
Optimal and Alternating-Direction Load

Balancing Schemes

Robert Elsässer1,?, Andreas Frommer2, Burkhard Monien1,*, and
Robert Preis1,*

1 Department of Mathematics and Computer Science
University of Paderborn, D-33102 Paderborn, Germany

{elsa,bm,robsy}@uni-paderborn.de
2 Department of Mathematics and Institute for Applied Computer Science

University of Wuppertal, D-42097 Wuppertal, Germany
frommer@math.uni-wuppertal.de

Abstract. We discuss iterative nearest neighbor load balancing schemes
on processor networks which are represented by a cartesian product
of graphs like e.g. tori or hypercubes. By the use of the Alternating-
Direction Loadbalancing scheme, the number of load balance iterations
decreases by a factor of 2 for this type of graphs. The resulting flow is
analyzed theoretically and it can be very high for certain cases. There-
fore, we furthermore present the Mixed-Direction scheme which needs
the same number of iterations but results in a much smaller flow.

Apart from that, we present a simple optimal diffusion scheme for general
graphs which calculates a minimal balancing flow in the l2 norm. The
scheme is based on the spectrum of the graph representing the network
and needs only m−1 iterations in order to balance the load with m being
the number of distinct eigenvalues.

1 Introduction

We consider the load balancing problem in a synchronous, distributed processor
network. Each node of the network has a computational load and, if it is not
equally distributed, it will have to be balanced by moving parts of the load via
communication links between two processors. We model the processor network
by an undirected, connected graph G = (V, E) in which node vi ∈ V contains
a computational load of wi. We want to determine a schedule in order to move
load across edges so that finally the weight on each node is approximately equal.
In each step a node is allowed to move any size of load to each of its neighbors
in G. Communication is only allowed along the edges of G.

This problem models load balancing in parallel adaptive finite element simu-
lations where a geometric space, which is discretized using a mesh, is partitioned
into sub-regions. Besides, the computation proceeds on mesh elements in each

? Supported by European Union ESPRIT LTR Project 20244 (ALCOM-IT) and Ger-
man Research Foundation (DFG) Project SFB-376.

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 280–290, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Optimal and Alternating-Direction Load Balancing Schemes 281

sub-region independently (see e.g. [4, 5]). Here we associate a node with a mesh
region, an edge with the geometric adjacency between two regions, and load with
the number of mesh elements in each region. As the computation proceeds, the
mesh gets refined or coarsened depending on the characteristics of the problem
and the size of the sub–regions (numbers of elements) has to be balanced. Since
elements have to reside in their geometric adjacency, they can only be moved
between adjacent mesh regions, i.e. via edges of the graph [5]. In this paper we
consider the calculation of the load balancing flow. In a further step, the moved
load elements have to be chosen and moved to their new destination.

Scalable algorithms for our load balancing problem iteratively balance the
load of a node with its neighbors until the whole network is globally balanced.
The class of local iterative load balancing algorithms distinguishes between dif-
fusion [2] and dimension exchange [2, 13] iterations. Diffusion algorithms assume
that a node of the graph can send and receive messages to/from all its neighbors
simultaneously, whereas dimension exchange iteratively only balances with one
neighbor after the other. The quality of a balancing algorithm can be measured
in terms of numbers of iterations that are required in order to achieve a bal-
anced state and in terms of the amount of load moved over the edges of the
graph. The earliest local method is the diffusive first order scheme (FOS) by
[2]. It lacks in performance because of its slow convergence. With the idea of
over-relaxation FOS can be sped up by an order of magnitude [6] (second order
scheme, SOS). Diffusive algorithms have gained new attention in the last couple
of years [4, 5, 7, 8, 10, 12, 13] and it has been shown that all local iterative
diffusion algorithms determine the unique l2-minimal flow [3].

