
The Shrinking Generator 

Don Coppersmith Hugo Krawczyk Yishay Mansour 

IBM T.J. Watson Research Center 
Yorktown Heights, NY 10598 

Abstract. We present a new construction of a pseudorandom generator 
based on a simple combination of two LFSRs. The construction bas at- 
tractive properties as simplicity (conceptual and implementation-wise), 
scalability (hardware and security), proven minimal security conditions 
(exponential period, exponential linear complexity, good statistical prop- 
erties), and resistance to known attacks. The construction is suitable for 
practical implementation of efficient stream cipher cryptosystems. 

1 Introduction 

We present a new construction of a pseudorandom generator that uses as ba- 
sic modules a pair of LFSRs. The inherent simplicity of LFSRs, the ease and 
efficiency of implementation, some good statistical properties of the LFSR se- 
quences, and the algebraic theory underlying these devices turn them into natu- 
ral candidates for use in the construction of pseudorandom generators, especially, 
targeted to the implementation of efficient stream cipher cryptosystems. Indeed, 
many such constructions were proposed in the literature. (See Rueppel’s compre- 
hensive survey on LFSR-based constructions of pseudorandom generators and 
related analysis tools [IS]). On the other hand, some of the attractive properties 
listed above are also the reason for the failure of many of these constructions 
to  meet a good cryptographic strength. In particular, the inherent linearity of 
LFSRs and the algebraic structure are many times the basis for breaking these 
systems. 

Nevertheless, due to  their technological advantages for simple hardware im- 
plementation of fast cryptosystems, LFSRs are still studied (and used!) its basic 
modules for these systems. In particular, the increasing speeds of transmitted 
information and the simple methods for LFSR parallelization and pipelining in- 
dicate that this interest is plausible to  persist in the (visible) future. In addition, 
there is no reason to  believe that good and simple constructions are impossible. 

This paper presents a construction which is attractive in the sense that it 
is very simple (conceptually and implementation-wise) and passes the minimal 
tests that such constructions require to be worth being considered. We can prove 
that  both the period and linear complexity of the resultant sequences is exponen- 
tial in the LFSR’s length, and that  these sequences have some nice distributional 
statistics (measured in a rigorous way). The construction appears to be free of 
traditional weaknesses and has stood (up to  now) several potential attacks. As 
said, these are just minimal conditions for the construction to  deserve the atten- 
tion of the cryptographic community, not a “proof” of their ultimate strength. 

D.R. Stinson (Ed.): Advances in Cryptology - CRYPT0 ’93, L N c s  773, PP. 22-39, 1994. 
0 Spnnger-Verlag Berlin Heidelberg 1994 



23 

The practical strength of such a construction can be determined only after pub- 
lic scrutiny. (A desirable goal is to have a real proof of the strength of such a 
system - i.e., a proof of the unpredictability by efficient means of the generated 
sequences. Unfortunately, such a proof is not known for any efficient pseudo- 
random generator and, moreover, such a proof will require a breakthrough in 
complexity theory. On the other hand, the theoretically well-founded approach 
of relating the strength of a pseudorandom generator to the hardness of generic 
or specific problems [4, 20) has led to  a beautiful theory and constructions but 
these are still too impractical for many real-world applications). 

1.1 The Construction 

Our construction uses two sources of pseudorandom bits to create a third source 
of pseudorandom bits of (potentially) better quality than the original sources. 
Here quality stands for the difficulty of predicting the pseudorandom sequence. 
(In general, through this paper, we use the notion of pseudorandomness and 
predictability in a rather informal way, although we rigorously analyze and prove 
some of the random-like properties of the resultant sequences). The sequence we 
build is a subsequence from the first source where the subsequence elements 
are chosen according to  the positions of ‘1’ bits in the second source. In other 
words, let ao ,q  ,... denote the first sequence and so,sl ,... the second one. 
We construct a third sequence ZO, z1,. . . which includes those bits a, for which 
the corresponding si is ‘1’. Other bits from the first sequence are discarded. 
(Therefore, the resultant sequence is a “shrunken’ version of the first one). 
Formally, for all k = 0 , l . .  . ., Zk = ai,, where zk is the position of the k-th ‘1’ 
in the sequence SO, s1,. . .. We call the resultant pseudorandom generator, the 
shrinking generator (SG) . 

This generic idea can be applied to any pair of pseudorandom sources. Here 
we analyze the construction where the two sources are generated using Linear 
Feedback Shift Registers (LFSR). LFSRs are very well known structures con- 
sisting of a shift register controlled by a clock, which at each clock pulse outputs 
its most significant bit, shifts its contents in the most significant direction and 
inputs a bit to its less significant position. This feedbock bit is computed as a 
linear combination (over GF(2)) of the bits in the shift register. This linear com- 
bination can be fixed (e.g. wired in a hardware implementation) or variable. In 
the latter case, the linear combination (or connecfiom) is defined by a binary 
vector of the length of the LFSR. (In a hardware implementation this is achieved 
using, in addition to  the shift register, a programmable control register which 
determines the shift register cells that are connected to the XOR circuit). 

We denote by A the first LFSR in our construction, and by S (for Selector) 
the second one. IAl and IS1 denote their lengths and the sequences they produce 
(after fixing the connections and initial contents of the registers) are denoted 
ao,q , .  . . and so, s1,. . ., respectively. We also refer to  these sequences as A- 
sequence and S-sequence. Finally the resultant shrunken sequence is denoted by 



24 

This construction is well defined for both fixed and variable connection LF- 
SRS. In general, we recommend the use of variable connections both for security 
and flexibility. This issue is discussed throughout this paper in the appropriate 
places. Let us mention that in the case of a fixed connection implementation 
only the seeds (i.e., the initial contents of the shift registers) for the LFSRs A 
and S constitute the secret key for the pseudorandom generator (or the encryp- 
tion/decryption key, when used as a stream cipher). If variable (programmable) 
connections are used then the value of these connections is also part of the key. 

