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Abstract. In this paper we use coding theory to give simple explana- 
tions of some recent results on universal hashing. We first apply our 
approach to give a precise and elegant analysis of the Wegman-Carter 
construction for authentication codes. Using Reed-Solomon codes and 
the well known concept of concatenated codes we can then give some new 
constructions, which require much less key size than previously known 
constructions. The relation to coding theory allows the use of codes from 
algebraic curves for the construction of hash functions. Particularly, we 
show how codes derived from Artin-Schreier curves, Hermitian curves 
and Suzuki curves yield good classes of universal hash functions. 

1 Introduction 

The concept of universal classes of hash functions was introduced by Carter 
and Wegman in [l]. It has found numerous applications of which we mention 
only cryptography, complexity theory, search algorithms and associative memory 
(see the Introduction in [2]). Three essentially different applications of universal 
hashing to authentication codes, [3], have been described in [4],[5] and [6]. Two 
of them are concerned with authentication without secrecy, the third (in [5]) is a 
novel use of universal classes of hash functions for error detection and information 
reduction in a system which guarantees integrity and secrecy. 

In this paper, we present a detailed analysis of constructions of families of al- 
most strongly universal hash functions proposed by Wegman and Carter [4] and 
recently, by Stinson [7],[6]. Our analysis is based on a recently discovered rela- 
tionship between families of hash functions (or authentication codes (A-codes)) 
and error-correcting codes [8]. 

In Section 2 we give a simple explanation of previous results on the above 
mentioned constructions using the theory of concatenated codes, [lo]. In the 
next section we present various improvements by using the concatenation of the 
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well-known Reed-Solomon codes (RS-codes) and by using the powerful algebraic 
geometry codes (AG-codes) derived from algebraic curves. Finally we present 
some numerical results. 

2 Universal hash functions and codes 

In this section we recall some definitions and results from [7], [S]. We start by 
reformulating some of the results given by Stinson in a coding theoretic language 
and then proceed with introducing some additional notation. 

Definitionl. Let E > 0. A multiset H of n functions from a set A to a q-set 
B is c-almost universalz (short: All,)  if for every pair a1 , a2 E A ,  a1 # a2 the 
number dH(al,aZ) = I { h  E H ; h(a1) = h(a2)) 1 5 €71. 

Consider now a q-ary code V of length n,  ( q  = IBI, n = lHl ) ,  whose codewords 
have the form TJ = ( h l ( a ) ,  ..., h, , (a) ) ,  a E A .  It is rather clear (see also [8], [9]) 
that the property of c-almost universal2 is equivalent to the property that the 
minimal code distance d(V) of the code V is not less than n(1 - E ) .  So we have 

Lemma2. Let E > 0, q = IBI and n = IHI. T h e n  the following are equivalent: 

(i) H as an 6 - AU2 class of hash functions from A t o  B .  
( t i )  

minimum distance d,  where 1 - 1 5 c .  
The words v = ( h , ( a ) ,  ..., h,(a)), a E A form a q - a y  code of length R with 

Stinson’s analysis and improvements of the Wegnian and Carter construction 
are based on two constructions, composition 1 and 2, which can be considered as 
the construction of concatenated codes (see [lo]), The corresponding theorems 
on the performance of these constructions can be reformulated now in a more 
familiar manner. 

In [7, Theorem 5.51 the following is shown: 

Theorem3 (Composition 1). Lei H1 be an ~1 - AU2 from A1 t o  B1 and let 
H2 be an €2  - AU2 from B1 to  B2. Then H = H I  x Hz i s  an E - AU2 from A1 
10 R2 W i t h  & 5 E l  -k €2 - E l b 2 .  

In our language, this is a concatenation of two codes. If D is the distance of 
the concatenated code, then it is a well known fact that D 2 d l d 2 .  This gives 
D 2 (1 - E I ) ( ~  - E Z ) R ~ ~ Z  and E 5 €1 + €2 - ~ 1 ~ 2 .  Thus this result is only a 
reformulation of the distance property of concatenated codes! 

We recall from [7] also the notion of almost strongly universal hash functions. 

