
Applying Human Factors to the Design of

Performance Tools

Cherri M. Pancake

Oregon State University, Department of Computer Science, Corvallis, OR 97331, USA
pancake@cs.orst.edu

http://www.cs.orst.edu/∼pancake

Abstract. After two decades of research in parallel tools for perfor-
mance tuning, why are users still dissatisfied? This paper outlines the
human factors issues that determine how performance tools are perceived
by users. The information provides insight into why current performance
visualizations are not as well received as they should be — and what must
be done in order to develop tools that are more closely aligned to user
needs and preferences. Specific mechanisms are suggested for improving
three aspects of performance visualizations: how the user explores the
performance space, how the user compares different aspects of program
behavior, and how the user navigates through complex source code.

1 The Performance Tuning Problem

For over two decades, a great deal of research effort has been directed at tools
for improving the performance of parallel applications. Significant progress has
been made, as can be seen by comparing some of the surveys of parallel tools
from that time period [22, 23, 2]. Why, then, are parallel performance tools still
so hard to “sell” to the user community?

Part of the problem is that parallel tools can be extremely difficult to im-
plement. The tool developer must copy with an inherently unstable execution
environment, where it may be impossible to reproduce program events or timing
relationships. Monitoring and other tool activities, intended to observe program
behavior, in fact perturb that behavior, sometimes causing errors or performance
problems to appear or disappear in unpredictable ways. Further, the notoriously
short lifetime of most parallel computers means that there is an extremely small
“window of opportunity.” Tool development must often begin before the hard-
ware or operating system is stable, but must become available very soon after
the computers are first deployed in order to acquire any significant user base
[20].

Technological challenges are just one aspect of the problem, however. The
most common complaints about parallel performance tools concern their lack of
usability [17, 21]. They are criticized for being too hard to learn, too complex
to use in most programming tasks, and unsuitable for the size and structure of
real-world parallel applications. Users are skeptical about how much value tools

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 44–60, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Applying Human Factors to the Design of Performance Tools 45

can really provide in typical program development situations. They are reluctant
to invest time in learning to apply tools effectively because they are uncertain
that the investment will pay off.

The situation is paradoxical. As we have established elsewhere, users do not
turn to parallel processing unless they need to increase the size, complexity,
resolution or speed of their applications.[19] This means that all parallel users
are concerned to some degree with application performance. They should be
predisposed in favor of any tools that could help automate the processes involved
in measuring, analyzing, and improving performance. Instead, they lament the
lack of suitable tools.

The fact is that a tool is viewed as just that, a tool, something that should
facilitate a human process and enable the human to achieve his/her intended
goal. Tools are not used in isolation, nor are they appreciated as standalone
elements. A tool is only perceived as valuable when it clearly assists the user to
accomplish the tasks to which it is applied. Thus, a tool’s propensity for being
misapplied or its failure to support the kinds of tasks users wish to perform
constitute serious impediments to tool acceptance. This is where human factors
come into play.

Human factors refers to the characteristics, capabilities, and limitations of
human beings and how these affect our use of technology. Human factors en-
gineering , then, seeks to improve system effectiveness and safety by explicitly
addressing human factors in the design of new systems. (For a general overview
of human factors applied to software development, see [5].)

This paper outlines some of the basic human factors that influence the usabil-
ity of parallel tools. In particular, we examine the human factors environment
within which a user attempts to tune the performance of a parallel application.
This is followed by a discussion of how current tools support, or fail to support,
the human factors involved. The information provides insight into why current
performance visualizations are not as well received as they should be — and
what must be done in order to develop tools that are more closely aligned to
user needs and preferences. Specific mechanisms are suggested for improving
three aspects of performance visualizations: how the user explores the perfor-
mance space, how the user compares different aspects of program behavior, and
how the user navigates through complex source code.