1.2 Properties 

We analyze some of the properties of the resultant LFSR-based shrinking gener- 
ator. We show that the period of the 2-sequences is exponential in both IAI and 
(SI, and that its linear complexity is exponential in ISl. The linear complexity 
of a sequence is the length of the shortest LFSR that generates that sequence 
(or equivalently, the shortest recursive linear dependence over GF(2) satisfied by 
the sequence bits). The importance of this property is that sequences with low 
linear complexity are easily predictable (see section 2) and constructions based 
on LFSRs tend to  preserve much of the linearity inherent to LFSRs. The above 
properties equally hold for fixed or variable connections, On the other hand, our 
statistical analysis of these sequences takes into account variable connections 
(chosen with uniform probability over the set of primitive connections’). We 
show that the space of resultant sequences has some of the necessary statistical 
properties €or a pseudorandom generator: low correlation between the sequence 
bits, normalized appearance of 0’s and l’s, and balanced distribution of subpat- 
terns. Our statistical analysis uses Fourier analysis and €-biased distributions 
as the main tools. The period and linear complexity bounds are proven mainly 
through algebraic techniques. 

We stress, again, that all these properties are only necessary (but far from 
sufficient) conditions on the cryptographic strength of the pseudorandom gener- 
ator. They just show that the elemental goals for an LFSR-based construction 
are achieved, namely, the destruction of the linearity while preserving the good 
statistical properties. 

In section 4 we present some attacks and analyze their effect on our con- 
struction. These attacks work in time exponential in the length of register s, 
and indicate an effective key length bound of about half of the total key length. 

Practical considerations regarding the implementation and practical use of 
our generator are discussed in section 5.  In particular, we show how the problem 

Connection vectors for LFSRs are closely related to polynomials over GF(2). Best 
connections for LFSRe are those which correspond to primitive polynomials of the 
same degree a8 the LFSR’s length. In that case, the sequence generated by the 
LFSR has maximal length, namely, a period of 2“ - 1, where n is the length of the 
register (91. Throughout this paper we implicitly assume a construction of the SG 
using primitive connections. Such connections are easy to find using probabilistic 
methods, e.g. see [17j. 



25 

of irregular rate of the output bits present in our basic scheme can be solved at 
a moderate cost in hardware implementation. 

Finally, in section 6 we discuss some existing alternative constructions and 
their relation to the shrinking generator. 

2 Period and Linear Complexity 

In this section we prove exponential bounds on the period and linear complexity 
of sequences produced by the shrinking generator. In the case of the period this 
bound is tight; for the linear complexity there is a gap by a factor of 2 between 
the lower and upper bound. 

The importance of a long period is to avoid the repetition of the sequence 
after short period of times. An exponentially large linear complexity avoids one 
of the more generic attacks on pseudorandom sequences and/or stream ciphers. 
There is no need to  even know the way a sequence is generated in order t o  
break it through its linear complexity. Any sequence of linear complexity 1 can 
be entirely reconstructed out of 2f known bits by using the Berlekamp-Massey 
algorithm, which in time 0(L2) finds the shortest linear dependency satisfied 
by the sequence (a-priori knowledge of the value of L is not necessary). See, 
e.g. 13). (On the other hand, high linear complexity by itself is far from being 
an indication of the sequence unpredictability. It suffices to mention that the 
sequence 00 ... 001 has linear complexity as the length of the sequence). 

Our results on the period and linear complexity of sequences generated with 
the shrinking generator are stated in the next theorems. 

Theoreml. Let A and S f o r m  a shrinking generator 2. Denote by TA , Ts, 
the periods of the A-  Ond S-  sequences Tespectively. If 

- A and S are maximal length (i.e. have primitive connections) 
- ( T A ,  TS) = 1 

then the shmnken sequence 2 has period TA - 2lSl-l = (21Al - 1) . 2lsl-I .  

Note: S must not be of maximal length. In the general case the period of the 
Z-sequence is TA'WS, where Ws is the number of 1's in a full period of S. If both 
A and S are of maximal length then the condition (TA,Ts) = 1 is equivalent 
to (IAI,ISl) = 1. For the next theorem S may also not be a maximal length 
sequence but we do need that WS be a power of 2. 

Theorem2. Under the conditions of Theorem 1, the shrunken sequence 2 has 
linear compZezity LC, where IAI - 21sl-2 < LC IAI. 2lsI-' 

In the following proofs of theorems 1 and 2 we use some well-nown algebraic 
facts about sequences produced by LFSRs. These properties can be found in 
many textbooks (e.g. [9, 141). 
Notation: For the sake of readiness we use the following notation through these 
proofs: a( i )  denotes the A-sequence, s ( i )  the S-sequence, and z ( i )  the shrunken 

V 



26 

sequence 2. By k; we denote the position of the i-th ‘1’ in the S sequence. In 
other words, Vi ,z ( i )  = a ( k j ) .  We denote by Ws the number of 1’s in a full period 
of S. For a maximal length sequence S this number is Zlsl-l. 
Proof of Theorem 1: 
Assumption: For simplicity of the proof we assume 

IS\ 5 TA ( i . e .  IAI > bg1Sl). (1) 

The following fact is immediate from the definition of the shrunken sequence 
2. Fact 1: Advancing Ws elements in the sequence t results in advancing Ts 
elements in the sequence a. Formally, z ( i  + Ws)  = a(ki + Ts). 
In general, for all j = 0,1,. . ., 

z ( i  + jWs) = a(k; + jTs). (2) 

Fact 2: Let k and k’ be any pair of indices. If for all j :  a(k+jTs) = a(k’+jTs), 
then TA divides k - k’ . 
Proof: Because of the A-sequence being of maximal length and (TA, Ts) = 1 
then the sequence a(k + jTs) , j = 0,1,. . . , is also maximal length and thus its 