In Sect. 3, we discuss a combination of the diffusion and the dimension-
exchange model which we call the Alternating Direction Iterative (ADI) model.
It can be used for cartesian products of graphs like tori or hypercubes, which
often occur as processor networks. Here, in each iteration, a processor first com-
municates with its neighbors in one and then in the other direction. Thus, it
communicates once per iteration with each neighbor. We show that for these
graphs the upper bound on the number of load balance steps will be halved. As
a drawback, we can prove that the resulting flow is not minimal in the l2-norm
and can be very large if optimal parameters for the number of iterations are used.
As a (partial) remedy to this problem we present the Mixed Direction Iterative
(MDI) scheme which needs the same number of iterations but results in a much
smaller flow.

[3] introduced an optimal load balancing scheme based on the spectrum of
the graph. It only needs m − 1 iterations with m being the number of distinct
eigenvalues. This scheme keeps the load-differences small from step to step, i.e.
it is numerically stable. In Sect. 4, we present a much simpler optimal scheme
OPT which also needs only m−1 iterations. It might trap into numerical instable
conditions, but we present rules of how to avoid those. The calculation of the
spectrum for arbitrary large graphs is very time-consuming, but it is known for
many classes of graphs and can efficiently be computed for small graphs. In
Sect. 5 experiments are presented to underline the theoretical observations.

282 Robert Elsässer et al.

2 Definitions

Let G = (V, E) be a connected, undirected graph with |V | = n nodes and
|E| = N edges. Let wi ∈ IR be the load of node vi ∈ V and w ∈ IRn be
the vector of load values. w := 1

n (
∑n

i=1 wi)(1, . . . , 1) denotes the vector of the
average load. Define A ∈ {−1, 0, 1}n×N to be the node-edge incidence matrix
of G. Every column has exactly two non-zero entries “1” and “−1” for the two
nodes incident to the corresponding edge. The signs of these non-zeros implicitly
define directions for the edges of G which will later on be used to express the
direction of the flow. Let B ∈ {0, 1}n×n be the adjacency matrix of G. As G is
undirected, B is symmetric. Column/row i of B contains 1’s at the positions of
all neighbors of vi. The Laplacian L ∈ ZZn×n of G is defined as L := D−B, with
D ∈ INn×n containing the node degrees as diagonal entries and 0 elsewhere.
Obviously, L = AAT . Let x ∈ IRN be a flow on the edges of G. x is called a
balancing flow on G iff Ax = w − w. Among all possible flows we are interested
in balancing flows with minimal l2-norm defined as ‖x‖2 = (

∑N
i=1 x2

i)
1/2. Let us

also define the l1-norm ‖x‖1 =
∑N

i=1 xi and the l∞-norm ‖x‖∞ = maxN
i=1 xi.

We consider the following local iterative load balancing algorithm which per-
forms iterations on the nodes of G with communication between adjacent nodes
only. This method performs on each node vi ∈ V the iteration

∀ e = {vi, vj} ∈ E : yk−1
e = α(wk−1

i − wk−1
j); xk

e = xk−1
e + yk−1

e ;

and wk
i = wk−1

i −
∑

e={vi,vj}∈E
yk−1

e (1)

Here, yk
e is the amount of load sent via edge e in step k with α being a parameter

for the fraction of the load difference, xk
e is the total load sent via edge e until

iteration k and wk
i is the load of node i after the k-th iteration. The iteration

(1) converges to the average load w [2]. This scheme is known as the diffusion
algorithm. Equation (1) can be written in a matrix notation as wk = Mwk−1

with M = I − αL ∈ IRn×n. M contains α at position (i, j) of edge e = (vi, vj),
1−∑

e={vi,vj}∈E α at diagonal entry i, and 0 elsewhere. Now let λi(L), 1 ≤ i ≤ m
be the distinct eigenvalues of the Laplacian L in increasing order. It is known
that λ1(L) = 0 is simple with eigenvector (1, . . . , 1) and λm(L) ≤ 2 · degmax

(with degmax being the maximum degree of all nodes) [1]. Then M has the
eigenvalues µi = 1 − αλi and α has to be chosen such that µm > −1. Note that
µ1 = 1 is a simple eigenvalue to the eigenvector (1, 1, . . . , 1). Such a matrix M
is called diffusion matrix. We denote by γ = max{|µ2|, |µm|} < 1 the second
largest eigenvalue of M according to absolute values and call it the diffusion
norm of M .

