
Interaction Between Data Parallel Compilation

and Data Transfer and Storage Cost
Minimization for Multimedia Applications

Chidamber Kulkarni1, Koen Danckaert1, Francky Catthoor1,2, and
Manish Gupta3

1 IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
2 Professor at the Katholieke Universiteit Leuven

3 IBM T.J. Watson Research Center, Yorktown Heights, NY

Abstract. Real-time multi-media applications need large processing
power and yet require a low-power implementation in an embedded pro-
grammable parallel processor context. Our main contribution in this con-
text is the proposal of a formalized DTSE (data transfer and storage ex-
ploration) methodology, which allows to significantly reduce system bus
load and hence overall system performance and also power consumption.
We demonstrate the complementarity of this methodology by coupling
the DTSE with a state-of-the-art performance optimizing and paralleliz-
ing compiler. Experiments on two real-life video and image processing
applications show that this combined approach heavily reduces the mem-
ory accesses and bus-loading and hence power and also significantly re-
duces the total execution time. Decomposing the detailed parallelization
and DTSE issues into two different stages is important to obtain the
benefits of both the stages without exploding the complexity of solving
all the issues simultaneously.

1 Introduction and Related Work

Parallel machines were mainly, if not exclusively, being used in scientific com-
munities until recently. Lately, the rapid growth of real-time multi-media appli-
cations have brought new challenges in terms of the required processing (com-
puting) power and power requirements. For this type of applications, especially
video, graphics and image processing, the processing power of traditional unipro-
cessors is no longer sufficient. This has lead to the introduction of small- and
medium-scale parallelism in this field too, but then mostly oriented towards
single chip systems for cost reasons. Today, many weakly parallel video and
multi-media processors are emerging (see [14] and its references), increasing the
importance of parallelization techniques. Applications on these processors are
parallelized manually even now, which can be tedious and error-prone. This pa-
per presents evidence that parallelizing compilers can be used effectively to deal
with this problem, if they are combined with other techniques.

Indeed, the cost functions to be used in these new emerging application fields
are no longer purely performance based. Power is also a crucial factor, and has to

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 668–676, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Interaction Between Data Parallel Compilation and Data Transfer 669

be optimized for a given throughput. Real time multi-media processing (RMP)
applications are usually memory intensive and a significant part of the power
consumption is due to the data transfers i.e. in the memory hierarchy [16].

In a parallel processor context most of the research effort in the community
so far addresses the problem of parallelization and processor partitioning [2].
Existing approaches do not sufficiently take into account the background storage
and transfer related cost. A first approach for more global memory optimization
in a parallel processor context was described by us in [6]. Although many software
compilers try to come up with the best array layout in memory for optimal
cache performance (see e.g. [5] and its references for a few formal approaches
based on compile-time analysis) they do not try to directly reduce the storage
requirements as memory is allocated based on the available variable declarations.
However, in general, this can lead to a large over-allocation, compared to the
maximal amount of memory which is really needed over time. We have shown
in [4, 9] that aggressive in-place mapping of array signals, based on a detailed
life-time analysis, can heavily reduce data storage requirements and improve the
cache performance significantly.

The above issues have been a motivation for us to carry out this study. In
this paper, we apply our global DTSE (data transfer and storage exploration)
methodology on two real-life RMP applications and then couple this to a state-
of-the-art optimizing and parallelizing compiler using directives. In the process,
we show that the results are very promising (see section 4).

The remaining paper is organized as follows. In section 2, we identify the
problem and present the cost functions used in this paper. Section 3 presents
the design methodology used in this work. This is followed by discussion and
experimental results on two real-life demonstrators in section 4. Conclusions
from this work are provided in section 5.

2 Problem Exploration and Cost Functions

In this section we will identify the problems for which we will provide promising
solutions. Also the cost functions that we have used in this paper are presented.

As stated in section 1, the emerging real-time multi-media applications de-
mand large processing power and a low-power implementation. Thus in the con-
text of programmable multimedia solutions on parallel processors, the following
problems become evident :

1. Do current multi-media applications lend themselves easily to automatic (or
directives-based) parallelization?

2. What are the effects of power-oriented program transformations on the per-
formance of (parallel) multi-media applications?