2 How Users Approach Performance Tuning

The best way to understand what kinds of tool support are important is to
consider how application developers actually go about the process of performance
tuning. Over the past decade, we have carried out in situ studies of hundreds of
scientists and engineers involved in developing parallel applications.[17] Based on
this work, we propose that the tuning process has two dimensions, distinguished
here as the conceptual framework and the task structure.



46 Cherri M. Pancake

2.1 Conceptual Framework — What the User Seeks

As noted earlier, all application developers are concerned, at least on a su-
perficial level, with program performance. Typically, performance measurement
and analysis activities are interspersed with periods of code development and
debugging.[18] During a performance tuning interval, the user consciously or
unconsciously poses a series of questions that address different aspects of the
application’s behavior.

Those questions establish a conceptual framework, or a series of subgoals
that must be met in order to accomplish the more general goal of improving
performance. Any dependencies among the subgoals establish the order in which
they will have to be accomplished. The following is an example of a typical
conceptual framework:

1. Identification: Is there a performance problem? What are the symptoms,
and how serious are they?

2. Localization: At what point in execution is performance going wrong? What
is causing the problem to occur?

3. Repair: What about the application must be changed to fix the problem?
[Perform the repair.]

4. Verification: Did the “fix” improve performance? [If not, optionally undo the
repair, then go back to (2).]

5. Validation: Is there still a performance problem? [If so, return to (1).]

Subgoals are indicated in italics, and the ordering and repetition of particular
subgoals has also been shown explicitly. In real life, we have observed that users
rarely stop to think about the steps they are following or the rationale behind
them. That is, the process is largely intuitive in nature.

2.2 Task Structure — How the User Seeks It

While the user may not recognize the underlying conceptual framework, he/she
carries it out through a series of deliberate actions. This is the task structure, a
sequence of individual activities that the user plans and executes to achieve a
particular subgoal.

Problem stabilization. The subgoals of identification, verification, and val-
idation are generally accomplished using a single task structure, which we call
problem stabilization. The performance of the application is benchmarked to
obtain some sort of timing information, either overall execution time for the
application or a series of timings reflecting the duration of individual phases of
the application. Execution will be timed repeatedly in order to obtain a series
of “representative” data — that is, reflecting inputs, parameter settings, system
load, etc., that are considered typical of the application’s intended use.

The timings must then be compared to determine how consistent they are.
The performance data are also examined in terms of what the user anticipated



Applying Human Factors to the Design of Performance Tools 47

(e.g., the computational kernel may be expected to occupy roughly 80% of the
total execution time, to complete in about 70 minutes, or to achieve roughly
10% of aggregate peak speed). From the consistency of these timings, the user
infers whether the performance is acceptable. Note that this really is a process
of inference, since there is no simple way of determining whether an arbitrary
application’s performance is “good” or “bad,” and even less way of determining
a priori how much effort will be needed to improve upon that performance.

Search space reduction. The subgoal of localization involves a second set
of tasks, which we will call search space reduction. In a typical scenario, the
user first makes an educated guess about which aspect of the application’s exe-
cution (e.g., memory use, communications, load balance) is responsible for the
perceived behavior. That hypothesis is generally based on intuition and recollec-
tions of previous experiences with performance tuning, and is therefore highly
individual. The user then tests the hypothesis by adding hand-coded instrumen-
tation (or using a performance monitoring tool) in an attempt to isolate where
the problem occurs during program execution. The objective is to narrow down
which region(s) of the source code is responsible for the problem (e.g., in the
part of the program where cells exchange values with their neighbors). It should
be noted that this may be a very rough approximation, and may later turn out
to be erroneous.

Selective modification. The subgoal of repair is achieved with a third set
of tasks, applied in iterative cycles, that we’ll call selective modification. Focusing
attention on one potential problem location at a time, the application developer
uses manual inspection to study the code and attempt to determine what is
causing the problem. The difficulty — and the effectiveness — of this step is
highly dependent on the user’s experience level, since it is largely a matter of
intuition and judgement. The code is modified in an attempt to alleviate the
performance problem, and the user proceeds to the verification stage. If the
code change is deemed to be successful, attention is then focused on the next
problem location. If, on the other hand, performance does not appear to have
improved, the user is likely to un-do the changes and try again.

