
Joint Encrypt ion and Message-Efficient Secure 
Computation 

Matthew I?ranklin*l and Stuart Habe? 

Columbia University, New York, NY 10027 
Bellcore, 445 South Street, Morristown, NJ  07960-6438 

Abstract. This paper connects two areas of recent cryptographic re- 
search: secure distributed computation, and group-oriented cryptogra- 
phy. We construct a probabilistic public-key encryption scheme. with the 
following properties: 
- It is easy to encrypt using the public keys of any subset of parties, 

such that it is hard to decrypt without the cooperation of every party 
in the subset. 

- It is easy for any private key holder to give a "witness" of its contri- 
bution to the decryption (e.g., for parallel decryption). 

- It is "blindable": From an encrypted bit it is easy for anyone to 
compute a uniformly random encryption of the same bit. 

- It is "xor-homomorphic": From two encrypted bits it is easy for 
anyone to compute an encryption of their xor. 

- It is "compact": The size of an encryption does not depend on the 
number of participants. 

Using this joint encryption scheme as a tool, we show how to reduce the 
message compledty of secure computation versus a passive adversary 
(gossiping faults). 

1 Introduction 

This paper connects two areas of recent cryptographic research: secure dis- 
tributed computation, and group-oriented cryptography. The problem of securely 
evaluating an arbitrary boolean circuit under cryptographic assumptions has 
been much studied, beginning with the work of Yao [14] and Goldreich, Micali, 
and Wigderson 18). The notion of group-oriented cryptography, in which the 
power of a secret key holder is distributed over a number of participants, was 
introduced by Desmedt [3]. 

Practical implementations of group-oriented public-key encryption were given 
by Desmedt and F'rankel [4]. (See also the related notion of fair public-key en- 
cryption (121.) We extend their implementations to  achieve additional useful 
properties. Our scheme, which we call "additive joint encryption," can then be 
used to  reduce the message complexity of cryptographic multi-party circuit cval- 
uation. 
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An additive joint encryption scheme enables a group of parties to have indi- 
vidual public keys, such that a message can be encrypted using the keys of any 
subset of parties. It is easy for any party to “Withdraw” from an encryption, 
and the cooperation of all (current) participants is needed to  decrypt. It is easy 
for each participant t o  give a L‘witness” of its contribution to  the decryption, so 
that  full decryption can occur in parallel (i.e., anyone can decrypt after seeing all 
the witnesses). Encrypted messages can be blinded (i.e., replaced by a random 
encryption of the same message), and they are xor-homomorphic (i.e., from the 
encryption of two bits it is easy for anyone to  compute an encryption of their 
exclusive-or) . 

We present an implementation of additive joint encryption with the critical 
property that  the size of an encrypted bit is independent of the number of 
parties participating in the encryption. This “compact” implementation is a 
construction that combines El-Gamal public-key encryption and schemes based 
on quadratic residues and non-residues. 

We demonstrate the use of our encryption scheme as a tool for designing 
efficient multi-party cryptographic protocols (i.e., communication via broadcast 
channels only). We show that, using additive joint encryption, a factor of n can 
be gained in the number of bits broadcast by n parties to securely compute a 
circuit of size G. Specifically, in the privacy setting (against a passive adversary), 
only O(nC) encrypted bits of communication are needed, as opposed to  O(n2C) 
encrypted bits using existing methods. 

For specific functions, further gains are possible by exploiting particular con- 
nections between properties of additive joint encryption and properties of the 
functions themselves. We illustrate this for the problem of comparing bit-strings. 

Definitions and models are given in Sections 5.2 and 5.3. In Section 5.4, we 
describe the construction of our new encryption scheme. In Sections 5.5 and 5.6, 
we demonstrate the application of our scheme to reducing the message complex- 
ity of secure multi-party computation. Conclusions and some open problems are 
given in Section 5.7. 

2 Model 

We assume that  there are TI parties, each of which is a probabilistic polynomial 
time Turing Machine (read-only input tape, write-only output tape, random 
tape, one or more work tapes). The parties communicate by means of a broadcast 
channel, which can be modeled as an additional tape (communication tape) for 
each machine that is write-only for its owner and read-only for everyone else. 
When a party writes a message to this tape, we may say that the message has 
been “broadcast” or L‘posted.” A protocol begins with all n parties in their start 
states, and ends when all have reached their final states. The output of the 
protocol is the (common) value written on the output tapes of the processors. 

