lower bound to  log(n) + 21og(b) - loglog -, 1 a 
P 

5.2 

The idea behind our lower bound for k round protocols is to show that the 
existence of a Ic round, secrecy I, protocol implies the existence of a k round, 
secrecy I, protocol whose last authenticator has at most 2’ bits and that the 
existence of this second protocol implies the existence of a k - 1 round, secrecy 
I + 2’ protocol. 
Definition12. Given a conversation consisting of input message m and au- 
thenticators x1,22, . . . Xk, let the characteristic vector CV(rn, 2 1 ,  . . . xk) be 
a binary vector of length 2’ such that the sth bit, CV(m, X I ,  . . . x c l ~ ) ~ ,  is 1 iff 
the recipient of the last message accepts given that the shared secret string was 
s and that the conversation which the recipient of the last message saw was 
m, 21. . . Xk. 

Note that, for a sound protocol, if the recipient of the last message has any 
chance of accepting a conversation given a particular secret string, it does SO 

with probability 1 since it must accept all untampered conversations. 

Lower Bound for E Round Protocols 
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Theorem13. For p < 1, there is no sound k-round, probabili ty p ,  secrecy 
\10g(~)(n)J - 1) -authentication scheme. 
Proof: We will show that if there is a sound k-round (p, I )  -authentication scheme 
Pk then there is a sound k - 1-round ( p ,  1 + 2 ' )  -authentication scheme 9 - 1 .  

Claim 14 If ihere is a sound k-round ( p , I )  -auihenticatzon scheme pk jhen 
there as a sound k-round ( p ,  1) -authentication scheme & such that the length of 
the last authenticator, X k  , as 2'. 
Proof: Given pk we describe a protocol P k .  P h  is identical to P k  except for the 
last authenticator. The new last authenticator is the characteristic vector of the 
conversation that the sender of the last authenticator would have seen in Pk: 

x k  = cv(w,. . . , xi-3, X k - - 2 ,  X i .  1 , X k )  

w is the input message understood by the sender of the last authenticator. 
The recipient of ik accepts iff 

- There exists an authenticator x i  such that ik = CV(w', . . . , X k - 1 , ~ ; ) .  In 
other words, there is an equivalent authenticator which the sender of the 
last authenticator could have sent in protocol 9. Here w' refers to the input 
that  the recipient of the last authenticator understands. 

- For the shared secret string s, ( i k ) J  = 1. The recipient of the last authenti- 
cator would have accepted in P k  if s/he received x i .  
To see that P k  is a k-round (p,l)-authentication protocol, we show the fol- 

1. If 1, the adversary for the second protocol, does not interfere with any of the 
messages, then both A and B will accept and B will know the input. This is 
clear since the input m is sent in the first round and since the last message 
is CV(m, X I ,  . , . X k )  where x1 . . . X k  are the authenticators A and B actually 
send. 

2. I f f  is able to  cheat A and B in protocol P k  then given the same circumstances 
I could cheat A and B in protocol 4. 
1's strategy would be t o  behave exactly as would except that  on the 1 s t  
round I replaces X k  with any xi such that x i  = CV(w', . . . , X k - 2 ,  x c k - 1 ,  X i )  

lowing: 

0 

The proof of the theorem is now completed by defining a new k - 1 round 

Claim 15 If there exists a k round (p,l)-authentication pTOtOCOl  P i  such that 
the length o f  the Iast authenticator, x!, is IxlI = 2', then there exists a k - 1 
round ( p ,  I + 2')-authenticaiion protocol, Pk-1, 
Proof: 

protocol, 4 - 1 :  

Description of P k - 1  

- We do away with the Icth round completely by adding the advice 3 to  the 
shared secret string s where %is the last authenticator that  would have been 
sent in the conversation as it would have occurred in Pi with no interference 
from the adversary. The advice for the protocol Pk-1 consists of the original 
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1 bits of advice from protocol pk appended to this 2' bit <. We note that ,  in 
this situation, the secret string depends on the input message and possibly 
the random bits of A and B.  However this is acceptable since the lower 
bound of iog(n) presented in [2] applies to  such protocols. 

- At the end of the k - 1st round, the party who would have sent - the kth 
authenticator, xi, in protocol Pl instead checks to  see that xz = xz. 

- The party who would have received the kth message checks to  see that they 
would have accepted 3 in Pl In other words, the party who would have 
received the kth message in Pi looks at  and acts as if s/he received that.  
To show that 4 - 1  is a k - 1-round ( p ,  I + 2')-authentication protocol, we 

1. If there is been no interference by an intruder, then the party - that  would 
have sent the last authenticator in Pl will note that xi = 5;. Furthermore, 
because Pi is sound, the other party would accept q. 