Denote by T the (minimal) period of the sequence z. Clearly, the sequence 
t becomes periodic after TA Ws elements (since then both sequences a and 
s simultaneously complete a period). Therefore, T divides TA - WS . We now 
proceed to  show that TA - WS divides T.  
By definition of T ,  for all i , z(i) = z ( i  + T) .  In particular, for all i and j ,  
z(i + j W s )  = t ( i  + T + jWs). Using (2) we get, for all i and j : a(ki  + jTs) = 
a(ki+T +jTs) .  Using Fact 2, we have 

Y i ,  TA divides k i + ~  - ki. 

period is TA . 0 

(3) 

Next step is to show, that  (3) is possible only if WS divides T.  We reformulate 
(3) as: 

vi,I j;  : k;+T = ki + j i T A  

ki+l+T = ki+l + j i + l T A  

(4) 

( 5 )  

(6) 

Putting i + 1 instead of i in (4) we get 

Subtracting (4) from ( 5 )  we get: 

vi, ki+T+l - k+T = ki+l - ki + ( . i i + I -  . i i )T~-  

Notice that  k i + ~  and ki+T+1 , as well as ki and ki+l , are the positions of 
consecutive 1’s in the S-sequence. If j,+, - ji would be different than zero, it 
would imply the existence of at least TA consecutive zeros in the S-sequence, 
which is impossible by assumption (1). Therefore we get j,+l - j ;  = 0 , and then 
for all i, k i + ~ + ~  - k ; + ~  = ki+l - k; . 
The later implies that  the subsequence of s starting at s (k i )  is identical to the 
subsequence starting at s ( k i + T ) .  This means that 2’s divides k ; + ~  - k; , or 



27 

equivalently, that  the number of eiements in the S-sequence between s (k i )  and 
s ( k i + ~ )  is a multiple of its period. But then the number of 1’s in this segment 
is a multiple of Ws. On the other hand, the number of 1’s is exactly. T, thus 
proving that Ws divides T. 

Let t be such that 
T = tws. (7) 

($1 
We have, for all j :  

a&) = t(0) = z ( jT )  = z(j tWs) = a ( h  +j tTs ) .  

Last equality follows from (2). We got that for all j : a(lc0) = a(ko +jtTs). This 
implies that TA divides tTs , and since (TA,Ts) = 1: then TA divides t .  From 

0 
The lower bound in the following proof of Theorem 2 is derived using the 

(7) we get TA . Ws divides 2’. 

proven exponential period through an elegant technique from Gunther [lo]. 
Proof of Theorem 2: 
Upper bound on the linear complexity: Let z denote the variable corre- 
sponding to  the sequence 2. To show an upper bound on the linear complexity 
of the sequence 2 it suffices to  present a polynomial P ( - )  for which P ( t )  = 0 (i.e. 
the coefficients of P represent a linear relation satisfied by the elements of 2). 
The variable zws denotes the sequence Z decimated by Ws, i.e. the sequence 
z(jWs), j = 0,1,. . . Fact 1 in the proof of Theorem 1 states that this decimation, 
written in terms of the A-sequence, results in a sequence of the form a(i  + jTs).  
Since we assume (Ts, TA) = 1, the latter is a m e a l  length sequence with same 
linear complexity as the original A-sequence, and then it satisfies a polynomial 
Q ( - )  of degree IAI. But then also the decimated sequence zws satisfies the poly- 
nomial, i.e. Q ( z w s )  = 0. Therefore, we have found a polynomial P ( t )  = Q(zws)  
of degree IAI - Ws, such that P ( t )  = 0, and then the linear complexity of the 
2-sequence is at most IAl - lWsl = IAI 2lSl-l. 
Lower bound on the linear complexity: Let M ( z )  denote the minimal poly- 
nomial of z. Since the sequence 2 satisfies Q(zws)  = 0, we have that M ( z )  
must divide Q ( z w S ) .  Since Ws = 21s1-1, we have Q(zws) = Q(t2”’- ’ )  = 
(Q(Z))~”’-’ ,  and then M ( z )  must be of the form ( Q ( z ) ) ~  for t 21sl-1. As- 
sume t < 21sl-2. Then, M ( z )  divides ( Q ( Z ) ) ~ ’ ~ ’ - ’ .  Since Q ( z )  is an irreducible 
polynomial of degree IAI it divides the polynomial 1 + x T A .  Therefore, M ( z )  

, but then the period of 2 is at most divides (1 + z ) 
TA - 21sl-’ contradicting Theorem 1. Therefore, t > 2isl-2 and the lower bound 
follows. 

T A  2lS1-’ - - 1 + zTA’2’s1 -2  

3 Statistical Properties 

3.1 Background 

In this subsection we bring the required background on the techniques used in 
our analysis of the statistical properties of the shrinking generator; specifically, 
the notions of Fourier Transform [for Boolean domains) and &-bias distributions. 



28 

Fourier Transform Boolean functions on n variables are considered as real 
valued functions f : (0, l}n --+ {-1,1}. The set of all real functions on the cube 
is a 2*-dimensional real vector space with an inner product defined by: 

< s,f >= 2- c f ( M 4  = W f )  
z€{O,l)” 

(where E is expectation) and as usual the norm of a function is defined: I )  f 11 = 
d m ,  which is the Euclidean norm. 

, n}, 
define the function X S :  

The basis of the cube Z; is defined as follows: For each subset S of (1, 

+I if CiEsx; is even 
-1 if xiEs x, is odd 

The following properties of this basis functions can be easily verified: 

- For every A, B: X A X B  = X A A B ,  where AAB is the symmetric difference of 

- The family {XS} for all S c { l . - . n ]  forms an orthonormal basis, i.e., if 
A and B.  

A # B ,  then < X A ,  X B  >= 0, and for every A, < X A ,  X A  >= 1. 