In the sequel, we will provide answers for the above issues. Moreover, we will
also show that optimizations during the DTSE stage help in reducing the com-
munication cost (memory accesses) between processor and the (shared) memory.

670 Chidamber Kulkarni et al.

Two cost functions are used in this paper for evaluating the effectiveness of
our methodology. The first one is the execution time of the concerned application.
This time is the total execution time of the program measured using UNIX and
C time functions. The second cost function is the power consumption. The power
consumption is estimated by evaluating the total number of accesses to the off-
chip memories. We will calculate both the total number of accesses and size of
memories for the demonstrators in section 4.

3 Design Methodology

In this section we present a brief discussion of the main steps in the DTSE stage
and the optimizing and parallelizing compiler. Note that the emphasis here is not
on the detailed issues which have been presented elsewhere but just to highlight
the main benefits of each individual stage.

3.1 Data Transfer and Storage Exploration

The five steps comprising our methodology for system-level power optimization
for real-time multi-media applications are illustrated in figure 1. All the steps of
our methodology are currently performed manually in this paper but each indi-
vidual step has been applied systematically in the proposed sequence. Moreover,
we are building a prototype compiler supporting these steps. Below is a brief
discussion of the different steps in our methodology :

Original Source Code

1.Data Flow and Locality Analysis

2.Global Data And Control Flow
 Transformations [7]

5.Cache Optimizations and
 Advanced In-Place Mapping[4,9]

To a Parallelizing Compiler

Instruction
and Cycle
budget

3.Data Re-use Decisions [13]

Execution
 Order
 Issues

Storage Order
 Issues

Physical Memory
Organization Issues

4.Storage Cycle Budget Distribution
 and Memory Assignment [4]

Fig. 1. Data Transfer and Storage Exploration (DTSE) methodology

The program transformation methodology comprises two phases : in the first
phase all the transformations, steps 2, 3, 4 and 5 in figure 1, are chosen based
on the amount of reduction in the number of memory accesses to the larger off-
chip memories. In the second phase we obtain feedback on the effects of these

Interaction Between Data Parallel Compilation and Data Transfer 671

transformations on performance (delay), static instruction count and code size.
Note that these phases are local to each step i.e. the real-time feedback is lo-
cal to each step. Parts of code exhibiting larger delay are transformed again
for improved performance. In addition, in order to reduce the adverse impact
of complex conditional expressions and addressing after power oriented trans-
formations, we perform advanced code motion and modulo reductions prior to
conventional instruction-level compiler(s) using techniques as described in [12].
Also note that steps 2, 3 and 4 modify the execution order of the application,
whereas step 5 only modifies the storage order. This approach has significant
benefits as illustrated in [10].

3.2 Performance Optimization and Parallelization

We have used a prototype version of the IBM C compiler (xlc) for AIX 4.2
in our experiments to demonstrate the complementarity to the state-of-the-
art parallel compiler. This compiler uses a language-independent optimizer, the
Toronto Portable Optimizer (TPO), for global program optimizations and paral-
lelization, and finally, an optimizing back-end for target-specific optimizations.
TPO performs (inter-procedurally) classical data flow optimizations like con-
stant propagation, copy propagation, dead code elimination, and loop-invariant
code motion [11]. It also performs loop transformations like fusion, unimodular
transformations, tiling, and distribution to improve data locality and parallelism
detection [18]. Finally, TPO supports parallelization of loops based on both data
dependence analysis and user directives. It supports various static and dynamic
scheduling policies for nested parallelization of loops [8].