The task set is called selective because we have found few instances where
experienced users attempt simultaneous changes in different regions of the pro-
gram. When asked why, they say they have learned that it is difficult to ac-
curately assess and balance the effects of multiple, possibly counteracting “im-
provements.” It is perceived as more productive to narrow their focus to small
problems that can be solved incrementally, rather than attempting to develop
and apply a more global strategy.

2.3 Implications for Performance Tools

An understanding of typical approaches to performance tuning explains much
of the frustration that users feel about current tools support. Most tools begin
by popping up a series of windows, each revealind detailed information about a



48 Cherri M. Pancake

particular performance metric. Yet users prefer to begin by gaining an in-the-
large perspective on application behavior (where it is spending its time, major
hotspots for memory use, etc). A fine-grained summary really does nothing to
help the user assess whether performance is generally “good” or “bad,” or if
tuning efforts are likely to pay off. As more than one user has commented, “Don’t
tool developers know how awful it is to bring up a tool and have it try to show
me all 100,000 communications that took place?” [17] For problem stabilization,
the user needs to be able to explore the total program space at a higher level,
looking for evidence of anomalies.

Current tools are somewhat better when applied to search space reduction.
Many allow the user to view different aspects of program behavior, such as
memory use, communications traffic, CPU utilization, etc. However, they fail
to support the core activity — deciding which aspect is responsible for poor
performance. What is needed here is support for comparing different metrics.
Such comparisons (e.g., the fact that CPU utilization drops in the same places
that memory use soars, but appears unrelated to message traffic)would yield
meaningful suggestions for directing programmer effort. It is also essential to
provide source-code clickback or some other mechanism for identifying which
source statements correspond to a particular pattern of behavior.

In terms of selective modification, current tools are singularly lacking in sup-
port. What users need are mechanisms for navigating through complex source
code hierarchies and pinpointing the regions of code that have similar perfor-
mance behavior. Existing tools do not even provide mechanisms for flagging
portions of code as interesting so that they can be revisited or compared with
others. Users typically resort to printed source listings and highlighting pens to
carry out the activities associated with this set of tasks. Further, current tools
do not provide any guidance about what type of code modifications are called
for. As users are apt to describe it, tools “don’t tell me anything I can actually
use to go back and fix my code.”[17]

Finally, users can be alienated by what a tool does, as well as by what it fails
to do. Application developers are trying to explore the behavior of their code,
not the behavior of the tool. When a tool shows particular information without
indicating why that information is shown or how it might be used to tune ap-
plication performance, for example, users quickly lose patience. The single most
persistent complaint we have recorded is that tools “keep popping up windows
I don’t need in places I don’t like.”

3 Applying Human Factors to Tool Design

The human factors issues just discussed can be applied directly to the design of
parallel performance tools, specifically in designing graphical representations of
performance data. This section discusses how that can be accomplished.



Applying Human Factors to the Design of Performance Tools 49

3.1 How Graphical Representations Relate to Task Structure

Most parallel tools have adopted graphical representations in order to portray
performance data or other tool information. In many other types of software,
graphics have been shown to be useful for a variety of reasons (cf. [10, 28, 1, 4]).
In addition to making large quantities of quantitative data coherent, effective
graphics encourage the eye to compare and contrast elements, revealing pat-
terns or exposing anomalies in the data that would not be discernible if the
representations were numeric or textual. Graphical techniques are also capable
of revealing information at varying levels or detail, capitalizing on human famil-
iarity with how the appearance of physical objects changes when they are seen
from different distances. Graphics can facilitate the problem-solving process by
providing memorable, easily manipulated symbols representing a wide range of
concepts, even highly encapsulated information.