Any real valued function on the cube can be uniquely expressed as a linear 
combination of the basis functions, i.e. ~ s c s x s ,  where cs are real constants. 
The Fourier transform of a function f is the expression of j as a linear combina- 
tion of the xs’s. For a function f and S C { 1, - .  , n}, the S’th Fourier coefficient 
of S denoted by f(S) is what was previously called cs ,  i.e., f = Cs f*(S)xs .  

Since the xs’s  are an orthonormal basis, Fourier coefficients are found via: 

f(S) =< f , x s  > 

f(S> = P,[f(,) = @iGS%I - P,[f (4 # @iESZi] 

For boolean f this specializes to: 

where z = (XI, 22,. . . , z,,) is chosen uniformly at random. 

€-biased Distributions We consider a distribution function as a function from 
(0, l}n to  the interval [0,1]. Given aprobability distribution p, then c, p ( x )  = 1 
and p(x) 2 0. We can treat p as any other function, and consider its Fourier 
coefficients. For example the uniform distribution is V ( x )  = &, which implies 
that U ( S )  = 0, for S # 8, and d(@) = $. 

A distribution is &-bias if it is “close” to the uniform distribution in the 
following sense. 

Definition3. A distribution p over (0, l}n is called an €-bias distribution if for 
every subset S c ( 1 . .  . n}, Ifi(S)l 5 ~ 2 - ” .  



29 

The notion of &-bias distribution was introduced in [16], the main motivation 
being the derandomization of randomized algorithms, and the construction of 
small sample spaces that approximate the uniform distribution. 

The following theorem from [l] connects LFSRs and €-bias distributions. 

Theorem4. ([I]) Consider the distribution D(m, n) of strings of length n out- 
put b y  a LFSR A of length m, where the connections for A are chosen with 
uniform probability among all primitive polynomials over GF(2) of degree m, 
and the seed for A is chosen uniformly over all non-zero binary strings of length 
m. Then, V(rn,n) is an *-bias distribution. 

Definition5. Let f be a function from (0,l)" to the 
W f )  = cs I m l .  

The following lemma relates €-bias distributions and 

real numbers. Define 

the norm Ll(f). (See 
[13].) The function f can be seen as a test for distinguishing the distribution ,u 
from the uniform distribution. The lemma states an upper bound on the quality 
of distinction, and therefore it is useful for tests of pseudorandomness. 

Lemma 6. ("131) 

where U is the uniform distribution and ,u is an €-bias distribution. 
I E U [ f l  - E,[fll I ELl(f)  

Proof. By simple arithmetic 

Here we used the fact that  each j i (S)  is bounded by E. 0 

L, norm Lemma 6 is useful if we can upper bound the value Ll(f). In this 
section we present some methods for bounding the L1 norm of a function. The 
following technical Lemma gives a tool for doing that. 

Lemma7. Let f end g be functions from {O,l}n to the real numbers. Then, 
A1 (f 9) 5 L1 (f)L1(9) and -L1 (f + s) 5 L1 (f) + LI(9). 

For many simple functions we can show that the L1 is small. Here are a few 
examples. 



30 

Lemma 8. 

- L e t  sum(z) = xy=l xi, t h e n  Ll(sum) = n. 
- Let AND(x) = niq, t h e n  L l ( A N D )  = 1. 
- For B E {O,l,*}n we define a template tempIateB(z) = 1 ifl x and B 

agree o n  each 0 OT 1 in B ,  i.e. f o r  each bi # * then  bi = xi. (FOT example 
template,,,l,(lO1lO) = 1 while template,,,,,(00110) = 0,) For any  B E 
(0, l,*}n t h e n  Ll(templateB) = 1. 

Proof. For the s u m ,  we can rewrite it as n/2+Ci xii}(z)/2. Using the additivity 
of the L1 the claim follows. 

Note that the AND function is either 0 or 1 (and not Ifl). We rewrite the 
A N D  to be 

i=l fI - x 2 1 i } ( x )  
Note that L1( l - x ~ l ( z ) )  = 1, and the claim follows from the multiplicative prop- 
erties of L1 (see Lemma 7). 

For templateB(.) the proof is the same as for the AND function. We rewrite 
the function as, 

and again we use the multiplicative property of the L1. 0 

3.2 

In this subsection we show that LFSR with variable connections have many 
properties that resemble random strings. In fact the only property that we use 
is that LFSR where the connections are chosen at random generates an €-bias 
distribution, with exponentially small E (see Theorem 4). 

Theorem9. Let  A be a n  LFSR where the connections for A are chosen with 
a n i f o m  probability among all primit ive  polynomials of degree m over GF(2). 
L e t  X be the sum of n diflerent bits il, . . . , i, in the  A-sequence (we assume 
that  ij 5 2m - 1). Let  Y = c:=, yi  where y, are i . i .d.  ( 0 , l ) - r a n d o m  variables 
and P r o b [ y ;  = 11 = 112. T h e n ,  the ezpected value of X is at  most $. T h e  
difference between the variance of X and Y is bounded by  F. Furthermore, 
lEIXk] - EIYk]l 5 $. 
Proof. By definition X = sum(ail ,... ,a;") .  By Lemma 8, L 1 ( X )  = n. Also, 
Li(X2) 5 n2 and L1(Xk)  5 nk. The theorem follows from Theorem 4 and 
Lemma 6. 

The following theorem applies the ideas of a general template to  an LFSR 
sequence and shows that  the probability that the template appears is close to  
the probability it appears in a random string. 

Applications to LFSR with variable connections 



31 

Theoremlo. Let A be a n  L F S R  where the connections f o r  A are chosen with 
uni form probability among all primitive polynomials of degree m over GF(2). 
Let X be the f irs t  n output bits of A and Y a random string of n bits. Let 
B E {0,1, +}" be a template. T h e n  

n 
2m 

IE[templateB(X)] - E[templateB(Y)]l 5 -. 