We are concerned with the message complexity of a protocol. This is mea- 
sured as the total number of bits written on the communication tapes during the 
execution of the protocol. Since our protocols are cryptographic, we will state 
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the message complexity in terms of the number of encrypted bits written on the 
communication tapes. For the protocols we consider, this is all or most of the 
communication that occurs, and it is also a convenient measure independent of 
advances in either encryption methods or cryptanalytic techniques. 

We will say that a protocol is “private” if its execution reveals no useful 
information to any subset of (polynomial bounded) gossiping processors. More 
specifically, anything that is efficiently computable from the views of a subset S 
of participants is also computable from just the output of the protocol together 
with the inputs and private keys of S. 

3 Additive Joint Encryption 

In this section we give definitions for additive joint encryption, and then a naive 
implementation for which the size of an encrypted bit depends on the number 
of participating parties. 

3.1 Deflnition 

A joint encryption scheme for [ l .- .n] is a collection of encryption functions 
(Es  : S [l * - n]}  and a collection of partial decryption functions {Di : i E 
[l n]} such that  D j ( E s ( M ) )  = Es-j i ) (M) for all messages M and all i E S, 
and such that it is easy to compute M from Eg(M). We use the notation Ds(c)  
to stand for the result of applying to c the decryption functions corresponding 
to each element of S. 

A joint encryption scheme is public-key if each Es is easy to compute, while 
computing each Di requires a different trapdoor; in fact, our implementation has 
the stronger %pward conversion” property: Esusr(M) is eavy to compute from 
E s ( M )  for any subset S‘. A joint public-key encryption scheme is probabilistic 
if each Es is probabilistic; we write E s ( M )  to denote a uniformly random choice 
of possible encryptions of M. A probabilistic public-key joint encryption scheme 
is secure if each Es is GM-secure [lo] (computational indistinguishability of 
ciphertexts, even given the decryption functions (Di : i E S’} for any S’ C S). 

A probabilistic joint encryption scheme is blindable if, given any subset 
S C_ [l . . - n], and an encryption C = E s ( M ) ,  it is possible to  sample efficiently 
from the uniform distribution on the set {C’ : Ds(C’) = N }  of all possible 
encryptions of A4 (although it suffices for our purposes to  be able to  sample 
efficiently from any computationally indistinguishable distribution). We write 
blind(C) to  denote a random choice from this set. 

A joint encryption scheme is xor-homomorphic if, given any messages M ,  M’ 
in (0, l}k, any subset S E [ l a . .  4, and any encryptions Es(M) ,Es (M’) ,  it is 
easy to  compute E s ( M  @ M‘). 

A joint encryption scheme is witnessed if there are functions {Wi : 1 5 i 5 n) 
such that  each Wi is hard to compute without the trapdoor for Di,  and such that 
D i ( E s ( M ) )  can be easily computed from Es(A4) and W’(Es(M))  for any M and 
any i € S, but no other Di(Es(M‘))  can be easily computed from Es(M’) and 
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W i ( E s ( M ) ) .  If every participant in an encryption provides a witness in parallel, 
the decryption can be computed much faster than by the use of (inherently 
sequential) partial decryption functions. 

Finally, we use the term additive j o i n t  encrypt ion s c h e m e  to denote a secure, 
blindable, xor-homomorphic, witnessed probabilistic public-key joint encryption 
scheme. 

Desmedt and Frankel [4] consider “threshold” encryption, which is essentially 
a public-key joint encryption scheme for which any sufficiently large subset of 
parties can decrypt a message. We do not include this property in our definition, 
because it is not needed for our main application, secure circuit evaluation. 
In Section 5.4, we explain how to  add threshold decryption capability to  our 
implementation using their techniques. 

Notation: We may abuse the xor symbol by extending it t o  encryptions in the 
obvious wzy. When i = Es(z),jj = Es(y) are encryptions, we may write 2 @ $ 
t o  denote Es(z @ y). 