The taxonomy of visualization goals proposed by [13] is useful in clarifying
how graphics can be exploited by software tools. The authors define the types
of activities that can be facilitated through appropriate visualizations:

– Identify: establish the collective characteristics by which an object is dis-
tinctly recognizable.

– Locate: determine specific position, either absolute or relative.
– Distinguish: recognize as different or distinct (independent of being able to

identify the object).
– Categorize: place in specifically defined divisions within a classification

scheme.
– Cluster: join into (conceptual or physical) groups of the same, similar, or

related type.
– Rank: give an object order or position with respect to other objects of like

type.
– Compare: examine so as to notice similarities and differences (independent

of ordering).
– Associate: link or join in a relationship.
– Correlate: establish a direct causal, complementary, parallel, or reciprocal

connection.

All of these activities are important in performance tuning, where the user must
make sense of large quantities of interrelated performance measurements, draw
conclusions about their relative importance, and infer the effects that will occur
when behavior is modified.

From the standpoint of parallel performance tools, visualization offers three
particular advantages. First, it provides a way to manage the voluminous and
complex data associated with parallel program execution. Second, it can cap-
italize on the user’s pattern recognition capabilities. Third, it can assist the
user to explore and “interpret‘” program behavior by providing alternate views,
reflecting different aspects or levels of behavior.

It is not easy to implement graphical displays that exploit these capabilities,
however. Consider the problem of visualizing a large and complex set of perfor-
mance data. The most straightforward techniques result in a series of windows,



50 Cherri M. Pancake

each showing a different portion of the data,[8] but as previously described, this
is overwhelming to most users. The problem is that this type of representation
simply uses graphics to expose the dimensions of performance behavior. In ap-
plying human factors to tools design, the key is to concentrate on what users need
to do. We must structure the presentation of information so that it specifically
supports user tasks.

Recall that our discussion of the user task structure indicated three primary
requirements:

1. Support for exploring the total performance space. This is particularly im-
portant for problem stabilization activities.

2. Support for comparing different aspects of program behavior. This is needed
primarily during search space reduction.

3. Support for navigating through complex source code. While navigation is
useful during all phases of performance tuning, it is particularly germane to
selective modification.

In the sections which follow, heuristics are suggested for integrating each of these
features into the kinds of graphical representations used by parallel performance
tools. Recall that the goal is to make the operations, and the information revealed
through those operations, fit more “naturally” into the user’s task structure.

3.2 Facilitating Exploration

Exploration requires mechanisms that allow the user to view program perfor-
mance from a high level, while still being able to identify anomalous behavior.
Three heuristic techniques particularly lend themselves to the exploration of
performance visualizations.

1. Add filtering capabilities to zoom operations. Zooming operations are com-
monly employed to accommodate scalability in performance visualizations. When
the program is lengthy or complex, a performance visualization can grow arbi-
trarily large in size; it cannot be expected to fit in its entirety on the screen.
Zooming operations allow the user to increase the apparent magnification of an
image, so that the window is filled by what was formerly a small area of the
image. The converse operation, panning, reduces the size of the image, making
it possible to fit a larger area within the window boundaries.

Human factors considerations indicate that zooming operations should be
much more powerful than simple magnification. Instead, they should mimic the
human’s change in perspective as he/she moves closer to an object by showing
more information with each successive zoom (rather than just a magnified ver-
sion of the same information). Consider, for example, the System Performance
Visualization Tool (SPV), developed by Intel for its Paragon series of distributed-
memory multiprocessors.[12] The results of its zooming operations are shown in
Figure 1. At the upper right is the “zoomed out” view, which portrays the entire
system at the level of nodes and interconnets. The nodes are colored to indicate
the general level of activity on each CPU. Zooming in on the display (middle



Applying Human Factors to the Design of Performance Tools 51

window) focuses on a smaller number of nodes and shows specific figures for
CPU utilization as well as the amount of traffic with neighboring nodes. Zoom-
ing in again (lower right) focuses attention on a particular CPU, revealing details
such as memory bus and communication processor usage. This was found to be
a very intuitive mechanism for supporting both high-level, overall views of the
system and the ability to see a detailed perspective when behavior seemed to be
anomalous.