Our experiments have shown that the key analysis needed to detect par-
allelism automatically in the critical loops of the application was a sophisti-
cated form of array privatization analysis [17]. While TPO does perform inter-
procedural array privatization analysis, it failed to detect the privatizability of
arrays indexed by expressions involving modulo operations. The analysis of these
kinds of array references has not received much attention in the literature, as
they do not appear very frequently in scientific programs. The DTSE steps, on
the contrary, often introduce modulo arithmetic in the computation of array
subscripts in the transformed loops. Even though the compiler was unable to
detect the parallelism in many loops automatically, it was quite easy to make
it parallelize any loop by simply using a parallel loop directive. The compiler
automatically privatizes all variables declared inside the loop being parallelized.
Finally, since the computations in these applications tend to be quite regular,
we used the default, static scheduling policy for scheduling parallel loops.

4 Experimental Results

In this section we address the questions identified in section 2 in the context of
implementation of RMP applications on parallel processors.

672 Chidamber Kulkarni et al.

4.1 Experimental Set-Up

The experimental set-up comprises two main stages (described in section 3):
First the concerned application is optimized for data transfer (power) and stor-
age using the DTSE approach. This application is now analyzed for the power
and performance cost using the criteria described in section 2. Next the DTSE-
optimized application is now fed to the optimizing and parallelizing compiler
(OPC). The resulting code from OPC is executed on a 4-way SMP machine
(each node is a Power PC 604 with clock frequency of 112 MHz) to observe the
performance characteristics of the parallelized code.

Thus we obtain a power estimation of the original and power-optimized code
and performance values for DTSE-optimized and OPC-DTSE-optimized code.
This allows us to do a fair comparison of the effects of the DTSE stage on
performance and parallelization related optimizations.

4.2 Cavity Detection

The cavity (or edge) detection technique is an important step in many (especially
medical) image processing applications [3]. This algorithm mainly consists of a
sequence of four distinct steps, each of which computes new matrix information
from the output of the previous step as shown in figure 2. In this paper, we
assume that the image enters and leaves the system in the conventional row-
wise fashion.

Gauss
Blur

Compute
Edges

Detect
Roots

Label
Roots

In
pu

t F
ra

m
e

O
ut

pu
t F

ra
m

e

Fig. 2. The Cavity Detection algorithm

Table 1 gives an overview of the reduction of data transfers and the num-
ber of memories, accomplished by the different system-level DTSE transforma-
tions. The initial algorithm requires 36 accesses per pixel to the frame memory.
Whereas the locally optimized algorithm needs 10 accesses to the frame memory
and the globally optimized algorithm needs at most two accesses to the in-
put/output buffers. Thus with DTSE transformations, a significant reduction in
power and area is obtained for this example. Table 3 gives the execution times
for different optimization levels for the parallelized code on different number
of processors. Here we observe that the total execution time decreases consis-
tently after the DTSE optimizations, and the optimized version performs better
for larger number of processors. Thus apart from reducing the power cost, our
DTSE approach heavily enhances the performance on parallel machines for data
dominated applications by reducing the potential inter-processor communica-
tion.

Interaction Between Data Parallel Compilation and Data Transfer 673

Version Parallelism # Main memory # Frame transfers

Initial data 2 (+1) 36
task 8 (+1) 36

Locally data 1 (+1) 10
Optimized task 4 (+1) 10

DTSE data 0 0(2)
optimized task 0 0(2)

Table 1. Data transfer and main memory storage requirements of different
cavity detection mapping alternatives on a parallel processor. If the input frame
buffers are included, the numbers between () are obtained. Frame transfers are
counted per pixel.

4.3 Quad-Tree Structured Differential Pulse Code Modulation
(QSDPCM)

The QSDPCM [15] technique is an interframe adaptive coding technique for
video signals. A global view of the QSDPCM coding algorithm is given in fig-
ure 3. Most of the submodules of the algorithm operate in cycles with an iteration
period of one frame (see table 3 for frame sizes). It is worth noting that the al-
gorithm spans 20 pages of complex C code. Hence it is practically impossible
to present all the detailed dependencies and profile of the algorithm. A more
detailed explanation of the different parts of the algorithm is available in [15].
Table 2, gives the number (and size) of memories required and the correspond-

SubSamp4

SubSamp4

SubSamp2

SubSamp2

ComputeV4

ComputeV2

V1Diff

@1

@1

Ad.Up.Samp Reconstruct

@1

Quad.Dec.
Quad.Constr.