Proof. By Lemma 8,  we have that Ll ( t empla teB)  = 1. By Theorem 4 the string 
X is an &-bias distribution, with E 5 $. The theorem follows from Lemma 6. 
0 

When we will consider the selector register S of the shrinking generator it 
would be important to argue how many bits we should consider in order to 
generate k output bits. The following theorem shows that the expected number 
is O ( k ) .  

Theoremll. Let  S be a n  L F S R  where the connections fo r  S are chosen with 
u n i f o n n  probability among all primitive polynomial3 of degree m over GF(2). Let 
i k ( S )  be the location of the k t h  1 bit  in S ,  then the ezpectation 

The proof of the above theorem will be given in the final version. 
Remark: Note that all the proofs in this subsection were based only on the 
&-bias properties, and therefore would hold for any &-bias distribution. 

3.3 

In this subsection we apply the results in the previous subsection to the shrinking 
generator. Basically we show that the good random-lilre properties that e ~ t e d  in 
LFSR with variable connection remain in the shrinking generator. (Clearly, the 
shrinking generator has other essential properties not present in LFSR sequences, 
e.g. the exponential linear complexity.) 

The following is a simple corollary of theorem 9, which states that the mo- 
ments of the output of the shrinking generator are very close to  the moments of 
a random string. 

Applications to the Shrinking Generator 

Corollary 12. Let 2 be a sequence generated by a shrinking generator with reg- 
isters A and S .  Let  X be the s u m  of consecutive n bits in the Z-sequence (we 
assume that nlSl 5 2IAl). Let Y = Cy=lyi where yi are i.i.d. (0,l)-random 
variables and P.rob[y; = 11 = 1/2. Then, the ezpected value of 1x1 is at most  
&. T h e  difference between the variance of X and Y is bounded by $#. Fur- 
thermore, lEIXk] - EIYk]l 5 &. 
Proof. Fix a specific S-sequence. The consecutive n bits in 2 were generated by 
some n non consecutive different bits in the A-sequence, denote their indeces in 
this sequence by 21,. . . ,in- Since nlSl 5 2IAl, we are in the same period of A, 



32 

i.e. ij 5 2IAl - 1. Since X is the sum of those bits, the corollary follows from 
Theorem 9. 

The following theorem shows that each template is distributed similarly in 
the output of the shrinking generator and a random string. 

Theoreml3. L e t  2 be a sequence generated by a shrinking generator w i th  reg- 
isters A and s. L e t  X be t h e  f i r s t  n bits in 2 and Y be a r a n d o m  str ing of n 
bits. L e t  B E { O , l ,  *}n be a template .  T h e n  

n 
214 I E [ t e m p l a t e B ( Z ) ]  - E [ t e m p l a t e B ( Y ) ] (  = O(-). 

Proof. The bits of X come from the first in(S) bits of A, where in(S)  is the index 
of the n th  ‘1’ bit in the S-sequence. Given S and B we can create a template 
B, of size in(S) for A (we simply put * in any location that S is 0, and copy B 
in the locations where S is 1). 

Note that  t e m p l a t e B ( X )  = t e m p l a t e B s ( A ) ,  once we fix S. Therefore it is 
sufficient t o  bound 

C P T O ~ [ S ]  ( ~ A [ t e m p l a t e ~ , ( ~ ) ~  - E Y [ t e m p l a t e B ( Y ) J I .  

By Theorem 10 the difference between the expectation is bounded by i n ( S ) / 2 I A 1 .  
Therefore, 

S 

The last identity follows from Theorem 11. 0 

We now show some interesting applications of the above theorem. First we 
consider correlation between pairs of output bits. The correlation between two 
bit positions is the difference (in absolute value) between the probability that 
the two bits are equal and the probability that they differ. 

Corollary 14. L e t  2 be a sequence generated by a shrinking generator w i t h  reg- 
is ters  A and  S .  Let X,,X2 be two bits i.n t he  2 - sequence  t h a t  are a t  distance 1. 
T h e  correlation between XI and  X2 is bounded by  O(&). 

proof. Simply use the four templates c l m u z ,  where ~ 7 1 , ~  E (0, l}, and 
apply Theorem 13. 

The next corollary shows that  the distribution of patterns is almost uniform. 

C O r O & ~ y 1 5 .  L e t  P be any b inary  s tr ing (pat tern)  of k bits and le t  Xk be t h e  
consecutive bits in the  2-sequence.  T h e  probability that xk = P is in t h e  range 

L 

2 - k  f O(&). 

Note that this corollary is a special case of Theorem 13. 



33 

4 Attacks 

In this section we present some attacks on the shrinking generator. These attacks 
indicate an effective key length of the length of register S, or about twice this 
length if the connections for the registers are part of the key (i.e. the connections 
are variable and secret). More details on these and other attacks will be presented 
in the final version of this paper. 

4.1 Attacking through S 
If the connections for both S and A are known then one can exhaustively search 
for S’s seed; each such seed can be expanded to  a prefix of the S-sequence using 
the connection of S. Let n = 1AI and suppose we expand the S-sequence until its 
n-th ‘1’ is produced. From this prefix, and from knowledge of a corresponding 
n-long prefix of the 2-sequence, one derives the value of n (non-consecutive) 
bits in the A-sequence. Since A’s connections are known then A’s seed can be 
recovered given these n bits by solving a system of linear equations (in general, 
the dimension of this system is about n/2 since about half of the seed bits - 
corresponding to  1’s in S - are known). Therefore the attack’s complexity is 
exponential in IS1 and polynomial in IAI, or more precisely, O(2IsI - ]A[’). 