Fig. 1. Effects of zoom operation in SPV [12]; each successive zoom reveals
more detail about a smaller portion of the system.

2. Make data labels more adaptive. Another problem with exploration is that
of providing the user with adequate textual labels. Color, shape, and other graph-
ical characteristics can be very useful for encoding many dimensions of informa-



52 Cherri M. Pancake

tion into a single visualization. With no textual labels, however, the user must
being with a mental picture of what he/she is looking for. For example, in the
middle display of Figure 1, the user must know ahead of time what the num-
bers in the circles refer to and recognize the difference between numbers in two
different positions (the upper figure refers to compute processor utilization and
the lower to communication processor utilization). A label would clarify this.

The problem with textual labels is that they occupy considerable screen real
estate and are difficult to position so as not to overlap one another. However,
recent human factors studies have shown that by displaying only a small subset
of labels within the immediate vicinity of the cursor, it is possible to facilitate
exploration of complex displays without overwhelming the user with unwanted
detail.[7] In our example, when the user moves the cursor over a node, labels
would appear to indicate the meaning of each number. The labels would disap-
pear as the cursor moved to another location.

3. Make it possible to focus attention selectively. Another technique that
human factors studies have demonstrated to be effective for exploration is the
use of deformation-based focusing, commonly called “fisheye” focus.[24] With
this mechanism, the user can magnify just a selective area of a large display —
most typically a circular area around the cursor position. For example, Figure
2 shows a callgraph display from the Lightweight Corefile Browser (LCB),[16] a
Parallel Tools Consortium project, to which a fisheye distortion has been applied.
Only the node labels closest to the cursor position are completely visible.

A recent human factors study proposes that distortion focusing could be even
more effective if multiple focal points are used in the same display.[27] In the
SPV displays, for example, this would make it possible, to see close-ups of two
different nodes simultaneously.

3.3 Facilitating Comparison

As noted previously, much of the user’s time is typically spent comparing per-
formance information from different executions, different portions of the same
execution, or different types of information about the same area of execution. To
facilitate these activities, tool visualizations should underscore the differences in
performance behavior so that they are more readily identified and understood
by the user.

4. Support display cloning. Current tools do not provide minimal support
for comparing across program executions or different portions during a single
execution. It is up to the user to bring up two instantiations of the tool and
experiment with the settings of both of them simultaneously. In fact, existing
tools do little to facilitate comparison of different metrics or types of performance
data. Typically, the user may only view one particular region of the program and
one metric at a time. CXperf, a performance analysis tool developed by Hewlett
Packard for their Exemplar series, does allow the user to combine arbitrary pairs
of metrics and view them with respect to different granularities of source code
(routines, basic blocks).[9] Figure 3 illustrates the display when the user chooses
to view CPU time x thread x source routine. Note, however, that to compare



Applying Human Factors to the Design of Performance Tools 53

Fig. 2. Effects of deformation focus (fisheye) on a callgraph display from LCB
[16]; objects near the cursor are magnified, while others remain obscure.

the memory usage or instruction counts for those same threads and routines, the
user must switch to a different display. It becomes very difficult to determine
cause-and-effect relationships, such as the possible impact of communications
congestion on CPU utilization. If the user could clone the window, then change
from CPU utilization to communications and the metric, it would be very easy
to determine if the two behaviors were interrelated.

5. Use color to enhance discrimination. All too often, parallel tools appear
to choose colors based on the ease with which they can be specified. Yet human
factors specialists have known for decades that poorly chosen colors actually
hinder the user’s ability to find targets or recognize patterns (see [3] for a survey
of studies on the impact of color on human performance). Given that the visu-
alizations used in performance tools are likely to containvery dense information,
coloring is particularly important.