Let w0 =
∑m

i=1 zi be represented as a sum of (not necessarily normalized)
eigenvectors zi of M with Mzi = µizi, i = 1, . . . , m. Then w = z1 [3].

Definition 1. A polynomial based load balancing scheme is any scheme for
which the work load wk in step k can be expressed in the form wk = pk(M)w0

where pk ∈ Πk. Here, Πk denotes the set of all polynomials p of degree deg(p) ≤
k satisfying the constraint p(1) = 1.

Optimal and Alternating-Direction Load Balancing Schemes 283

Condition pk(1) = 1 implies that all row sums in matrix pk(M) are equal to 1.
For a polynomial based scheme to be feasible practically, it must be possible to
rewrite it as an update process where wk is computed from wk−1 (and maybe
some previous iterates) involving one multiplication with M only. This means
that the polynomials pk have to satisfy some kind of short recurrence relation.
The convergence of a polynomial based scheme depends on whether (and how
fast) the ‘error’ ek = wk −w tends to zero. These errors ek satisfy ek = pk(M)e0

which yields ‖ek‖2 ≤ maxm
i=2 |pk(µi)| · ‖e0‖2 k = 0, 1, . . ., where e0 =

∑m
i=2 zi [3].

As an example, take the first order-scheme (FOS) [2], where we have pk(t) =
tk. These polynomials satisfy the simple short recurrence pk(t) = t ·pk−1(t), k =
1, 2, . . . , so that we get wk = Mwk−1, k = 1, 2, Now |pk(µi)| = |µk

i | ≤ γk

for i = 2, . . . , m and therefore

‖ek‖2 ≤ γk · ‖e0‖2 .

Here, γ(M) = max{|1−αλ2(L)|, |1−αλm(L)|} and the minimum of γ is achieved
for the optimal value α = 2

λ2(L)+λm(L) . Then we have γ = λm(L)−λ2(L)
λm(L)+λ2(L) = 1−ρ

1+ρ

with ρ = λ2(L)
λm(L) called the condition number of the Laplace matrix L.

The flow characterized by FOS is l2 minimal [3]. The solution to the l2
minimization problem ”minimize ‖x‖2 over all x with Ax = w0 − w” is given
by x = AT z, where Lz = w0 − w [3],[8]. Now z can be expressed through the
eigenvalues λi and eigenvectors zi of L as z =

∑m
i=2

1
λi

zi where w0 =
∑m

i=1 zi

and w0 −w =
∑m

i=2 zi. As it has been shown in [3], for a polynomial based load
balancing scheme with wk = pk(M)w0, the corresponding l2-minimal flow xk

(such that w0 − wk = Axk) is given by xk = qk−1(L)w0, the polynomial qk−1

being defined by pk(1 − αt) = 1 + tqk−1(t). The flows xk converge to x, the
l2-minimal balancing flow. It was also shown in [3] that xk can be very easily
computed along with wk if the iteration relies on a 3-term recurrence relation
(as is the case for FOS, SOS and the OPT scheme of Sect.4).

3 Alternating Direction Iterative Schemes

Cartesian products of lines and paths have been discussed previously in [13],
but no analysis of the quality of the flow have been made. We generalize the
problem to the product of arbitrary graphs, show that one can reduce the num-
ber of loadbalance iterations by alternating the direction of the loadbalancing
and analyze the resulting flow. We propose a new Mixed-Direction scheme that
results in a better flow than the classical Alternating-Direction scheme.