Definition4. Let e > 0. A multiset H of n functions from a set A to a q-set 
is c-almost strongly unitrersal2 (short: ASU2) i f  

1. for every a E A and y E B the number of elements of H mapping a H Y is 
n/QI 
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2. for every pair a 1 , ~  E A ,  a1 # a2, and every pair yll y 2  E B the number of 

The notion of ASU2 is clearly a generalization of orthogonal arrays of strength 
2. In fact, an orthogonal array is obtained if in 2. of Definition 4 we always have 
equality. Condition 1 then follows automatically. Hence ASUz may be described 
as generalazed orthogonal arrays. This link between ASU2-classes and orthog- 
onal arrays has been observed in earlier work. The relation between ASUz- 
classes (or equivalently authentication codes), and error-correcting codes is al- 
ready described in [$I. 

Now, also Theorem 5.6 in [7] can be reformulated as the product of “dis- 
tances” : 

Theorem5 (Composition 2). Let H1 be an 61 - AUa from A1 .to B1 and lei 
Hz be an ~2 - ASUz from B1 l o  Bz. T h e n  H = H I  x H2 is an E - ASU2 from 

elements of H affording the operation a1 H y 1  la2 H y2 is 5 E .  n/q. 

A1 t o  B2 w i t h  E 5 ~1 + € 2  - € 1 ~ 2 .  

In our terms the theorem states that the concatenation of two codes, where the 
inner code additionally has the A-code properties, gives a code that satisfies the 
A-code properties with ~1 + E:! - ~ 1 ~ 2 .  Using our coding theoretic notation, we 
give a new proof, found in the appendix. 

The families of hash functions which are used in WegmanKarter  and in 
Stinson’s constructions can also be described using well-known codes. For ex- 
ample, it is obvious that the codes of Theorem 5.1, [7], are RS-codes with two 
information symbols. The codes of Theorems 5.2 and 5.3 in the same paper can 
be obtained in the same manner, see our Lemma 10, which is a generalization 
of these two. 

Stinson’s construction consists of two ingredients: the AU:! classes (or error- 
correcting codes) and the ASU2 classes. 

For the first ingredient consider any linear code over a finite field. We fix the 
ground-field Fq and the relative minimum distance d/n  of such a q-ary code. In 
fact the minimum distance has to be extremely large, as E = 1 - should be 
small. For a fixed number Q of codewords we ask for the minimum length of 
such a code. That is, we want a code with the highest possible rate. 

Definition6. Let natural numbers q ,  Q, and the real number c , O  < E < 1 
be given. Define r n ( c , q , Q )  as the minimum length n of a q-ary code with Q 
code-words and minimum distance d satisfying d / n  2 1 - E .  

This is a rather unusual question in coding theory. Unusual is also the fact 

Similarly for the A S U 2  classes: 
that we are only interested in q-ary codes with relatively large q. 

Definition7. Define mA(t, q ,  Q )  as the minimum number of functions of an 
E - ASU2 class of hash functions from a Q-set to a q-set. 

Using the above terminology, Stinson’s compositions give: 

Lemmas. With m ( ~ ,  q ,  Q )  and ~ A ( E ,  q ,  Q )  as defined above we have 
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( i )  For composition 1 :  m(61 + €2, q ,  Q )  5 m(c2, q ,  Q1) - m(~1, Q1, Q ) .  
&,I For composition 2: ~ A ( E I  + € 2 ,  q ,  Q) I m ~ ( f 2 ,  q ,  Qi) . m(6i , & I ,  &). 
( i i i )  Cartesian product, [6]: m(c, q', Q') I m(c, q ,  Q).  

Example 1 .  Starting from the 2-dimensional RS-code and using composition 1 
and the Cartesian product recursively one obtains 

for every prime-power q and every i 2 1. This is a construction of Stinson's, [6, 
0 

The h-dimensional Reed-Solomon code yields m ( 7 ,  q, qk) 6 q .  The Singleton 
bound shows that we actually have equality: 

Theorem 6.11, expressed in different words. 

Theorem 9. 

f o r  every prime power q and k 2 2. 

What the ASU2 -classes are concerned we may use the following lemma: 

Lemma 10 "projection hashing". Let ?r be some IF,, -linear map from IF4 on 
IF,, where Q = q t  , q = qr and q o  a prime power. Then the following family of 
hash functions H = { h a , b ;  h a , b ( Z )  = a(az)  + b } ,  where a,a: E I F Q , ~  E IF, as 
c - ASU2 with 6 = l / q .  
Consequently rnA(&,  qr, q:) 5 qr+" for every prime-power qo and  n 2 rn. 