3.2 Naive Implementation Based on Xor Shares 

A naive implementation of additive joint encryption can be based on any blind- 
able and xor-homomorphic probabilistic public-key encryption scheme. For ex- 
ample, each encryption function ei could be an instance of the scheme due to  
Goldwasser and Micdi [lo], based on quadratic residues and nonresidues, using 
a distinct modulus Ni. Let di be the decryption function corresponding to ei.  

An additive joint encryption scheme can be constructed as follows. Encryp- 
tion is given by Es(b) = (b’ ,[ej(bj)  : j E S ] ) ,  where bj ER (0 , l )  for all j E S ,  
and where b’ = b + C .ES b j  mod 2. Decryption is given by Di(a, pj : j E S]) = 
(a @ d j ( P i ) ,  pj : j E d - {i}]) whenever i E S (or just di (Pi )  can be given a9 a 
decryption witness). 

Note that the size of an encryption in this scheme grows as the number 
of participants increases. We seek a compact scheme for which the size of an 
encryption is independent of the number of parties. 

4 Compact Additive Joint Encryption 

In this section, we show how additive joint encryption can be implemented com- 
pactly, i.e., such that  the size of an encrypted bit does not depend on the number 
of parties participating in the encryption. 

4.1 Intuition of El-Gamal Based Scheme 

As shown by Desmedt and Fkankel [4], it is possible to  construct a joint encryp- 
tion scheme from EEGamd’s method of public-key encryption [6 ] .  Although 
blindable, this scheme is not xor-homomorphic, and thus not an additive joint 
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encryption scheme. However, we can convert this into an additive joint encryp- 
tion scheme for which the size of an encryption is independent of the number of 
parties. 

The basic idea is to use El-Gamal with a composite modulus (whose fac- 
torization is unknown), encrypting zeros and ones as El-Gamal encryptions of 
random quadratic residues and non-residues, respectively (all with Jacobi sym- 
bol +1). This almost works as is, since blinding and xor can be achieved by 
component-wise multiplication of the two parts of an El-Gamal encryption. Un- 
fortunately, although these products preserve the correct quadratic character 
(residue or non-residue) of the encrypted values, the parties-who don't know 
the factorization of the modulus-will be unable to  make use of them. The par- 
ties cannot compute the quadratic character of an El-Gamal decryption, unless 
the entire history of blindings is stored and revealed. It wouldn't help to  give 
the factorization of the modulus to  the parties, since that would allow any party 
to  decrypt on its own. 

This problem can be solved by accompanying each encrypted bit with an 
encryption of the witness that allows its decryption. When s2 is used to encrypt 
a zero, or -s2 is used to encrypt a one, then the encryption of s2 or -s2 is 
accompanied by an El-Gamal encryption of s. This accompanying information 
makes decrypted values identifiable as residues or non-residues without knowing 
the factors of N .  We give details in the next section. 

4.2 Details of El-Gamal based Scheme 

The public key is [N,gZ1 mod N ,  ' 
p q 
information for Di is xi. Encryption of a zero is given by, 

,g"m mod N ] ,  where g E Z&, N = pp, 
3 mod 4, although the prime factors p , q  are unknown. The trapdoor 

Es(0)  =[g'modN,g'' m o d N , s 2 ( ~ g Z j ) ' m o d N , s ( ~ g Z j ) "  modN] 
j € S  j € S  

for T ,  T ' ,  s ER 2%. Encryption of a one is given by 

Es( 1) = [g' mod N ,  g" mod N ,  -s2( g'j)' mod N ,  s( n g2J)'' mod N ]  
j € S  j € S  

for T , T ' , S  ER 2%. Decryption is given by D;([a,p,7,6]) = [ ~ ,p , ya - '~  mod 
N ,  Sp-zi mod N ] .  Note that the fourth component of &(b) enables the quadratic 
character of the third component (and hence the value of b) to be computed 
easily. 

If Es(b) = [qp, 7, S] and Es(b') = [a', p', y', 6'1, then 

Es(b b') = [a,' mod N,Pp' mod N ,  77' mod N, 66' mod N]; 

thus this scheme is xor-homomorphic. If [a, p, 7,6] is a joint encryption using 
Es, and T,T'  ER 22, then [a,' mod N,pg" mod N,~(n,~-g'j)' mod N, 
6(nj,, g'j)'' mod N ]  is a (nearly) uniformly random joint encryption of the 
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same value (from a computationally indistinguishable distribution when g has 
large order); thus this schemeis blindable. If Es(b) = [a,P,7,S], then Di(Es(b) )  
can be easily computed from [a-"; mod N ,  ,!VZi mod N ]  for any i E S; thus this 
scheme is witnessed. The size of each encrypted bit is four elements of Zl;, 
independent of the number of participants; thus this scheme is compact. 