Input
frame

Reconstructed
previous frame

Output
bitstream

Fig. 3. The QSDPCM algorithm

ing number of accesses for the QSDPCM algorithm. We observe that there is a
significant reduction in the total number of off-chip accesses for both the memo-
ries. Hence the total power consumption, for the global DTSE-transformed case
is heavily reduced compared to the original. Table 3 shows that the DTSE-
transformed parallelized code has better execution times compared to that of
the original parallelized code. Note that the execution time for the original case

674 Chidamber Kulkarni et al.

reduces by a factor three with four processors, whereas for the DTSE trans-
formed case there is even a reduction in execution time by an almost ideal factor
3.9. This once again shows that DTSE is complementary and is even augment-
ing the effect of the more conventional performance and parallelization related
optimizations.

Version Memory Size # Accesses

Initial 206K 5020K
282K 8610K

DTSE 206K 4900K
transformed 1334 8548K

Table 2. Amount of memory and the corresponding total number of accesses
to each of these memories for the QSDPCM algorithm for different optimization
levels.The memory size is in bytes.

Version Frame Size P=1 P=2 P=3 P=4

Cavity Detection

Original 640 × 400 0.87 0.65 0.63 0.63
1280 × 1000 4.47 3.19 3.01 3.06
12800 × 10 4.07 3.00 2.94 3.03

DTSE 640 × 400 0.32 0.27 0.21 0.18
transformed 1280 × 1000 1.71 1.30 0.98 0.83

12800 × 10 3.11 1.92 1.79 1.61

QSDPCM

Original 288 × 528 5.89 3.11 2.26 2.00
576 × 1056 22.83 12.32 9.09 7.62

DTSE 288 × 528 3.48 1.75 1.18 0.98
transformed 576 × 1056 13.45 7.28 4.79 3.47

Table 3. Performance of parallelized Cavity detection and QSDPCM algorithm
for various cases using a Power PC 604 based 4-way SMP machine. Here P
represents the number of processors and the execution time is in seconds.

4.4 Summary

Below is a summary of the main results from the experiments with the two
real-life applications :

1. We are able to parallelize both the codes using manual directives to guide
the parallelizing compiler.

2. The performance results for both the demonstrators show that DTSE trans-
formations are complimentary to and even augmenting the effect of the per-
formance related optimizations (a gain between factor 2.5 and 3.9 for four

Interaction Between Data Parallel Compilation and Data Transfer 675

processors).This comes on top of the power and bus load reduction effects
of the DTSE step.

3. Automatic parallelization of these multimedia demonstrators is possible but
requires a sophisticated array privatization scheme (see section 3.2). Modulo
operations introduced by DTSE transformations do not effect the inherent
parallelism in the code but requires a more complex analysis to detect the
parallel loops. Modulo reduction as described in [12] has large benefits. More-
over, using manual directives it is very well possible to obtain large speed-ups
in execution times as illustrated in the results.

5 Conclusions

The main conclusions of this paper are : (1) System bus-load and power optimiz-
ing DTSE program transformations are complementary to the pure performance
related program transformations in data parallel compilers and (2) DTSE trans-
formations do not effect the inherent parallelism present in an application and
even enhance the performance itself by reducing the inter-processor communica-
tion. So our DTSE approach is fully complementary to the conventional perfor-
mance related design approaches, and combining the two approaches has major
benefits. This is demonstrated on two real-life parallel multimedia demonstrators
which have been mapped on a IBM 4-way SMP machine.

References

[1] A.Agarwal, D.Krantz, V.Nataranjan, “Automatic partitioning of parallel loops
and data arrays for distributed shared-memory multiprocessors”, IEEE Trans. on
Parallel and Distributed Systems, Vol.6, No.9, pp.943-962, Sep. 1995.

[2] U.Banerjee, R.Eigenmann, A.Nicolau, D.Padua, “Automatic program paralleliza-
tion”, Proc. of the IEEE, invited paper, Vol.81, No.2, Feb. 1993.