Unfortunately, it is not possible for this paper to show clear examples of
how color can be modified to improve usability. We have prepared Web pages
listing colors that can be discriminated well on most types of screens and using
even fairly simple color models (like that supported by Web browsers). Since
color perception is strongly affected by the background and surrounding col-
ors, lists are shown for display against both white and black backgrounds. (See
http://www.cs.orst.edu/p̃ancake/colors.html and colors2.html.) There



54 Cherri M. Pancake

Fig. 3. CXperf [9] display plotting CPU time x thread x code region. Different
combinations of metric/location information can be shown, but just one at a
time.

are also a number of references that provide guidance on how to use color more
effectively; two particularly clear ones are [14] and [26].

6. Make it easier to bring up related information. Current tools are also lack-
ing in their capability for recognizing when different types of information might
be related. Consider a typical set of metrics: CPU utilization, communications
traffic, memory traffic, etc. Rather than simply presenting data as it is requested
by the user, the tool could pre-analyze the range of values along each perfor-
mance dimension. Then, when a user is examining an area where CPU utilization
is high, it would be possible to for him/her to request to see those areas where
some other metric is “high.”

The Paradyn[15] performance monitoring tools from University of Illinois
operate in something of this vein, searching through different regions of execution
for evidence of bottlenecks. Only a single type of information is presented to the
user, however; the tool suppresses what it has determined about other areas
that might have performance problems. Human factors studies of other settings
indicate that the ability to gain quick access to possibly related information can
play a major factor in improving human performance and increasing the user’s
sense of command over the software.[6]



Applying Human Factors to the Design of Performance Tools 55

3.4 Facilitating Navigation

7. Provide a context for navigation. Given the volume of information available
through parallel performance tools, it’s all too easy for the user to become lost in
large displays. Other types of electronic displays have found it useful to maintain
some sort of overview representation on the screen at all times, so that the user
can keep some sense of where he/she is in terms of the overall information space.

Fig. 4. Xprofiler [11] uses thumb-nail images to help the user navigate through
large amounts of performance data.

One performance tool does this through the use of a thumb-nail sketch.
Xprofiler [11], developed for IBM’s SP/2 computers, maintains a very small-
scale image that is highlighted to show which portion of the overall program
graph is being viewed. As may be seen in Figure 4, the user can quickly grasp a
sense of where the detailed information fits into the overall view. An alternate
way of providing a sense of context is portrayed in Figure 5. Here, the call graph



56 Cherri M. Pancake

representation from LCB has been augmented with a miniaturized representa-
tion of the source code. The user can control which area is zoomed in by sliding
the rectangular box that is superimposed on the miniaturized code, displayed
along the left side of the screen. The display at the right shows a zoomed-in area
of execution, revealing the actual calling structure.

Fig. 5. Example of how navigation in LCB could be improved by adding a
minitiarized program listing.

8. Show hierarchical relationships explicitly. Most performance tool develop-
ers have come to recognize that they must provide links from execution data
back to the source code routines or lines where the behavior occurred. However,
the typical source-code-clickback mechanism simply pops up a window that has
scrolled automatically to the statement or the first line of the corresponding
routine. This is not sufficient for most real-world applications, which tend to be
very large, organized in complex ways, and developed by whole teams of people
over long periods of time. Scrolling to a message-sending line, for example, may
provide little clue as to where in the program logic a problem has arisen.



Applying Human Factors to the Design of Performance Tools 57

Here, too, other human factors work indicate a strategy for facilitating user
interaction with performance tools. Shneiderman’s work with “treemaps” (e.g.,
[25]) indicate that rectangular maps can be very effective in representing hierar-
chical structures. A containment relationship applies; that is, information that
is subordinate to other information is embedded within its superordinate’s area.
Figure 5 applies this concept to the representation of the source code structure
from Figure 4. Note that very little space is needed to represent the call tree,
but no information is sacrificed. Like trees, treemaps require that the informa-

Fig. 6. Example of how navigation in LCB could be improved by making the
hierarchical relationships of the source code explicit.

tion to be represented contain no cycles or recursion. The approach could also
be combined with zooming or fisheye techniques described earlier, in order to
provide control over the amount of detail portrayed.