We note that our implementation can be modified to  include the property 
of threshold decryption, i.e., encryption such that any sufficiently large subset 
of parties can decrypt. This can be done, for example, by incorporating the 
modified shadow generation scheme based on Lagrange interpolation developed 
by Desmedt and Frankel (41 (which is possible when g and N are chosen aa 
described in the next section). 

4.3 

Theorem 1. If El-Gamal enc ypt ion with a composite modulus is GM-secure, 
then our compact enc yption scheme is GM-secure. 

Proof. Suppose, for purposes of establishing a contradiction, that El-Gamal en- 
cryption with a composite modulus is GM-secure while our compact additive 
joint encryption scheme is not GM-ssecure. Then it would be easy to  distinguish 
between composite El-Gamal encryptions of +I and -1, since these can be easily 
converted into random additive joint encryptions of one and zero, as follows. 

Let (g' mod N ,  (- l )bg'" mod N )  be a composite El-Gamal encryption of 
(-l)b (using El-Gamal public key g2 mod N ) .  Then [g' mod N,g" mod N ,  
s2(-1)bg'2 mod N, ~ g ' " ~  mod N ]  is an additive joint encryption Es(b)  for ran- 
dom T ' , S  € R  2; (e.g., using joint public key 

Security of El-Gamal Based Scheme 

", T1, * .  - 7 T ( S ( - l ,  (g2 n T i 1  mod N ) ]  
i<lSl 

for random T ~ , . - - , T ~ I - ~ ) .  

However, our encryption scheme (and composite El-Gamal) is not GM-secure 
if composite quadratic character (residue vs. non-residue) is easy to  compute. 
An attacker sees g" mod N , a  = g' mod N , p  = g'' mod N,7 = (-l)bs2gr" mod 
N,S = SCJ''~ mod N ,  where b is the value of the encrypted bit (and where 
2 = ' & s ~ i ) .  Let & R j ~ ( v )  = 0 if v is a quadratic residue modulo N and 
1 otherwise. If QRN( . )  is easy to  compute, then the attacker can determine 
b = ( & R N ( ~ )  * &RN(gZ mod N)) @ Q R N ( ~ ) .  We do not know whether the 
additional information available to  the attacker makes the GM-security of our 
scheme (and composite El-Gamal) strictly weaker than the difficulty of comput- 
ing quadratic character modulo N .  

The security of the original El-Gamal public-key encryption-scheme reduces 
to  the difficulty of breaking an instance of the Diffie-Hellman key exchange 
scheme [5] (i.e., a problem that is no more difficult than but not known to  
be equivalent to the discrete log problem). McCurley [ll] showed how El-Gamal 
encryption with a composite modulus (and a careful choice of g and N )  can be 
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secure against an adversary who could break the Diffie-Hellman key exchange, 
or could factor the modulus, but not both. However this was a proof of security 
in the sense that no polynomial time algorithm can invert a non-negligible frac- 
tion of ciphertexts, and not GM-security (computational indistinguishability of 
ciphertext s) . 

We note that if g and N are chosen as suggested by McCurley, then the 
technical condition for incorporating threshold decryption into our scheme can 
be met. Specifically, McCurley’s proof is based on the choices g = 16, N = pq, 
p = 8r + 3, q = 8s - 1 (where T,S have special structure), and this meets 
the condition of Desmedt and Frankel [4] for their modified shadow generation 
scheme based on Lagrange interpolation (Le., that g have odd order in 2;). 

5 Message-Efficient General Secure Computation 

Several solutions have been found t o  the problem of securely evaluating an arbi- 
trary boolean circuit under cryptographic assumptions, beginning with the work 
of Yao [14] and Goldreich, Micali, and Wigderson [8]. We focus on the message 
complexity (i.e., number of encrypted bits of communication) of such protocols 
in the  privacy setting. 