Let G be the cartesian product of two graphs G′ and G′′ with vertex sets V ′

and V ′′, edge sets E′ and E′′ and the spectra λ1(G′), . . ., λp(G′) and λ1(G′′),
. . ., λq(G′′), where we denote with p = |V ′| and q = |V ′′|. Now G has the
vertex set V = V ′ × V ′′ and the edge set E = {((u′

i, u
′′
j), (v′i, v

′′
j)) | where u′

i =
v′i and (u′′

j , v′′j) ∈ E′′ or u′′
j = v′′j and (u′

j, v
′
j) ∈ E′}. Any eigenvalue λ(G) of G is

of the form λ(G) = λi(G′) + λj(G′′) with λi(G′) eigenvalue of G′ i ∈ {1, . . . , p}
and λj(G′′) eigenvalue of G′′ j ∈ {1, . . . , q}. (The same relation also holds for the

284 Robert Elsässer et al.

eigenvalues of the adjacency matrices.) We denote with Ik the identity matrix of
order k. Now the adjacency matrix BG of G is BG = Iq ⊗BG′ +BG′′ ⊗ Ip where
⊗ denotes the tensor product. Obviously, the matrices Iq ⊗ BG′ and BG′′ ⊗ Ip

have a common system of eigenvectors.
Now we apply the alternating direction iterative (ADI) load balancing strat-

egy on G, which is similar to the alternating direction method for solving lin-
ear systems [11]. In an iteration, firstly balance among one component of the
cartesian product (for example G′) using FOS, and secondly among the other
component (in our case G′′) using FOS. We denote with M ′ = 1 − α′L′ and
M ′′ = 1 − α′′L′′ the diffusion matrices of G′ and G′′. The diffusion scheme
ADI-FOS then has the form

∀ e = {(u′
i, u

′′
j), (u′

i, v
′′
l)} ∈ E : yk−1

e = α′′(wk−1
(u′

i
,u′′

j
) − wk−1

(u′
i
,v′′

l
)); and (2)

∀ e = {(u′
i, u

′′
j), (v′l, u

′′
j)} ∈ E : yk

e = α′(wk
(u′

i
,u′′

j
) − wk

(v′
l
,u′′

j
)); (3)

Then we have wi+1 = (M ′′ ⊗ Ip)(Iq ⊗ M ′)wi = (M ′′ ⊗ M ′)wi.

Theorem 1. Let G be the cartesian product of two connected graphs G′ and
G′′. Denote L, L′, L′′ the corresponding Laplacians and M = I − αL, M ′ = I −
α′L′, M ′′ = I−α′′L′′ the diffusion matrices for the FOS with optimal parameters
α, α′, α′′. Moreover, let γM and γM ′′⊗M ′ be the diffusion norms. Then γM ′′⊗M ′ <
γM . If G′ and G′′ are isomorphic, then γM ′′M ′ < γ2

M , i.e. FOS combined with
the ADI scheme only needs half of the number of iterations in order to guarantee
the same upper bound on the error as FOS.

Proof. Clearly, γM ′⊗M ′′ = max{γM ′ , γM ′′} whereas γM = 1 − 2λ2(L)
λpq(L)+λ2(L) .

Using λ2(L) = min{λ2(L′), λ2(L′′)} and λpq(L) = λp(L′) + λq(L′′), one then
concludes γM ′ ≤ γM and γM ′′ ≤ γM . If G′ and G′′ are isomorphic, then
λp(L′)−λ2(L′)
λp(L′)+λ2(L′) <

(
λp(L′)+λp(L′)−λ2(L′)
λp(L′)+λp(L′)+λ2(L′)

)2

. ut

The flow calculated by this scheme is not minimal in the l2- norm and we
study the flow in the following. Denote by zi,j the common eigenvectors of the
matrices Iq ⊗BG′ and BG′′ ⊗Ip and by A′ and A′′ the edge-incidence matrices of
the graphs G′ and G′′. We assume that the graphs G′ and G′′ are isomorphic with
common eigenvalues µi. Now let A1 = I ⊗ A′T and A2 = A′′T ⊗ I. Let wk

1 and
wk

2 be the load after k iterations after the balancing in one dimension and after
balancing in both dimensions. Let F k+1

1 and F k+1
2 be the flows in iteration k+1

among the first and the second dimension with F k+1
1 = αAT

1 wk
2 and F k+1

2 =
αAT

2 wk+1
1 . For the total flow in these directions we get

F2 =
∞∑

k=0

F k+1
2 = α

∞∑
k=0

AT
2 (

|V ′|∑
i,j=1

µi(µiµj)kzi,j)