90 

Proof. Proof follows from Theorem 11 below. 0 

Remark 1: We obtain the same ASU2's if we take the family of orthogonal arrays 
constructed in [12, page 3631. 
Remark 2: The c a e  n=m=l stems from a 2-dimensional Reed-Solomon code. 
Remark 9: This lemma can be generalized as is done in Theorem 11. The first 
author gave a generalization via orthogonal arrays OA,+l+-m) ( t ,  qn, qm), with 
t 2 2. 

3 
construct ion 

The evaluation of parameters of Wegman&Carter's 

Wegman and Carter proposed in [4] the following method for constructing an 
authentication code. Let A be a set binary words of length a' and B a set of 
binary words of length b'. Divide a word a E A in segments of length s, where the 
parameter 8 will be chosen later in a proper way, and apply to each segment some 
(but the same) hash function from family H of [7, Theorem 5.21, where q = 2" As 
a result one has again binary words but only halve as long. Repeat this procedure 
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v times with arbitrary hash functions hl ,  ..., h,  until we get a word of length s. 
And the last step consists in taking some (e.g. the low-order) b’ bits from this 
word. Wegman&Carter and later Stinson investigated the important parameters 
of the A-code thus obtained: the probability of successful impersonations PI, the 
probability of successful substitution PS and the size of the key (logarithm of 
the number of hash functions). Wegman&Carter’s construction was interesting 
because of their basic observation that by increasing Ps beyond PI (Ps 5 2 . PI 
say), the source space can be dramatically enlarged. In fact, in 181, it was shown 
that when Ps > PI the source space grows exponentially in the key size! In what 
follows we always have PI = 2-b‘. 

For our purpoee it is more convenient to  represent the construction by two 
”stages”. The first stage consists of v- 1 concatenations. As a result of this stage 
we have a family of hash functions from A t o  B’, where 8’ is a set of binary 
words of length 26. Or, in other words, we have q*-ary code (q* = 22a)1  which is a 
result of v - 1 concatenations. According to Theorem 3 we have got the following 
inequality for the corresponding value of c for this code ~1 = t* 5 1 - (1 -?)”-’ 
where ?= l / q ,  see [7, Theorem 5.21. 

The second stage consists of application of a hash function from 5 to a 2s-bit 
word and then taking b’-bits from the result,ing word. The performance of such 
family of hash functions is given by Lemma 10. 

Combining these two stages we have got exactly(!) the parameters of the 
WegmanhCarter construction. Namely 6 = €1 + €2 - €1 . €2,  where €1 = 1 - 
(1 - (1/2’))”-’, €2 = 1/2”, Y = log2 a’/s.  The number of hash functions, n, (or 
length of the corresponding code) equals 2(’-1)3d+2s+b’ (this slightly better than 
in the original paper as the authors used a rough estimate, i.e., Q2 instead of 
Qq as we have from Lemma lo).  Thus we can confirm the correctness of [4] and 
refute the remark in [7, page 831. 

Example2  (see [q). Let s = 23, b‘ = 20, Y = 7 . Then the W&C construction 
gives (I’ = 23 27, €1 5 (3/4)2-20, E 5 €1  + €2 5 2-19, and the number of hash 
functions equals 2480. 0 

The disadvantage of the original W&C construction is the usage of A-codes 
within the first stage as it is enough to use only ordinary codes. This observation 
immediately leads us to  replacing the A-codes of [7, Theorem 5.21 by codes of 
[7, Theorem 5.11. It decreases the number of function to  2(’-1)s+2a+b’ without 
decreasing the final 6. In particular, one gets 2204 as the number of hash functions 
for the considered example, like in [6]. However we can do better as we will show 
in the next section. 

4 Construction of families of hash functions via RS codes 

Before we describe our construction we first prove the following theorem: 

’ Stinson uses here P b  and Pdl. We keep the original notation of Simmons [3]. 
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Theoremll. Let Q , q , p , r  be the same as in  Lemma 10. Then the following 
family of hash functions 

k H = { h z , y  : hz,y(a l ,  ..., U k )  = 'K(ZQ1 + 2 '02  + ... + E Uk) + y 

where x, 01, u2, ..., ak E FQ and y E IF,} 

i s  €--AS& with E = k / q  and / A [ =  Q k ,  J H (  = qQ. Thus we have r n A ( k / q ,  q ,  Qk) 5 
nQ. 