If the connections of A are secret aa we recommend, then the above procedure 
does not work since in order to write the system of equations one needs to  know 
these connections. In this case the following attack avoids doing an exhaustive 
search on A’s connections. This attack tries all possible seeds and connections 
for S (assuming S’s connections are secret). Each pair of seed and connections 
for S is used to  expand the seed into a t-long prefix of the S-sequence, for 
some integer t. With this prefix and sufficiently many bits (about t / 2  bits) from 
the 2-sequence (known plaintext) it is possible to generate the first t bits of the 
product sequence p i  = aissi. (Notice that bits from the A-sequence corresponding 
to positions of 1’s in the S-sequence are known using the known part of the Z- 
sequence, and positions in which the s i  = 0 are also 0’s in the product sequence). 
The interesting property of this product sequence is that its linear complexity 
is at most IAI - IS1 (see [IS]) and therefore having t = 2 .  (A1 * IS1 in the above 
attack suffices to  find the whole product sequence p i .  The cost is quadratic in 

ISl. This information together with the S-sequence, which is known, permits 
deriving the full sequence Zi. Therefore the cost of the attack is the number of 
seeds and connections to  be tried for S (about 2zlsl/[S() times the complexity 
of recovering p ;  through its linear complexity (i.e. O( (IAl- ISl)2)). The necessary 
amount of plaintext (i.e. bits from 2)  is IAl. IS[. As before this attack indicates 
an effective key length of a t  most twice the length of S, or about half of the total 
key length. 

4.2 Linear Complexity 

Attacking the SG through its linear complexity requires the knowledge of an 
exponential in 15’1 number of bits from the sequence, more precisely, 2lSl-’ * IA] 



34 

bits at least (see Theorem 2). On the other hand, the typically quadratic work 
that  takes to  derive the sequence from a prefix of that length is not necessary 
here. Having 21sl.lAl consecutive bits from the sequence one can derive the whole 
sequence. The proof of Theorem 1 indicates that a decimation of the 2-sequence 
by factors of Ws = 2l’l-l implies the decimation of the A-sequence by a factor 
of Ts = 21sl - 1. Therefore, from z ( i  + jWs) ,  j = 0,1,. . . ,2 . [A /  - 1 one derives 
z ( i  +jWs), for all j .  

The complexity to  break the whole sequence in this way is 0(21sl.JA)2) (even 
if the connections are secret). In addition to  this computational complexity this 
attack requires 21’1 + 1Al consecutive bits from the sequence. In any case, the 
parameters for the SG should be chosen such that collecting this many number 
of sequence bits be infeasible. 

4.3 Other Attacks 

The more traditional attacks on LFSR-based construction seem not to  apply to 
our construction due to  its different nature. These attacks include the analysis 
of boolean functions used for the combination of LFSR outputs, the correlation 
of generated bits relative to  subcomponents in the system, and others (See [18] 
for more details on these attacks and their applications). 

It is worth mentioning that a typical weakness of LFSR-based systems is 
encountered in implementations where the connection polynomials are chosen 
to  be very sparse (i.e. only a few coefficients chosen to  be non-zero). In this 
case, special attacks can be mounted taking advantage of this fact. We recom- 
mend not to  implement any of these systems in such a way, including ours. (In a 
hardware implementation having sparse connections may be advantageous only 
if the connections are fixed). On the other hand, most of these attacks will work 
not only if the connection polynomial itself is sparse, but also if this polyno- 
mial has a multiple of moderately large degree which is sparse. We can mount 
special attacks on our system against such sparse multiples, although they are 
all exponential in (5’1. Again these attacks are more relevant to  fixed connection 
implementations, where heavy preprocessing can be done against the particular 
connections, than in the case of variable connections. 

5 Practical Considerations 

5.1 Overcoming Irregular Output Rate 

The way the SG is defined, bits are output at a rate that depends on the ap- 
pearance of 1’s in S output. Therefore, this rate is on average 1 bit for each 2 
pulses of the clock governing the LFSRs. This problem has two aspects. One is 
the reduced throughput relative t o  the LFSRs speed, the other the irregularity 
of the output. We show here that this apparently practical weaknesses can be 
overcome at a moderate price in hardware implementation (on the other hand, 
these “weaknesses” give most of the cryptographic strength to  this construction). 



35 

We stress that this hardware cost is usually less than the required for adding 
more LFSRs (even one) to  the construction (as many constructions do). 

In order to  achieve an average of 1 bit per clock pulse, the LFSRa can be 
easily speeded up with a very moderate cost in hardware: only the XOR tree is 
to  be replicated (this is true also if the connections are variable!). Notice that 
whether this speed-up is necessary depends on the relation between the LFSR 
clock speed and the required throughput from the SG (e.g., when used in a 
stream cipher system this throughput depends on the data speed). If the clock 
is fast enough this speed-up may be not necessary at all. On the other hand, for 
fast data encryption a speedup mechanism may be necessary regardless of the 
reduced throughput of our construction. 

The problem of irregular output rate can be serious in real-time applications 
where repeated delays are not acceptable. Fortunately, this problem can be also 
solved at a moderate cost. The solution is to use a short buffer for the SG 
output intended to  gather bits from the SG output when they abound in order 
to  compensate for sections of the sequence where the rate output is reduced. In 
[ll] Markov analysis is applied to  analyze the influence of such a buffer for the 
output rate of the SG. It is shown that even with short buffers (e.g., 16 or 24 bits) 
and with a speed of the LFSRs of above twice the necessary throughput from the 
SG the probability to  have a byte of pseudorandom bits not ready in time is very 
small. (Examples are a probability of 5 - for buffer of size 16 and speedup 
factor of 9/4, or a probability of 3-10d7 for a buffer of size 24 and speedup factor 
of 10/4. These probabilities decrease exponentially with increasing buffer sizes 
and speedup factors). We note that in most implementations of stream ciphers, 
some buffering naturally exist because of data coming in blocks of a given size 
(e.g depending on the bus width). Therefore the above technique may add none 
or very little bits to the buffer size. In many cases the above small probabilities of 
delayed pseudorandom bits is affordable. In cases it is not, we propose filling the 
missing bits with arbitrary values (e.g. alternate 0’s and 1’s) which can hardly 
hurt with a miss probability of 3 - or so. An alternative (but somewhat less 
simple) heuristic solution is to periodically buffer some bits of the A-sequence 
corresponding to 0’s in S in order to use them for filling the missing bits in case 
of need. 