= α

|V ′|∑
i,j=1

µi

∞∑
k=0

(µiµj)kAT
2 zi,j =

|V ′|∑
i,j=1

1 − αλi

λi + λj − αλiλj
AT

2 zi,j

Optimal and Alternating-Direction Load Balancing Schemes 285

F1 =
∞∑

k=0

F k+1
1 = α

∞∑
k=0

AT
1 (

|V ′|∑
i,j=1

(µiµj)kzi,j)

= α

|V ′|∑
i,j=1

∞∑
k=0

(µiµj)kAT
1 zi,j =

|V ′|∑
i,j=1

1
λi + λj − αλiλj

AT
1 zi,j.

We observe, that the quality of the flow depends on the value of α. The result
of the classical diffusion method is a l2-minimal flow. In this case we get

F =
∞∑

k=0

αAT wk = α

|V |∑
l=1

∞∑
k=0

µk
l (M)AT z′l =

|V ′|∑
i,j=1

1
λi + λj

AT zi,j ,

with z′l being the eigenvectors of the diffusion matrix M to the eigenvalues
µl(M) which are identical to the eigenvectors zi,j of the Laplacian L with the
eigenvalues λi + λj . We observe that the l2-minimal flow does not depend on α
whereby the flow of the ADI-method will only converge to the l2-minimal flow
if α converges to zero. This implies a larger number of iterations.

To give an example, the n×n torus with an initial load of w0 = Kz1,1+Kzn,n,
for which the optimal value for α converges to 1

2 with an increasing n. Therefore,
the flows F1 and F2 for each edge are also increasing with increasing n. It turns
out that with this scheme and this initial load, the load is only slightly balanced
in each iteration, whereas a large amount of load is added on all circles of length
4. The result is a final flow with many heavy-weighted circles.

Therefore, we construct a new mixed direction iterative (MDI) scheme. In
each iteration with an even number we first balance among component 1 and
then among component 2, whereas in each iteration with an odd number e first
balance among component 2 and then among component 1, Thus, the order of
the components for each sub-iteration is changed for each iteration. With similar
arguments as before, the diffusion norm is the same as for ADI, but we get the
flows

F1 =

|V ′|∑
i,j=1

1 + µiµ
2
j

1 − µ2
i µ

2
j

AT
1 zi,j and F2 =

|V ′|∑
i,j=1

µi + µiµj

1 − µ2
i µ

2
j

AT
2 zi,j .

Now, for the same load w0 as before (w0 = Fz1,1,+Fzn,n), we can observe that,
if n increases, the flows F1 and F2 will be bounded. Although the flow is not
necessarily bounded for other initial load distributions, MDI generally calculates
a smaller flow than ADI. This fact can also be seen in the experiments of Sect. 5.

4 Optimal Schemes

An optimal scheme OPS has been introduced in [3]. We present another optimal
scheme OPT with the same properties but with a much simpler construction.
As it was shown in Sect. 2, the error ek of any polynomial based scheme satisfies
ek = pk(M)(

∑m
i=2 zi) =

∑m
i=2 pk(M)zi =

∑m
i=2 pk(µi)zi. Now we apply a variant

of the local iterative algorithm (1) where the parameter α varies from step to

286 Robert Elsässer et al.

step. More precisely, given an arbitrary numbering λk, 1 ≤ k ≤ m − 1, for the
non-zero eigenvalues of L, we take α = αk = 1

λk
to get

∀ e = {vi, vj} ∈ E : yk−1
e =

1
λk

(wk−1
i − wk−1

j); xk
e = xk−1

e + yk−1
e ;

and wk
i = wk−1

i −
∑

e={vi,vj}∈E
yk−1

e (4)