5.1 

Previously, the lowest message complexity known for n parties t o  privately evalu- 
ate a circuit of size C under reasonable cryptographic assumptions was O(n2C) 
encrypted bits of communication. This same complexity was achievable using 
either of the main techniques for secure circuit evaluation in the cryptographic 
setting: the “gate-by-gate” approach or the “circuit-scrambling” approach. 

In the gate-by-gate approach, each gate of the circuit is computed by having 
each pair of the n parties perform a private two-party protocol. In the proto- 
col of Galil, Haber, and Yung [7], with efficiency improvements by Goldreich 
and Vainish 191, each two-party protocol is a single instance of “One out of 
Two Oblivious Transfer” (1-2-OT). It is possible to  implement two-party 1-2- 
OT privately using a constant number of encrypted bits under a cryptographic 
assumption (e.g., three encrypted bits suffice under the assumption that com- 
posite quadratic character is hard). This gives a total message complexity of 
O(n2C) encrypted bits. 

In the circuit-scrambling approach, each party takes a turn modifying the 
truth tables of the gates of the circuit. In the protocol of Chaum, Damgbrd, and 
van de Graaf [2], each party can randomly permute the rows, and can randomly 
complement certain of the rows and columns of each t ruth table. Records of each 
party’s modifications are preserved in the form of bit commitments, which ac- 
company the scrambled circuit as it passes from party to  party (to enable circuit 
evaluation after the n th  party has finished scrambling). Each party contributes 
a constant number of bit commitments for each gate (e.g., one bit commitment 
for each truth table row), and so the scrambled circuit as it passes from party i 

Previous Approaches t o  Private Computation 
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t o  party i + 1 includes O(iC) bit commitments. When each bit commitment is 
a single encryption, this gives a total message complexity of O(n2C) encrypted 
bits. 

5.2 Reduced “Gate-by-Gate” Message Complexity 

A gain of O(n) in the message complexity of secure computation can be achieved 
via compact additive join encryption using either a gate-by-gate approach or‘a 
circuit-scrambling approach. We describe the gate-by-gate approach in detail in 
this section. 

Theorem 2. Under the assumption that compact additive joint encryption is 
possible, any boolean circuit with C gates can be privately evaluated by n parties 
using O(nC) encrypted bits of communication. 

Proof. No communication is required for each NOT gate. Each AND gate re- 
quires two rounds of communication, and message complexity 4n encrypted bits 
(actually, three encryptions and two decryption witnesses per party, where each 
witness is half the length of an encryption for the El-Gamal based scheme). 

The protocol begins with encryptions of the input bits on the shared tape. 
We show how the encrypted output of any gate can be computed in a constant 
number of rounds from its encrypted inputs. For a NOT gate, the output can 
be found without any communication by XORing the encrypted input with a 
default encryption of a one. 

For an AND gate, suppose the encrypted gate inputs are E[i...,~(z) = f 
and Ep.,. ,~(y) = $. Each party i chooses bi, ci ER (0, l}, and broadcasts 6i = 
Ep ...,,I( b i )  and t i  = Ell ...,,I( c i ) .  With no communication, the parties can then 
find 2’ = E[l...,~(x$bl~...$b,) and i’ = Ep...,,l(~$cl$...$c,). The parties 
broadcast decryption witnesses for d?,$ to find x’ = x + b j  mod 2 and 
y’ = y + x15jln cj mod 2. Let E’ = x’ A y’. 

For every 1 5 i , j  _< n, party i can find EI l...,l(b; A c j )  by either encrypting 
a zero (if b; = 0) or by blinding 2 j  (if bi = 1). Similarly, each party i can find 
E[1..anj (bi A y) and Ep...,](x A ci). Each party broadcasts a blinded encryption of 
the XOR of all of these encrypted values (in parallel with the previous broadcast). 
Now an encryption of the XOR of all received encrypted XOR’s, together with an 
encryption of z’, is equal to the encryption of z = x Ay (i.e., by the distributivity 
of AND over XOR: u A (v $ w) = (u A v) CB (u A w)). 

When the last gate in the circuit has been computed, all parties know a joint 
encryption of the circuit output. At this point, the parties broadcast decryption 
witnesses to  enable all of them to compute the actual circuit output. 

