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Abstract. We propose a tw o-step algorithm that efliciertly constructs
a schedule of minimum makespan for the precedence multiprocessor con-
strained sc heduling problem in the presence of hierarhical communica-
tions and task duplication for UET-UCT graphs.

1 Introduction.

Many works deal with the multiprocessor scheduling problem with communica-
tion delays ([4],[5],]7]). Usually the parallel program is represented by a directed
acyclic graph where each vertex corresponds to a task and each arc to a (poten-
tial) communication betw een a predecessor-task and a successor-task. Theob-
jective is to find a feasible schedule minimizing the completion time (makespan).
Last years the notion of hierarchical parallel architecture becomes a reality
with the advance of many parallel machines which are based on this concept.
P arallel arhitectures of this type include parallel machines constituted by differ-
ent multiprocessors, bi-processors connected by myrinet switches, arc hitectures
where the processors are connected by hierarchical busses, or point-to-point ar-
chitectures where each vertex of the topology is a cluster of processors. In this
type of architectures, it is clear that there are tw olevels of communications:
the in tracluster-communications between tw o processors of a same madine, and
the in terprocessor-communications betw een t w o processors of differémnmachines,
that we call in what follows intercluster-communications. Hence, there is a need
for an extension of the classical scheduling model with homogeneous communica-
tion delays in order to take into account this important technological evolution.
We study here the simplest case where the tasks have unit execution times,
the intercluster-communication delay takes also a unit of time (¢;; = 1) while
the intracluster-communication delay is equal to zero (e; = 0). We focus on
the case where the number of clusters is unrestricted, the number of proces-
sors within each cluster is equal to two, and task duplication is allo w ed Ex-
tending the standard three-field notation of [6], our problem can be denoted as
P 2lprec; (cij €5) = (1,0);p; = 1;dup|Cirae. This problem has already been
studied in the case where the duplication of tasks is not allow ed([1],[2]). In
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[2], the authors proved that the problem of deciding whether an instance of
P, 2|prec; (cij, €5) = (1,0);p; = 1|Chpap has a schedule of length at most four is
NP-complete. As a corollary, no polynomial-time algorithm exists with perfor-
mance bound smaller than 5 unless P = N P. In [1], a heuristic with a relative
performance guarantee of g has been proposed.

In this paper, we allow the duplication of tasks and we propose an extension
of the approach proposed in [4]. Colin and Chrétienne in [4] defined an optimal al-
gorithm for the so-called small (homogeneous) communication times case (SCT),
where the minimum execution time of any task is greater than or equal to the
biggest communication delay. We focus on the hierarchical communication-case
and more precisely on the P, 2|prec; (cij, €5) = (1,0);p; = 1; dup|Cypps problem,
and we propose an optimal scheduling algorithm. Our algorithm is in two steps:
we first compute for each task an earliest starting time of any of its copies, we
construct a critical graph, and then we build up an earliest optimal schedule.
The proofs have been omitted because of space limitations.

2 Problem definition.

We consider a directed acyclic graph G = (V; E) which models the prece-
dence constraints. Given a graph G and a task 4, we denote by Predg (i) (resp.
Suceg (1)) the set of immediate predecessors (resp. successors) of the task i in G.
More generally, we define Pred, (i) = Pred.; ' (Predg(i)), where integer I > 1,
and Predy, (i) = Preda (i) Predf,(i) denotes the transitive closure of Predg (i)
In the following, if no confusion arises, we will use the notation Pred() instead
of Predq(i)

We may assume w.l.o.g. that all the copies of any task ¢ € V start their
execution at the same time, denoted t;. Let us denote by II; the set of clusters
on which we execute the copies of task i. In order to simplify the presentation
whenever two tasks 7,7 (or their copies) such that (¢,7) € E, are not executed in
consecutive time units, we consider w.l.o.g. that they are executed on different
clusters. Any feasible schedule must satisfy the following constraints:

1. at any time, a cluster executes at most two copies;

2. if (4,7) is an arc of G then:

t]-th-+2iflL-ﬂH]—:s25

Our objective is to find a feasible schedule with a minimum makespan.