In each iteration k, a node i adds a flow of 1
λk

(wk−1
i −wk−1

j) to the flow over
edge {i, j}, choosing a different eigenvalue for each iteration. We obtain

wk =
(

I − 1
λk+1

L

)
wk−1 and em−1 =

m∏
i=2

(
I − 1

λi
L

) m∑
j=2

zj = 0,

for the weight wk after k iterations and the final error em−1. It shows that the
load is perfectly balanced after m − 1 iterations and the flow is l2-minimal as
stated in Sect. 2. For each iteration a different eigenvalue of L is used, eliminating
one eigenvector at a time. The order of the eigenvalues may be arbitrary, however,
it may influence the numerical stability of the calculation. Even with a favorable
order, the new scheme will generally be more sensitive to rounding errors than
the OPS scheme from [3]. This issue will be discussed in Sect. 5. No further
parameters besides the eigenvalues have to be used for this scheme and it is a
much simpler optimal scheme than the one in [3].

Consider for example the k-dimensional hypercube with an initial load of
w0 = (K, 0, . . . , 0). The dimension exchange strategy is well-known for load
balancing on the hypercube, where in each iteration only the balancing in one
dimension is allowed and a node equalizes its load with the load of its neighbor.
Thus, error ek decreases to zero after k steps and the l2-norm of the resulting

flow is Fde = K
√

2k−1
2k+1 . The k-dim. hypercube has k + 1 distinct eigenvalues

0, 2, 4, . . . , 2k and in the algorithm of the OPT scheme the new flow yt
e over

edge e = {vi, vj} in iteration t is simply yt
e = 1

2t (w
t
i − wt

j). OPT calculates the

l2-minimal flow Fl2 =

√
d−1∑
i=0

(
K− K

2k (
∑

i

j=0
(d

j))
(d

i)(d−i)

)2

, much smaller than Fde.

The main disadvantage of the OPT scheme is the fact that it requires all
eigenvalues of the graph. Although their calculation can be very time-consuming
for large graphs, they can easily be computed for small processor networks and
they are known for many classes of graphs like e.g. paths, cycles, stars, hyper-
cubes, grids or tori, which often occur as processor networks.

In Sect. 3 we have introduced ADI-FOS, now ADI-OPT is introduced.

Theorem 2. Let G be a graph and G × G the cartesian product of it. The
applying of the OPT scheme (4) for each direction of ADI gives a loadbalancing
scheme ADI-OPT which only needs m − 1 iterations for the loadbalancing on
G × G, where m is the number of distinct eigenvalues of the Laplacian of G.

Optimal and Alternating-Direction Load Balancing Schemes 287

Proof. Applying OPT for G × G with G = (V, E) we get wi = (I − 1
λi

L′)wi−1,

1 ≤ i ≤ m(m+1)
2 − 1 and λi is a nonzero eigenvalue of L′ = I ⊗ L + L ⊗ I. By

combining OPT with ADI we obtain wi = (I − 1
λi+1

I ⊗ L)(I − 1
λi+1

L ⊗ I)wi−1,

where λi+1 is a nonzero eigenvalue of I ⊗ L and L ⊗ I. Then

em−1 =

m∏
i=2

(I− 1

λi
I⊗L)(I− 1

λi
L⊗I)e0 =

m∏
i=2

(I− 1

λi
I⊗L)(I− 1

λi
L⊗I)

∑
k,j 6=1

zk,j = 0,

where zi,j are the corresponding eigenvectors of L′ = I ⊗ L + L ⊗ I. ut

The Laplacian matrix of G × G can have up to m(m+1)
2 distinct eigenvalues,

whereas the new ADI-OPT scheme uses only m − 1 distinct eigenvalues of the
Laplacian of G to eliminate all eigenvectors and to reduce the error to zero.

5 Experiments

Firstly, we perform experiments to find out in which order the m − 1 distinct
non-zero eigenvalues λ2 < λ3 < ... < λm in the OPT scheme are to be used in
the iterations. Although the load after m − 1 iterations is, in theory, indepen-
dent of the afore chosen order, one may trap in numerical instable conditions
with some orders. The load balancing is performed on a path of 32 vertices
(m = 32), for which we observed the most difficult numerical problems, and
the results are presented in Fig. 1. It is stopped after m − 1 = 31 iterations.
In the initial load distribution RAN, 100 ∗ |V | load elements are randomly dis-
tributed among the |V | nodes (different random distributions exhibited the same
behavior). With an increasing order of eigenvalues (λ2,λ3,λ4,. . .), the error be-

0.01

1

100

10000

1e+06

1e+08

1e+10

1e+12

1e+14

1e+16

0 5 10 15 20 25 30 35 40

er
ro

r

no. of iterations

PATH32.RAN

OPT, sort inc.
OPT, sort dec.
OPT, sort cen.