For privacy, we need to argue that no subset S of parties learns anything 
about the other parties’ inputs beyond what is implied by a knowledge of the 
inputs of S and the circuit output. It suffices to  show that  the distribution of tran- 
scripts of protocol executions, as viewed by S, can be simulated by a polynomial 
time machine that has access to  the inputs and decryption functions of S, such 
that  the simulated distribution and the actual distribution are computationally 

- -  
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indistinguishable. Excluding the decryption witnesses for the circuit output, the 
transcript of an  execution of the protocol gives a number of joint encryptions 
for related values, and a number of decryption witnesses for uniformly random 
values. The simulator computes joint encryptions of uniformly random values to 
substitute for all of the joint encryptions in the transcript except the last one, 
and substitutes a uniformly random joint encryption of the output for the joint 
encryption of the output of the last gate, and substitutes decryption witnesses 
for uniformly random values for all of the decryption witnesses. By standard 
cryptographic arguments, the computational indistinguishability of these distri- 
butions follows from the computational indistinguishability of individual joint 
encryptions. 

5.3 Reduced “Circuit-Scrambling” Message Complexity 

To get the same gain in message complexity with a circuit-scrambling approach, 
the bit commitments are additive joint encryptions, but only a single commit- 
ment accompanies each truth table row as it passes from party to party. The 
single commitment a t  a row represents the xor of modifications performed by 
all parties. When a compact scheme is used, the size of the scrambled circuit 
doesn’t increase from scramble to  scramble. 

Although the order of magnitude of the message complexity is the same, 
note that the multiplicative constant is better for our methods using the gate- 
by-gate approach. In the gate-by-gate approach, four encrypted bits are needed 
per AND gate (counting one decryption witness as half an encryption), and no 
communication is needed per NOT gate. In the circuit-scrambling approach, the 
same four encrypted bits are needed per AND gate, while two encrypted bits are 
needed per NOT gate (i.e,, one bit commitment for each truth table row). 

5.4 Measures of Message Complexity 

In this section, we have shown that the message complexity of secure compu- 
tation can be decreased by a linear factor in the number of participants. This 
gain has been computed under a “broadcast” measure of message complexity. 
Specifically, if one party posts a bit to the publicly readable bulletin board, then 
the protocol is charged one bit. The same charge applies no matter how many 
of the other parties ever read that posted bit. 

It is reasonable to  consider an alternative “readership” measure of message 
complexity, in which the number of readers of a message is relevant. By this 
measure, the protocol is charged k bits if a single posted bit is read by k of the 
other parties. 

The linear gain in message complexity is maintained with respect t o  the 
readership measure for the “circuit-scrambling’’ protocol described in Section 
5.3. This is because most broadcasts are only used to  pass the scrambled circuit 
from one party to  the next, i.e., to  be read by only one other party. However, 
the ”gate-by-gate” protocol loses the linear gain with respect to the readership 
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measure. Posting messages that are read by all other parties seems to be an 
essential feature of this approach. 

6 Customized Secure Protocol for Bit-String Comparison 

In this section, we show further application of our encryption method by describ- 
ing a novel protocol for n parties to  privately compare two encrypted bit-strings. 
The message complexity of this protocol has the same order of magnitude as 
would be achieved by computing a comparison circuit using our general tech- 
niques, although a small constant factor (roughly three) is saved. We believe 
that  this protocol is of interest because it demonstrates that for practical appli- 
cations (where constant factors count) useful gains in communication complexity 
can come from customizing cryptographic tools to the specific secure computa- 
tional task at hand. Note that a constant factor is also gained by this protocol 
with respect t o  the readership measure of message complexity. 

Before giving our comparison protocol, we need to develop a tool to  randomly 
permute pairs of encrypted inputs with low message complexity. 

6.1 Shuffie Gate Computation 

A “shuffle gate” has two main inputs x, y, a control input c, and two outputs 
a,@. When c = 0, the inputs pass through the gate unchanged: a = x and /3 = y. 
When c = 1, the inputs are flipped as they pass through the gate: cy = y and 
,f3 = z. A shuffle gate can be represented aa a circuit with six AND and OR 
gates. Using our gate-by-gate approach, 24n encrypted bits of communication 
are needed to  privately evaluate a shufae gate. 