3 An optimal schedule

3.1 Finding the release times of the tasks

The algorithm works in two steps; the first step is the procedure RT (Release
Times), which computes a lower bound of the starting time of any copy of task i,
denoted by b;, and a critical graph, denoted in what follows as G. = (V, E.). The
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second step of the algorithm is the procedure ES (Earliest Scheduling), which
uses the critical graph to build up a schedule in which any copy of a task starts
at its lower bound

Procedure RT can be stated as follows:

Let G. = (V, E.) be the critical graph of G = (V, E) Initially, E. = @

For every task i € V without predecessor, let b; =0

While there is a task ¢ which has not been assigned a lower bound and whose
all predecessors have been assigned their release times, do the following:

Let bp(;) = max{bg\k € Pred(i)}, and S; = {k\bx = bp(;)}

If |S;| = 1 then b; := bp(;) + 1, and if S; = {k}, then E. = E. [ J{(k,i)}
else if [S;| > 3 then b; := bp(;) +2;
else if |S;| =2 then wlog, let S; = {j, k}
o if for every I, |Prelec () UPrelec (k)| < 2, then b; := bp(;) + 1, and
E.=E, U{(kal): (],Z)}
e else b; := bp(;) + 2;

We proved in the full version of the paper [3] that RT computes the lower
bounds of the starting times of any copy of each task

Lemma 1. Let b; be the starting time computed by procedure RT For any fea
sible schedule of G the starting time of any copy of task i is not less than b;

3.2 Construction of the earliest schedule.

The second step of the algorithm consists in building up an earliest schedule,
that is, a schedule such that each copy is scheduled at its lower bound

We define an arc (i,7) of E to be a critical are, if b; + 1 = b; From this
definition, it is clear that if (i,j) is a critical arc, then in any earliest schedule
every copy of task 7 must be preceded by a copy of task i executed on the same
cluster The critical graph G. = (V; E.) is defined as the partial graph of G
induced by the critical arcs According to the construction, it is easy to see that
the following lemma is true

Lemma 2. FEvery vertex in the critical graph has at most two critical predeces
sors

In the following, for every terminal task ¢ in the critical graph G. (i e a vertex
such that Succg, (i) = @), we denote by C? the critical subgraph of G. = (V; E,)
defined as follows:

C' = {lil, [Predg, (i)], [Predg, ()], } = Predg, (i)

The tasks inside the brackets ([ ]) can be (potentially) executed simultane
ously According to the construction of G, = (V; E.), it is clear that for every i
and I, we have |Predy; (i)] <2 Notice also that a critical subgraph cannot be
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a proper subgraph of another critical subgraph. So, we have at most n critical
subgraphs where n is the number of tasks, and in addition every task in the
initial graph G is an element of at least one critical subgraph.

It is obvious that the critical subgraphs are in one-to-one correspondence
with the terminal tasks of G, a property that will be used in the second step of
the algorithm. This is done by allocating one cluster to each critical subgraph
and processing all the corresponding copies at their release times.

The second step of the algorithm is the procedure ES which can be stated
simply as follows:

- Assign each critical subgraph of G. = (V; E.) to a distinct cluster;

- Start executing each copy of the tasks at its lower bound.

According to the construction, it is not difficult to verify that the obtained
schedule is a feasible optimal schedule (see [3] for the proof).

Theorem 1. The scheduling given above is feasible.

4 Conclusion and future works.

An optimal O(n?) algorithm for the multiprocessor scheduling in the presence of
hierarchical communications and task duplication has been presented. We have
considered here the unit-execution-time unit-communication-time problem. We
are now working to extend our study in the case of small hierarchical communi-
cation delays.
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