Fig. 1. Optimal OPT scheme on a path of 32 nodes with sorting of the eigen-
values in increasing, decreasing and center-started order. The initial load distri-
bution is random.

comes very high after a few iterations and the final error is about 0.01, due
to numerical problems with the high numbers. With a decreasing order (λm,
λm−1, λm−2, . . .), the error decreases monotonously until the last iteration,
where it increases to a final error of about 1. The best behavior can be observed

288 Robert Elsässer et al.

with the center-started order (λm
2
,λm

2 −1,λm
2 +1,λm

2 −2,λm
2 +2,. . . for even m and

λm−1
2

,λm−1
2 +1,λm−1

2 −1,λm−1
2 +2,λm−1

2 −2,. . . for odd m). Although the error alter-
nately increases/decreases due to the changing order of high and low eigenvalues,
the final error is almost zero and we use this very robust order for the following
experiments. An even better order can be the use of Leja Points [9].

We compare the new optimal scheme OPT with the First-Order scheme
(FOS) and the optimal scheme OPS in [3] on a hypercube of dimension 6 (m = 7)
and an 8×8 torus (m = 13) in Fig. 2. Apart from the RAN initial distribution we
use PEAK, in which one node has a load of 100 ∗ |V | and the others 0. The bal-
ancing stops after t iterations when the error ||wt −w||2 is less than 10−6. Both
optimal schemes behave similarly to FOS for the first iterations, but then they
suddenly drop down to 0 after m − 1 iterations. OPS and OPT show the same
behavior, but our new optimal scheme OPT has a much simpler construction.

1e-06

0.0001

0.01

1

100

10000

0 5 10 15 20

er
ro

r

no. of iterations

HYP6.PEAK FOS
OPS
OPT

1e-06

0.0001

0.01

1

100

10000

0 5 10 15 20

er
ro

r

no. of iterations

HYP6.RAN FOS
OPS
OPT

1e-06

0.0001

0.01

1

100

10000

0 5 10 15 20

er
ro

r

no. of iterations

TORUS8.PEAK FOS
OPS
OPT

1e-06

0.0001

0.01

1

100

10000

0 5 10 15 20

er
ro

r

no. of iterations

TORUS8.RAN FOS
OPS
OPT

Fig. 2. Iterative Diffusion Loadbalancing on a hypercube of dimension 6 with
initial PEAK (upper left) and RAN (upper right) load distribution and on an 8×
8 Torus with initial PEAK (lower left) and RAN (lower right) load distribution.

The 16× 16 torus is the cartesian product of a cycle with 16 vertices. Tab. 1
shows how the flow depends on α for the ADI-FOS scheme with initial load
PEAK. It confirms the theoretical analyses that with decreasing values of α the
flow tends to the l2-minimal flow, but also the number of iterations increases.

Tab. 2 compares the FOS and OPT schemes with the ADI and MDI mod-
ifications. Both the FOS and OPT schemes compute the same l2-minimal flow
(Sect. 2), whereas the flow in the ADI and MDI case may differ from each other.
As proven before, neither of their flows is minimal in the l2 norm and they are
also worse with respect to the l1 and l∞ norms of our test cases. Furthermore,
the flow of ADI-OPT is much smaller than of ADI-FOS in all norms and it is

Optimal and Alternating-Direction Load Balancing Schemes 289

Table 1. Flow for ADI-FOS scheme with different values for α on a 16 × 16
torus.