[3] M.Bister, Y.Taeymans, J.Cornelis, “Automatic Segmentation of Cardiac MR Im-
ages”, Computers in Cardiology, IEEE Computer Society Press, pp.215-218, 1989.

[4] F.Catthoor, S.Wuytack, E.De Greef, F.Balasa, L.Nachtergaele, A.Vandecappelle,
“Custom Memory Management Methodology – Exploration of Memory Organi-
zation for Embedded Multimedia System Design”, ISBN 0-7923-8288-9, Kluwer
Acad. Publ., Boston, 1998.

[5] M.Cierniak, W.Li, “Unifying Data and Control Transformations for Distributed
Shared-Memory Machines”, Proc. of the SIGPLAN’95 Conf. on Programming
Language Design and Implementation, La Jolla, pp.205-217, Feb. 1995.

[6] K.Danckaert, F.Catthoor and H.De Man, “System-level memory management for
weakly parallel image processing”, In proc. EUROPAR-96, Lecture notes in com-
puter science series, vol. 1124, Lyon, Aug 1996.

[7] E.De Greef, F.Catthoor, H.De Man, “Program transformation strategies for re-
duced power and memory size in pseudo-regular multimedia applications”, ac-
cepted for publication in IEEE Trans. on Circuits and Systems for Video Tech-
nology, 1998.

[8] S. Hummel and E. Schoenberg, “Low-overhead scheduling of nested paral-
lelism”,IBM Journal of Research and Development, 1991.

676 Chidamber Kulkarni et al.

[9] C.Kulkarni, F.Catthoor, H.De Man, “Hardware cache optimization for parallel
multimedia applications”, In Proc. of EuroPar’98, Southampton, pp. 923-931,
Sept 1998.

[10] C.Kulkarni, D.Moolenaar, L.Nachtergaele, F.Catthoor, H.De Man, “System-level
energy-delay exploration for multi-media applications on embedded cores with
hardware caches”, Accepted for Journal of VLSI Signal Processing, special issue
on SIPS’97, No.19, Kluwer, Boston, pp., 1999.

[11] S. Muchnick, “Advanced compiler design and implementation”, Morgan Kauf-
mann Publishers Inc. , ISBN 1-55860-320-4, 1997.

[12] M.Miranda, F.Catthoor, M.Janssen, H.De Man, “High-level Address Optimiza-
tion and Synthesis Techniques for Data-Transfer Intensive Applications”, IEEE
Trans. on VLSI Systems, Vol.7, No.1, March 1999.

[13] J.Ph. Diguet, S. Wuytack, F.Catthoor, H.De Man, “Formalized methodology for
data reuse exploration in hierarchical memory mappings”, In Proc. Int’l sympo-
sium on low power electronics and design, pp.30-36, Monterey, Ca., Aug 1997.

[14] P.Pirsch, H-J.Stolberg, Y-K.Chen, S.Y.Kung, “Implementation of Media Proces-
sors”, IEEE Signal Processing Magazine, No.4, pp.48-51, July 1997.

[15] P.Strobach, “QSDPCM – A New Technique in Scene Adaptive Coding,” Proc.
4th Eur. Signal Processing Conf., EUSIPCO-88, Grenoble, France, Elsevier Publ.,
Amsterdam, pp.1141–1144, Sep. 1988.

[16] V.Tiwari, S.Malik and A.Wolfe, “Instruction level power analysis and optimization
of software”, Journal of VLSI signal processing systems, vol. 13, pp.223-238, 1996.

[17] P. Tu and D. Padua, “Automatic array privatization”, Proc. 6th Workshop on
Languages and Compilers for Parallel Computing, Portland, OR, August 1993.

[18] M. J. Wolfe, “Optimizing Supercompilers for Supercomputers”,The MIT Press,
1989.

	Introduction and Related Work
	Problem Exploration and Cost Functions
	Design Methodology
	Data Transfer and Storage Exploration
	Performance Optimization and Parallelization

	Experimental Results
	Experimental Set-Up
	Cavity Detection
	Quad-Tree Structured Differential Pulse Code Modulation (QSDPCM)
	Summary

	Conclusions