9. Support user-inserted “landmarks”. A final navigational aid is the addi-
tion of mechanisms whereby a user can “mark,” or visually flag, regions of the
display. This does not affect the data in any way; it simply makes it easier for
the user to return to an area for later comparison or study. Consider the dis-
plays shown in Figures 3 and 4, or any of the traditional time-line diagrams so
common in performance tools. The user ultimately navigates through a consider-
able information space, so returning to a point typically requires a great deal of
searching. If the tool allowed the user to superimpose visual landmarks (such as
small colored flags) directly on the display, it would be very simple to re-locate
those positions.



58 Cherri M. Pancake

4 Conclusions

Parallel tools suffer in comparison to the usability of software on personal com-
puters because the resources available for development are much greater in the
desktop world and the problems to be solved are much less complex. Many
usability issues remain unresolved for parallel tools, which are often the imple-
mentation of an untried solution. As a result, the ways in which performance
tools can be applied effectively during application development remain obscure
to the user community.

The developers of parallel tools appear unaware of many basic human fac-
tors studies which could help them improve the usability of their visualizations
and interaction mechanisms. Nine examples were presented in this paper, with
descriptions of how each would improve a typical performance tool scenario.

User acceptance of parallel tools will not increase appreciably until such tools
are usable within the framework of typical application development strategies.
This will require that tool developers come to an understanding of how experi-
enced users go about developing and tuning large-scale applications. The goals
of this effort should be:

– to identify successful user strategies in developing real applications;
– to devise ways to apply knowledge of those strategies so that tool function-

ality can be presented in an intuitive, usable, and familiar manner; and
– to use this functionality in the development of new tools.

Tools that do not mesh well with user goals and task structures are not con-
sidered by users to be worth the time that must be invested to learn them. We
will not see tools appreciated properly until they can address the human factors
issues associated with parallel performance tuning.

References

[1] Card, S., J. Mackinlay and B. Shneiderman, Readings in Information Visualiza-
tion: Using Vision to Think, Morgan Kaufman, 1999.

[2] Casavant, T. L., “Tools and Methods for Visualization of Parallel Systems and
Computations: Gues Editor’s Introduction,” Journal of Parallel and Distributed
Computing, 1993. 18 (2): 103–104.

[3] Christ, R. E., “Review and Analysis of Color Coding Research for Visual Dis-
plays,” Human Factors, 1975, 17 (6): 542-570.

[4] Cleveland, W., Visualizing Data, Hobart Press, 1993.

[5] Curtis, B., Human Factors in Software Development: A Tutorial, 2nd Edition,
IEEE Computer Society Press, Washington, DC, 1985.

[6] Czerwinski, M., et al., “Visualizing Implicit Queries for Information Management
and Retrieval,” Proceedings ACM Conference on Human Factors in Computing
Systems (CHI’99), 1999, pp. 560–567.



Applying Human Factors to the Design of Performance Tools 59

[7] Fekete, J-D. and C. Palisant, “Excentric Labeling: Dynamic Neighborhood La-
beling for Data Visualization,” Proceedings ACM Conference on Human Factors
in Computing Systems (CHI’99), 1999, pp. 512–519.

[8] Heath, M. T., A. D. Malony and D. T. Rover, “The Visual Display of Parallel
Performance Data,” IEEE Computer, 1995, 28 (11): 21–28.

[9] Hewlett-Packard Corporation, CXperf User’s Guide, Publication B6323-96001,
available online at
http://docs.hp.com:80/dynaweb/hpux11/dtdcen1a/0449/@Generic BookView,
1998.

[10] Horton, W., Illustrating Computer Documentation: The Art of Presenting Infor-
mation Graphically on Paper and Online, John Wiley & Sons, 1991.