5.2 Fixed vs. Variable Connections 

Throughout the paper we have recommended several times the use of variable 
connections for the LFSRa A and S. Although variable connection do not influ- 
ence the period and linear complexity of the resultant sequences, their advantage 
is apparent from the attacks discussed in section 4 (e.g., to avoid attacks using 
heavy precomputation for analyzing the particular connections, or the prepara- 
tion of big preprocessing tables), and from the statistical analysis of section 3. 
They may be also beneficial in standing future attacks to  the system. 

In addition to these security advantages, using variable connections provides 
a large degree of flexibility to  the construction (this is true for other LFSR- 
based constructions as weIl). Through the programming of these connections the 



36 

security of the sytem can be tuned down or up with no change in the hardware. 
This is most important for systems where versions of different security levels use 
the same physical device (e.g. cryptographic systems sold in different countries 
with different levels of permitted security). Tuning down the security is done 
through a virtual shortening of the registers by loading zeros into the most 
significant locations of the connection registers. 

We stress that while there is a cost in hardware associated with the con- 
nection registers, this cost is compensated with the possible choice of shorter 
registers when using variable connections, and by the above advantages. More- 
over, having shorter registers implies having shorter seeds. The latter are the 
part of the key which keeps changing with bit generation while the connections 
are kept unchanged for long periods. Having shorter seeds help the key man- 
agement and synchronization aspects (especially, when used in a stream cipher 
cryptosystem). 

6 Discussion and Related Work 

LFSR-based constructions are encountered today in many practical systems, es- 
pecially for implementation of stream ciphers. Because of their conceptual and 
implementation simplicity they will keep being attractive; in particular, since 
they are simple to parallelize and pipeline they are natural candidates for high 
speed encryption, too. Moreover, LFSRs are widely used in non-cryptographic 
applications (coding, CRCs, whitening, etc), and then it’s plausible to have new 
technologies supporting the construction of efficient LFSRs. In addition, LFSR- 
based constructions have the important practical property that the amount 
of required hardware can be traded-off against different levels of security; on 
the other hand, same hardware can handle different levels of security (see Sec- 
tion 5.2). From a theoretical point of view, it is puzzling whether such simple 
constructions may have a good cryptographic strength. For all these reasons it 
seems important to have some good construction(s) well evaluated by the cryp- 
tographic community. The one presented in this paper may be a good candidate 
for evaluation, as it compares to the best existing alternatives, and may have 
the potential t o  prove better. 

Interesting examples of existing LFSR-based constructions for comparison 
with the shrinking generator are Gunther’s alternating step generator [lo], and 
some of the clock-controlled generators discussed in [8], in particular the 1-2 
generator. They have similar proven properties as ours, but both are develop- 
ments of the weak “stop-and-go generator” [2]. This generator uses two L F S b  
where the first one is used to  control the clock of the second LFSR. Therefore, 
a ‘1’ output by the first LFSR causes the second one to  shift its state, while a 
‘0’ implies that the state keeps unchanged (but still a bit, same as the previ- 
ous one, is output). The output of this second LFSR is then the output of the 
stop-and-go generator; and the weakness of the repeated bit is clear. The 1-2 
generator solves this problem by shifting one bit of the second LFSR when the 
first LFSR outputs ‘O’, and shifting two bits when the first LFSR outputs ‘1’. 



37 

Gunther’s construction uses three registers and outputs the bitwise XOR of two 
stop-and-go sequences controlled by the same third LFSR. Actually, Gunther’s 
generator is equivalent to a generator that merges two LFSR sequences So and 
Sl according to  the ‘0’s and ‘1’s output by a third LFSR (a ‘0’ implies taking 
next bit from SO a ‘1’ implies taking next bit from 5’1). This construction has 
the nice property that each bit in the output may (a-priori) correspond to any 
of the two sequences; on the other hand, it lacks the property of omitting bits 
from these sequences. 

One advantage of Gunther’s generator is that it guarantees one output bit 
per LFSR clock pulse, but it pays for it with a third LFSR. In our construction, 
the hardware prize we pay in order to  regulate the output rate (see section 5.1) 
is usually lower than introducing a third LFSR (this is due to the fact that 
XOR gates usually cost significantly less than memory elements). Moreover, this 
third LFSR brings the effective key length of Gunther’s scheme to one third of 
the total length (it can be broken through exhaustive search on only one of the 
three registers). The 1-2 generator has the effect of omitting bits through its 
irregular clocking, but this omission is by nature very local, e.g. one of any two 
consecutive bits originally output by one of the LFSRs appears in the generator’s 
output sequence. 

Locality appears in other versions of clock-controlled generators as well. In 
our construction the uncertainty about omission of bits is significantly superior 
(e.g., in clock-controlled constructions t bits from the control sequence determine 
the original locations in the other register of t output bits; in the shrinking 
generator, however, 2t bits in the selecting register S are necessary (on average) 
to  determine the original locations of t bits in the Z-sequence). In particular, 
notice that the shrinking generator is not a special case of a clock-controlled 
generator (e.g., its output is not synchronized with the selecting register as it 
is the case in any clock-controlled scheme). Moreover, the general techniques on 
clock-controlled generators [8] do not directly apply to our construction. 

Finally, the work by Golic and Zivkovic [7] shows that most irregutarly dec- 
imated LFSR-sequences have high linear complexity; however, their result is 
non-constructive by nature and has no implication on our construction. 