2. If A and B accept an altered input message in protocol Pk-1, then the 
adversary in the protocol Pi could convince A and B to accept by acting 
= s/he would in 4 - 1  and then delivering, unaltered, the last authenticator 
xl. The recipient of the last authenticator would accept because we have 

note: 

- 
z; = z;. 

0 This concludes the proof of the theorem. 0 

5.3 Lower bounds for protocols which are not necessarily sound 

We now consider lower bounds for protocols which are not necessarily sound: 
even with no interference from the adversary, they are allowed some probability 
of failure. 

Definition 16. CV(m,  21,. . . xk)s = 1 iff the recipient of the last message would 
accept with probability 2 1/2 given the conversation m, X I . .  .Xk and secret 
string s. Otherwise CV(rn, 21 . . . xk) = 0. 
Corollary17. There is no single-round, secrecy log(n) - 1, probability p au- 
theniication protocol for p < 1/3. 
Proof: Suppose that  I < log(n). If the secret string contains I bits then there 
are at most 22' distinct characteristic vectors. Since I < log(n) then there are 
fewer than 2" characteristic vectors. Therefore, there is some input m such that 
V X I ~ X ; ,  m' : m' # m such that CV(m', 21) = CV(m, 21). 

The way we redefined characteristic vectors implies that  the probability that 
B will reject m', xi is a t  most twice the probability that  B will reject m, xi. 
Therefore, if an adversary always replaced m, z1 with m', xi, with probability 
at least 1 - 2 p  > 1 - 2 4  = 1/3  > p ,  B accepts a bad message. 

Theorem 18. For p < $&, there is no k-round, secrecy o(log(')(n))), proba- 
bility p authentication protocol for any c independent of n .  

For this section, we modify the definibiori or characteristic vector: 

So we must have p >_ 1/3.  CI 
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Proof: The proof is similar to that lower bounding the number of secret bits 
needed in a k-round sound protocol. As in the previous theorem CV(m, z1, . . . , zk) 
= 1 iff the recipient of the last message would accept with probability 2 1/2  
given the conversation has been rn, 21 . . . Z k .  This approximation leads to a pos- 
sible doubling of the error for each conversion of the k round protocol 4 to a k 
round protocol P b  which has a short last message. If the intruder I has interfered 
in conversation m, XI,. . . , xk and the probability that A and B accept in P k - 1  

is a t  least Q = $ then CV(m, X I , ,  . , Zk) = 1 and the probability that A and B 
accept in P k  is 1 5 2q. 

6 Redundancy lower bounds 

In the previous sections, we showed that multi-round protocols can be used 
to  lessen the number of secret bits that two parties need to share in order to 
authenticate an n bit message. However, in the protocols we presented, the 
number of bits exchanged, including the input message and the authenticators, 
was more than n. Here, we show a lower bound on the redundancy, the extra 
information which they have to share or transmit in order to authenticate an n 
bit input message. 
Definition19. The redundancy of an authentication protocol is equal to the 
sum of the number of authentication bits - the xi's transmitted between A and 
B - plus the number of shared secret bits. 
Theorem 20. For a n y  sound k-round authentication protocol P ,  the redundancy 
of P is at least log(n). 

This is significant since it shows that while more rounds may decrease the 
number of secret bits needed, more rounds cannot decrease the redundancy below 

Proof: Assume that the protocol P uses: t bits for the authenticators and 1 bits 
for the shared secret string. For each input message m and secret string s, define: 
- D(m, s) is the probability distribution on the authenticators that would ap- 

pear in a conversation between A and B using message m and secret string 

- Given a probability distribution D(m, s )  on t-bit strings ?F, the set of possible 

M n ) .  

s. 

authenticator sequences for (m ,  s) equals 

" W m ,  s)) = { ~ l P ~ c E D ( m , s ) [ 4  > 01 

For each possible input message m, define a vector of sets, V(m) ,  of length 
2' such that V(m) ,  = N(D(m,  s)). 

There are 2" possible subsets of all t bit strings and hence at most (2")" = 
22'+' possible vectors V(m) .  If the redundancy t + 1 is less than log(n) then the 
number of possible vectors V ( m )  is less than the number of input messages. 

By the pigeon hole principle, there would be two input messages, m, m'; m # 
m' , which have the same vector, V ( m )  = V(m'). Because the two vectors have 
the same set of possible authenticator sequences in each entry, for any s, any 
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authenticator sequence 55 which could be generated during a conversation using 
m and s could also be generated by A and B during a conversation using m' and 
s. From soundness, we know that  such authenticators must also be accepted. 
Therefore, if t + 1 < log(n), an intruder could always substitute m' for m with 
no chance of being detected. 0 
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