Proof. It is clear that for any a E FQ, t E IF,, the number of hash functions 
h : h(a)  = z is the same and equals n / q ,  where n = IHI. We now calculate 
the maximal number of hash functions such that h(a) = r , h ( b )  = t', where 
a, b E IF: , z ,  Z' E IFq. Saying in other worda, we are interested in the evaluation of 
the maximal number of solutions of the corresponding system of two algebraic 
equations. This system is equivalent to the following system h(a)  = t, ~ ( ~ 1 1 :  + 
c2x2  + ... + ckxk) = w,  where c = a - b ,  w = z - 2'. According to  Bezout's 
Theorem the number of solutions of the second equation is not greater than 

Remark I :  For k = 1 one has Lemma 10. This theorem easily gives some of the 
results found in [6]. 
Remark 2: This construction can be explained in coding theoretic language start- 
ing with Reed-Solomon codes. 

A natural application of RS-codes is their concatenation as inner codes to- 
gether with ASU2-codes of Lemma 10. 

Proposed construction: We propose to  construct E - ASUz classes of hash 
functions for authentication in the following way: Concatenate an €1 - AU2 
class which is obtained from an RS-code over IFQ with an €2 - ASU2 class from 
Lemma 10. According to Theorem 5 we get an (€1 + €2)  - ASUz class. 

In detail, it can be described as follows: Let q = 2' and Q = 2'+'. Choose 
an RS-code over IFQ with n = Q and k = 1 + 2'. The size of the message space 
is IMI = Q'+2' = 2('+s)('f2'). This is the €1 - AU2 class and €1 = 1 - d / n  = 
1 - (2'+# - 2g))/2r+5 = 1/2'. From Lemma 10 we have an €2 - ASU2 class from 
IFg to IF,, with €2 = 1/Y. The concatenation of these two gives the desired 
e - ASUz class, where c 5 2 / Y .  The size of the key space is then Q2q.  Note 
there is only one (!) concatenation in this construction. Note also that this works 
in any characteristic. The result is 

k)Kernxl, where IKernTJ = I{. E IF, ; ~ ( u )  = 0)l I = Q/q.  

Example 9. Let us show how the construction works by giving a numerical ex- 
ample for the case considered in Example 2. Take a Q-ary RS-code with Q = 
2271 k = 1 + 2' = 129. This is an AU2-code with E = 2-20. Application of the 
concatenation construction with codes, the Lemma with Q = 227, q = 220 gives 
an ASU2 code with IAI = 227,129, IHJ = 274, c 5 2-19. This is cme q = 2, r = 20, 
s = 7 above. 0 
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5 The use of geometric codes 

We want to show how more sophisticated classea of linear codes, in particular 
of codes defined on algebraic curves, may be used to improve Stinson's bound 
considerably (see Example 1). It is natural in our context to use the machinery 
of geometric codes in the following form: 

Theorem 12 (Canonical construction). Let q 2 9 be a quadratic prime power 
and let  K be a funciion field of transcendence-degree 1 (equivalently: an algebraic 
curve) over the field IFq of constants, PO, PI,. . . P, rational poinis of K.  Consider 
the divisors D = PI + PZ. .  . + P,, G = mPo. Let ml = 0 ,  mz,. . . I  mk,. . . be the 
pole-orders of Po. Consider the code 

of functions which are everywhere holomorphic except f o r  a pole of degree 5 mk 
at Po, evaluated at P I , .  . . P, (this is the L-construction of [15']). Then c k  has 
dimension k and minimum distance 2 n - mk. Hence 

If moreover mk - 1 is a Weierstrap g a p ,  then 

We need curves with many rational points and at least one rational WeierstrafS- 
-point whose gaps are as large as possible. In fact, Reed-Solomon codes result 
from the canonical construction when applied to the rational curve. In [14] and 
[15] a class K6" of function fields defined over an arbitrary finite field F, of 
constants is studied, where r 2 2. Here K6') is a tower of Artin-Schreier exten- 
sions of the rational function field. The following facts are to be found in [15]: 
The number N1 of rational points of K;') is N 1  = q' + 1. There is a rational 
Weierstraspoint PO whose semigroup of pole-orders is 

i=l  

This yields improvements upon the Stinson-bound valid for all sufficiently 
large prime-powers. In fact we can get a precise asymptotic statement. Upon 
using a well-known inequality between binomials and the binary entropy-function 
H: 

(see [IS]) the following is obtained: 
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Theorem13. L e f  qo be the unique posit ive solution of the equation 

For e u e y  c > 0 and suf i c i en t l y  large i we have 

d l q 1 P z i )  I q r ,  
q 

where f = [ ( i  - 1)(1 - qo) /qo  - €1 ond q is  on arbi trary pr ime-power ,  
q > ( i  - l)(r - 1). 