α = 0.49 αopt = 0.4817 α = 0.4 α = 0.2 α = 0.1 α = 0.01 l2-min. flow

l1 627200 355082.51 207242.41 204800 204800 204800 204800
l2 52500.69 39311.89 21361.38 18188.09 17967.10 17919 17918.62
l∞ 19066.10 16743.38 10828.53 7637.55 6908.24 6422.10 6375
iter. 528 291 349 708 1427 14366

only a small fraction larger than the l2-minimal flow. The flow of MDI improves
over ADI in all test cases. The number of iterations for ADI and MDI are the
same and are always smaller than the examples without ADI or MDI. As proven
before, the upper bound on the number of iterations for FOS is twice as high
as for ADI-FOS. In the experiments ADI-FOS halves the number of iterations
for the RAN case and almost halves them for the PEAK case. For OPT, the
number of iterations is m − 1 with m = 41 for the 16 × 16 torus and m = 9 for
the cycle of 16 vertices (the product being the 16× 16 torus). Thus, the number
of iterations will reduce from 40 to 8 if the ADI or MDI schemes are used.

Table 2. Flow of ADI/MDI for PEAK(left) and RAN(right) loads on a 16× 16
torus.

ADI- MDI- ADI- MDI-
FOS OPT FOS OPT FOS OPT FOS OPT FOS OPT FOS OPT

l1 204800 204800 355083 204800 205663 204800 2581 2581 4123 2727 3048 2716
l2 17919 17919 39312 20235 23700 19993 142 142 228 152 171 152
l∞ 6375 6375 16743 9927 12185 9751 19.4 19.4 29.9 19.7 22.3 19.7
iter. 578 40 291 8 291 8 458 40 229 8 229 8

Acknowledgment. We thank Holger Arndt from Wuppertal for his sugges-
tions improving an earlier version of this manuscript.

References

[1] D.M. Cvetkovic, M. Doob, and H. Sachs. Spectra of Graphs. Johann Ambrosius
Barth, 3rd edition, 1995.

[2] G. Cybenko. Load balancing for distributed memory multiprocessors. Journal of
Parallel and Distributed Computing, 7:279–301, 1989.

[3] R. Diekmann, A. Frommer, and B. Monien. Efficient schemes for nearest neighbor
load balancing. In G. Bilardi et al., editor, European Symposium an Algorithms,
LNCS 1461, pages 429–440. Springer, 1998.

[4] R. Diekmann, D. Meyer, and B. Monien. Parallel decomposition of unstructured
FEM-meshes. Concurrency: Practice and Experience, 10(1):53–72, 1998.

[5] R. Diekmann, F. Schlimbach, and C. Walshaw. Quality balancing for parallel
adaptive FEM. In IRREGULAR’98, LNCS 1457, pages 170–181. Springer, 1998.

290 Robert Elsässer et al.

[6] B. Ghosh, S. Muthukrishnan, and M.H. Schultz. First and second order diffusive
methods for rapid, coarse, distributed load balancing. In SPAA, pages 72–81,
1996.

[7] Y.F. Hu and R.J. Blake. An improved diffusion algorithm for dynamic load
balancing. Parallel Computing, 25:417–444, 1999.

[8] Y.F. Hu, R.J. Blake, and D.R. Emerson. An optimal migration algorithm for
dynamic load balancing. Concurrency: Prac. and Exp., 10(6):467–483, 1998.

[9] L. Reichel. The application of leja points to richardson iteration and polynomial
preconditioning. Linear Algebra and its Applications, 154-156:389–414, 1991.

[10] K. Schloegel, G. Karypis, and V. Kumar. Parallel multilevel diffusion schemes for
repartitioning of adaptive meshes. In Proc. EuroPar’97, LNCS. Springer, 1997.

[11] R.S. Varga. Matrix Iterative Analysis. Prentice-Hall, 1962.
[12] C. Walshaw, M. Cross, and M. Everett. Dynamic load-balancing for parallel

adaptive unstructured meshes. In SIAM Conf. on Parallel Proc. for Sci. Comp.,
1997.

[13] C. Xu and F.C.M. Lau. Load Balancing in Parallel Computers. Kluwer, 1997.

	Introduction
	Definitions
	Alternating Direction Iterative Schemes
	Optimal Schemes
	Experiments