By contrast, a uniformly random shuffle gate can be privately computed 
directly at a cost of only 2n encrypted bits of communication using the El Gamal 
based scheme. Let 2,jj be the encryptions of the main inputs. Each party d 
chooses a uniformly random ci E R  (0,l). We want x, y to be flipped only if the 
xor of a,ll of the c i  values is one. Each party a posts two encrypted values as 
follows: two encrypted zeros if c i  = 0, and two encryptions of x @ y if c; = 1. 
By xoring all of these posted pairs to the input pair 2,$, each party gets an 
encryption of the appropriate output pair. 

6.2 Details of the Comparison Protocol 

Intuitively, the comparison protocol works on 1-bit strings in I - 1 rounds, where 
each round reduces the length of the encrypted bit strings by one. The reduction 
is done in such a way that the result of comparing the two decrypted bit-strings 
is preserved after each round. Specifically, the parties remove the leading bits if 
these bits are equal, and remove the next-to-leading bits if the leading bits are 
unequal. Of course, it would violate privacy if any proper subset of parties could 
determine which of these two actions occurred in any round. 



276 

Our protocol guarantees that the correct action occurs obliviously (i.e., so 
that  no proper subset of the parties can detect which action occurred) by re- 
peatedly using the shuffle gate construction described in the preceding section. 
In each round, two shuffle gates are controlled by the same control bit 7.  The 
decision about which pair of bits to  discard each round depends critically on the 
value of the control bit for that round. The details are given in Figure 1. 

r 1 Initially, 3 = Ell ...,,I( z), 5 = Ell ..." ~ ( y ) .  

1. h Round i, 1 5 i 5 I- 1, the following messages are sent: 

(a) Each party j (1 5 j I n) posts [a1j*/Aj,a~j,~%j;7j] = 
i. (blind(5.i @ Z. ( i  + l)), bZind(9.i @ $( i  + l)), blind(5.i @ Z.(i + I)), 

ii. [Ep. 
bfind(j7.i fB &(i + 1));E p....]( l)] with prob $. 

(O), Eli.. ..I (0) , Eli.. ..I (O), Eli.. ..I (0); E[1 .,,I (O)] with prob f . 
(b) Each party j (1 5 j 

(c) Before the start of Round i + 1, each party (without communication) locally 

n) posts a witness for Dj(2.i @ 5.i @ 7), 
where 7 = 71 @ * - 4 @ m. 

replaces Z . ( i  + 1),5.(i + 1) with 

if D[i ... n](f @ @ @ 7) = 0. 
i. bZind(a21@ 

ii. blind(a11 @ 

8 azn @ 5.(i + l)), blind(&1 @ - @ Pzn @ $.(i + 1)) 

. @j aln @ g . i ) ,  bZind(pll @ . . @PI,, @ 5.;) 
if D[I ...,I( E @ I e7) = 1. 

2. In Round 1 ,  the following messages are sent: 
(a) Each party j (1 5 j 5 n) posts a witness for Dj(5.l). 
(b) Without communication, each party computes the final answer to be 

w = 4 ...,,I( 5 4 .  (If u = 1 then z 3 y else z 5 y.) 

I 

Fig. 1. Message-Efficient Multi-party Comparison Scheme 

All messages €or this protocol, exccpt for the last round, are witnesses for 
joint encryptions of uniformly random values, or joint encryptions of related 
values. Privacy follows from an argument similar to that of Theorem 5.2. 

Theorem 3.  Under the assumption that compact additive joint encryption is 
possible, private multi-party comparison of two 1-bit strings is possible with com- 
munication 4(1 - 1)n encypted bits and In decryption witnesses. 

7 Summary and Open Problems 

The message complexity of secure distributed computation can be reduced by 
extending techniques from group-oriented cryptography. We show how gains 
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in multi-party evaluation of general circuits can be achieved by augmenting a 
joint encryption scheme to  support blinding, witnessing, and adding ciphertexts 
without increasing the length of the ciphertexts. 

We would like to  find compact implementations of additive joint encryption 
based on other, possibly weaker, intractability assumptions, and to  find other 
applications for such encryption schemes. In addition, we would like to explore 
other ways t o  improve the secure evaluation of specific useful functions by ex- 
ploiting special properties of customized encryption methods. It would also be 
interesting t o  reduce the computational resources required for secure computa- 
tion in other settings, possibly tolerating stronger adversaries. 
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