The numerical values are 

qo = .7729. . . ( 1  - qO)/qo x .2938 

We note that the same number po appears in the theory of Sperner capacity,  a 
recently discovered extension of the concept of Shannon capacity of a graph (see 

For small values of i and a quadratic ground-field we obtain improvements by 
means of Bewniiian codes. Consider the H e m i t i a n  curve defined by the equation 
X9+l +Y9+l +Zq+' over the field IF,? of constants. This curve has genus (3 and 
q3 + 1 rational points. These form the well-known Hermitian unital. They are all 
WeierstraB-points. The semigroup of pole-orders of any of them is qNo+(q+l)No. 
In particular the integers between wq and w(q+l) are pole orders. Let us call 
w the weight of such a pole-order. If w < q ,  then a pole order of weight w 
doesn't have any other weight. The number of pole orders of weight 5 w is then 

~ 7 1 ) .  

1 + 2 + 1 . .  + ( w  + 1) = (y). 
Lemma14. Lei (mk) be the pole orders  of the Hermi i ian  curve over F,a. If 
w < q,  then 

= w(n + l), 

m(w;l)+l = w ' q > m(w$l) + 1. 

We may use the construction of the preceding section and replace the RS-codes 
by Hermitian codes. If we choose A: = q8 + 1 and use the canonical construction 
in its strengthend form, the following is obtained: 

Example4. We want bounds on r n ~ ( 2 ' ~ ~ , 2 ~ * , 2 ~ ~ ' ) .  This is case q = 2,  r = 20 
above. We have 

by Lemma 8, where Q = 216. The second factor above is bounded by 252 (Lemma 10). 
Use the canonical construction for the Hermitian curve, where Ic = 228/32 = 
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2 2 3 ,  

(212 - 1)(216 + 1) < 2'*. By the canonical construction 
= 212 - 1. As ("'+') > I c ,  it follows from Lemma 14 that mk < w(q + 1) = 

220 2 218 
m ( q 3 ,  Q I 2 ) I m(mk/Q3, QZ, ( q 2 I k >  I q3.  

Thus 

and we may thus choose 8 = 12. 0 

In characteristic 2 we get further improvements by using a family of curves 
which admit the Suzuki groups as automorphism groups. This family is studied 
in [18]. Let q = 2'f+', qo = 2'. The curve is defined over IF, by the homogeneous 
equation 

has q2  + 1 rational points and a WeierstraBpoint whose semigroup of pole-orders 
is 

The number of pole-orders of weight w < qo is ("':') + ("':') = (w + 1)2. Via 
the canonical construction we obtain: 

Theorem15. Let q = 221+1 2 128. Then 

P ( Z q  + zxq-') = Yqo(Yg + Y x q ,  

QNO + ( q  + q0)No  + ( q  + 2qo)No + ( Q  + 2qo + 1 p o .  

i 

Q 
4-, q,  2') I q2  (i = 3,4,5,6,7) 

If we use Suzuki codes in the same spirit as we used RS-codes and Hermitian 
codes above, we get 

"A(2,_17 1 2r, 2('+"){1+(2'+1)(2'+2)(24+'+3)/6) < - 2 4 r + 3 s  i f s < r , s + r  odd. 

The last statement of Theorem 12 follows from a recent result of A. Garcia 
et.al. ([19]). We give an application of this strengthened form of the canonical 
construction when applied to Hermitian curves: 

Theorem16. Let q be a quadratic prime-power. T h e n  

Observe that there is not much of a difference between probabilities and + 
-&. For practical purposes the statement above should therefore be interpreted 
as 

1 
!l 

m(w -, q ,  q4)  5 *3/? 