[11] IBM Corporation, IBM AIX Parallel Environment: Operation and Use, IBM Cor-
poration publication SH26-7231, 1996.

[12] Intel Corporation, System Performance Visualization Tool User’s Guide, Intel
Corporation, publication 312889-001, 1993.

[13] Keller, P. R. and M. M. Keller, Visual Cues: Practical Data Visualization, IEEE
Computer Society Press, 1993.

[14] Marcus, A., Graphic Design for Electronic Documents and User Interfaces, ACM
Press, Tutorial Series, 1992.

[15] Miller, B. P. et al., “The Paradyn Parallel Performance Measurement Tools,”
IEEE Computer, 1995, 28 (11): 37–46.

[16] Muddarangegowda, M. and C. M. Pancake, “Basing Tool Design on User Feed-
back: The Lightweight Corefile Browser,” Technical Report, Oregon State Uni-
versity, available online at
http://www.CS.ORST.EDU/ pancake/papers/lcb/lcb.html, 1995.

[17] Pancake, C. M., unpublished interview notes from field studies and group inter-
views at user sites in the U.S., 1987–1999.

[18] Pancake, C. M. and D. Bergmark, “Do Parallel Languages Respond to the Needs
of Scientific Researchers?” IEEE Computer, 1990, 23 (12): 13–23.

[19] Pancake, C. M. and C. Cook, “What Users Need in Parallel Tool Support: Survey
Results and Analysis,” Proc. Scalable High Performance Computing Conference,
1994, pp. 40–47.

[20] Pancake, C. M., “Establishing Standards for HPC Systems Software and Tools,”
NHSE Review, 1997, 2 (1). Available online at nhse.cs.rice.edu/NHSEreview.

[21] Pancake, C. M. “Exploiting Visualization and Direct Manipulation to Make Paral-
lel Tools More Communicative,” in Applied Parallel Computing, ed. B. Katstrom
et al., Springer Verlag, Berlin, 1998, pp. 400–417.

[22] Pancake, C. M., M. L. Simmons and J. C. Yan, “Guest Editor’s Introduction:
Performance Evaluation Tools for Parallel and Distributed Systems,” IEEE Com-
puter, 1995, 28 (11): 16–19.

[23] Pancake, C. M., M. L. Simmons and J. C. Yan, “Guest Editor’s Introduction: Per-
formance Evaluation Tools for Parallel and Distributed Systems,” IEEE Parallel
and Distributed Technology, 1995, 3 (4): 14–19.

[24] Sarkar, M. and M. H. Brown, “Graphical Fisheye Views of Graphs,” Proceedings
1997 IEEE Symposium on Visual Languages, 1997, pp. 76–83.

[25] Shneiderman, B., “Tree Visualization with Tree-maps: A 2-D Space-Filling Ap-
proach,” ACM Transactions on Graphics, 1992, 11 (1): 92–99.

[26] Thorell, L. G. and W. J. Smith, Using Computer Color Effectively, An Illustrated
Reference, Prentice Hall, 1990.



60 Cherri M. Pancake

[27] Toyoda, M. and E. Shibayama, “Hyper Mochi Sheet: A Predictive Focusing
Interface for Navigating and Editing Nested Networks through a Multi-focus
Distortion-Oriented View,” Proceedings ACM Conference on Human Factors in
Computing Systems (CHI’99), 1999, pp. 504–510.

[28] Tufte, E. R., Visual Explanations: Images and Quantities, Evidence and Narrative,
Graphics Press, 1997.


	The Performance Tuning Problem
	How Users Approach Performance Tuning
	Conceptual Framework --- What the User Seeks
	Task Structure --- How the User Seeks It
	Implications for Performance Tools

	Applying Human Factors to Tool Design
	How Graphical Representations Relate to Task Structure
	Facilitating Exploration
	Facilitating Comparison
	Facilitating Navigation

	Conclusions