We stress that the omission of bits is important not only in LFSR-based con- 
structions but also in other constructions as well. On the other hand, not every 
scheme for omission of bits is effective (e.g. a decimated LFSR sequence is as 
bad as the original sequence itself). For the linear congruential number generator 
outputting all of the bits of a generated number makes the task of breaking it 
a very easy one [5].  Even if some bits are omitted but a block of consecutive 
bits are output, efficient predicting methods are known [6, 191. The extended 
family of congruentid generators is efficiently predictable if sequence elements 
are output with no omission [12], but no efficient methods are reported for these 
sequences if part of the bits are omitted. It is an interesting open problem what 
can be proven for a shrinking generator baaed on congruential generators. Fi- 
nally, let us mention that the idea of outputting individual bits of a sequence, 
is best captured by the notion of hard b i t s  of a one-way function, a notion that 



38 

plays a central role in the construction of complexity-theory based pseudoran- 
dom generators (see [4, 201 and subsequent works). It would be interesting to  
know whether the shrinking generator applied to two &-predictable sequences 
guarantees, in general, a third sequence which is €’-predictable for E’ < E < f .  
(Roughly speaking, a sequence is &-predictable if no polynomial-time algorithm 
can predict it with probability greater than $ + E ) .  

Acknowledgement 

We owe special thanks to Celso Brites, Amir Herzberg and Shay Kutten for their 
help and involvement during the development of the shrinking generator. Many 
people have contributed in different ways to this investigation; they include: 
Aaron Kershenbaum, Ilan Kessler, Ronny Roth, Kumar Sivarajan, and Moti 
Yung. To all of them many thanks. 

References 

1. Noga Alon, Oded Goldreich, Johan Hastad, and Rene Peralta. Simple constructions 
of almost k-wise independent random variables. In 31th Annual Symposium on 
Foundations of Computer Science, St. Loxis, Missouri, pages 544-553, 1990. 

2. Beth, T., and Piper, F., “The stop-and-go Generator”, in Lecture Notes in Com- 
puter Science 809; Advances an Cryptology: Proc. Eurocrypt ’84, Berlin: Springer- 
Verlag, 1985, pp. 88-92. 

3. Blahut, R., Theory and Practice of Error Control Codes, Addison-Wesley, 1984. 
4. Blum, M., and Micali, S., “How to Generate Cryptographically Strong Sequences 

of Pseudo-Random Bits”, SIAM JozLr. o n  Computing, Vol. 13, 1984, pp. 850-864. 
5. Boyar, J. “Inferring Sequences Produced by Pseudo-Random Number Generators”, 

Jour. of ACM,  Vol. 36, No. 1, 1989, pp.129-141. 
6. Frieze, A.M., Hastad, J., Kannan, R., Lagarias, J.C., and Shamir, A. “Recon- 

structing Truncated Integer Variables Satisfying Linear Congruences”, SIAM J .  
Comput., Vol. 17, 1988, pp. 262-280. 

7. Golic, J.DJ., and Zivkovic, M.V., “On the Linear Complexity of Nonuniformly 
Decimated PN-sequences”, IEEE Tkans. Inform. Theory, Vol 34, Sept. 1988, pp. 

8. D. Gollmann and W.G. Chambers, “Clock-controlled shift registers: A review”, 
IEEE J. Selected Areas Commun., vol. 7, pp. 525-533, May 1989, 

9. S.W. Golomb, Shaft Register Sequences, Aegean Park Press, 1982. 

1077-1079. 

10. Gunther, C.G., “Alternating Step Generators Controlled by de Bruijn Sequences”, 
in Lecture Notes in Computer Science 304; Advances in Cryptology: Proc. EUTO- 
crypt ’87, Berlin: Springer-Verlag, 1988, pp. 88-92. 

11. Kessler, I., and Krawczyk, H., “Buffer Length and Clock Rate for the Shrinking 
Generator”, preprint. 

12. Krawczyk, H., “HOW to Predict Congruential Generators”, Jozlrnal of Algorithms, 

13. E. Kushilevitz and Y. Mansour. Learning decision trees using the fourier spectrum. 
In Proceedings of the 23’‘ Annual ACM Symposaum on Theory of Computing, pages 
455464, May 1991. 

Vol. 13, 1992. pp. 527-545. 



39 

14. Lid,  R., and Niederreiter, H., “Finite Fields”, in Encyclopedia of Mathematics a d  
Its Applaeatiow, Vol 20, Reading, MA: Addison-Wesley. 1983. 

15. Yishay Mansour. An ~ ( d ~ g ~ ~ g ~ )  learning algorihm for DNF under the uniform 
distribution. In 5‘h Annual Worhhop on Computational Learning Theory, pages 
53-61, July 1992. 

16. Joseph Naor and Moni Naor. Small bias probability spaces: efficient construction 
and applications. In Pioceedings of the 22”d Annual ACM Symposium on Theow 
of Computing, Baltimore, Maryland, pages 213-223, May 1990. 

17. %bin, M.O., “Probabilistic Algorithms in Finite Fieldsr, SIAM J. on Computing, 

18. Rueppel, R. A., ”Stream Ciphers”, in Gustavos J. Simmons, editor, COntempOrUTy 
Cryptology, The Science of Information, IEEE Press, 1992, pp. 65-134. 

19. Stern, J., “Secret Linear Congruential Generators Are Not Cryptographically Se- 
cure”, Proc. of the 28rd IEEE Symp. on Foundatioru of Computer Science, 1987. 

20. Yao, A.C., “Theory and Applications of Trapdoor Functions”, PTOC. of the 23rd 
IEEE Symp. on Foundation of Computer Science, 1982, pp. 80-91. 

Vol. 9, 1980, pp. 273-280. 


	The Shrinking Generator
	1 Introduction
	1.1 The Construction
	1.2 Properties

	2 Period and Linear Complexity
	3 Statistical Properties
	3.1 Background
	3.2 Applications to LFSR with variable connections
	3.3 Applications to the Shrinking Generator

	4 Attacks
	4.1 Attacking through S
	4.2 Linear Complexity
	4.3 Other Attacks

	5 Practical Considerations
	5.1 Overcoming Irregular Output Rate
	5.2 Fixed vs. Variable Connections

	6 Discussion and Related Work
	Acknowledgement
	References