It  is natural to  conjecture that all the Deligne-Lusztig curves will yield good 
codes and good classes of hash functions. In the case of the Ree curves we have 
not yet been able to  verify this as the WeierstraB-points and their pole orders 
seem to  be unknown. 
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'length of source length of authenticator 
a' b' 8 

2 1 2  20 28 

220 20 35 
224 20 39 

28 20 24 

216 20 32 

6 Numerical Results 

In order to illustrate our results we proceed as in Section 6 of [6 ] :  Let IAl = 2"', 
IBI = 2b'. This means that we have an a'-bit source and we want to use 6'-bit 
authenticators. The cases we tabulate include those given in [6 ] ,  with improved 
values for the necessary length of key. Here Ps = 2-l'. In most cases the All:! 
class is produced by Reed-Solomon codes (Section 4). Only in the case a' = 228, 
b' = 20 we use a Hermitian code, Example4, where we get 100 instead of 106 
bits of key! 

:" 212 216 40 

220 55 

- 
lene 
new 
68 
76 

90 
98 
100 
126 
134 
I42 
150 

- 

a4 

- 

- 

346 
612 
805 

Table 1. Table with source and key size for A-codes with PI = 2 - b  and Ps 5 2 PI. 

We can compare these resultas wit#h a lower bound based on t,he q-t,wisting 
technique and the Varshamov-Gilbert bound which gives a Varshamov-Gilbert 
type bound for A-codes. This bound is an existence result and tells as that there 
exist A-codes with given PI and Ps 2 PI with a certain number of source states 
(as function of the number of keys). For example, using the results of another 
paper, [20], which discusses this in more detail we have that for the situation 
in Examples 2 and 3 with PI = 2-20 and Ps 5 2PI there exist classes which 
require only 52 bits for the key size. 

7 Conclusion 

We have shown that using coding theory we can easily reformulate and prove 
results in [4] and [7]. In particular, the concepts of geometric codes and con- 
catenated codes gives us powerful tools. We also gave a simple analysis of the 
Wegmankcarter construction by our approach and suggested some improve- 
ments. Finally the idea of concatenation was used to  get a new type of con- 
struction which requires considerably less key size than previously known. The 
construction using RS-codes is surpassed by the one using AG-codes for very 
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large source sizes. In our table this happened when we authenticate 33MB(yte) 
source strings. Further development on algebraic geometry might improve this 
in favor of the AG-codes. 

A Proof of Theorem 5 

Proof. We have a Q-ary code (Q = IB1I) V of length nl (nl = IH1I) and with 
distance d = (1 - &l)nl and a q-ary code W of size Q (IHzl = &) of length n2 
with the special property 

n 2  

Q 
VW # W' E W, vn, p E { 0,1, . . . , - I} I{i ; wi = 0 ,  wi = P }  I 5 ~ 2 -  

and 
n 2  

9 
vw E w,va E { 0 , 1 , .  . . , q  - 1) [{i; w; = a}! = -. 

We form the concatenated code C from V and W by replacing symbols from 
the Q-ary alphabet in the codewords of V by the corresponding codewords from 
code W .  Let us now compute 

I { .i ; cj = a1 C; = P }  I 1 a ,  P E {0,1, . . . ,  q - 11, 

where g = 4(z),g = 4 ( ~ ' ) ~  

4(u) = ( P ( V l ) l P ( V Z ) , ' .  . ,P(V"l)) 

p : ( O l 1 , .  . . , q - 1) + w 
and where 

is a bijective map. The index j of cj can be considered as a pair (jl!j2)! where 

0 5 j 1  < n1,O 5 j2 < "2. 
Let us first consider the case a = /3. Then the set {j; cj = ci = a} consists of 
all j = (jl,jz) such that 

a) v,, = v i ,  and p(vj,)j2 = cr 
b) u j ,  # v(il and p(uj,)j2 = p(v! 3 1  ) .  3 1  = a.  

We have that the number of indices satisfying a) is (nl - d ( 2 , ~ ' ) )  7. The 
number of indices satisfying b) is 5 d(g, g ' ) ~ 2  y .  Since a) and b) count disjoint 
situations the total number satisfies 

7 3 1 ~ 2  
= ---(El 9 + E 2  - E1EZ). 

For the case a # p we can not have situation a) but only b) and the contribution 
0 is less for this case. Thus we have proved that E 5 ~1 + ~2 - ~ 1 ~ 2 .  
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