Improving the Performance of Distributed Shared
Memory Environments on Grid Multiprocessors!

Dimitris Dimitrelos and Constantine Halatsis

Athens High Performance Computing Laboratory and
Department of Informatics University of Athens
Panepistimiopolis Athens 15771 Greece
e mail ddimitr@hpcl voa gr halatsis@di uoa gr

Abstract Distributed Shared Memory (DSM) is a good solution to the
scalability complexity and high cost problems of large scale Shared Memory
Multiprocessors as well as to the difficulty of the programming model
problem of the message passing Distributed Memory Multiprocessors We
present a method for improving the performance of Distributed Shared
Memory Environments running on grid multiprocessors The method is based
on removing the inherent centralism imposed by X Y routing that causes
congestion in the centre of the grid Simulation as well as implementation
results on a 1024 processor machine show an improvement of up to 24%

1 The Environment

Distributed Shared Memory (DSM) allows the execution of programs assuming the
Shared Variable programming paradigm in Distributed Memory architecture
multiprocessor systems

All DSM systems must use a coherence protocol similar to those used by Shared
Memory multiprocessors for cache coherence to keep the shared data consistent at
all times The underlying message passing system makes it unrealistic to use any
protocol that assumes broadcast so directory based protocols are used

According to directory coherence schemes cach shared object has a directory
entry associated with it In this directory entry the identity of the object s owners its
status (exclusively owned/shared/invalidated) and possibly other information are
maintained and updated

The directory entry of each shared object is kept in some processor A processor
that keeps at least one directory entry is called a directory handler (DH) The
directory handler maintaining the directory entry of each shared object must be at all
times known to every processor in the DSM system since interaction with the DH is
necessary for non local accesses to shared data

I This work was partly supported by the Greek General Secretariat of Research and
Technology under the YPER 94 program

P. Amestoy et al. (Eds.): Euro-Par'99, LNCS 1685, pp. 159-162, 1999.
© Springer-Verlag Berlin Heidelberg 1999

160 Dimitris Dimitrelos and Constantine Halatsis

Plij) —— Uniform Distribution —+—
Reciprocal Distribution - § =%

Generalised Traffic/ Operation

28

coooooo0o _oo
ogoeooooa=
28888838382

02 7
P FaS
015 ~ v
01 //</A *\\ I/ﬁ\‘\\S\
e Y 7
6
el ///5/
0 4
\'g\z‘\ 2 Y.coordinate
[N 7
4 [(]
X-coordinate g

Fig 1 P(@ j) values for an 8x8 processor Fig 2 Simulated traffic for uniform vs
orid reciprocal directory distribution

The distribution of the directory data is a factor that plays an important role to the
performance of the system Centralised Directory schemes use a single processor for
maintaining all directory data According to Distributed Directory schemes the
directory data are distributed to more than one processors According to the Uniform
Distribution scheme (first introduced by Li in [1] as Distributed Directory) the
directory entries are uniformly distributed among the processors Even though the
Uniform Distribution Directory scheme seems very attractive its effect on grid
multiprocessors using the X Y routing algorithm for message passing has not been
investigated

2 Reciprocal Directory Distribution

According to the X Y message routing a message is propagated from the sender to
the receiver first along the X axis until it reaches the column of the receiver and
then along the Y axis The weak point of X Y routing is the fact that more messages
pass through the centre than through the edges of the grid on their way to their
destination causing more intermediate traffic to the central processors

We denote as P(i j) of processor (i j) in a MxN processor grid the probability that
a random message (not sent from neither sent to (i j)) passes through (i j)

In [2] we formally proved the following theorem:

262 M 1 PN+ 2M(N +)+ N(M + D) =3MN =M~ N+1 D
(MN - 2)(MN —1)

PG j)=

The value of P(i j) among the processors on a 8x8 processor grid is depicted in
Figure 1 The X and Y axes correspond to the processor s position in the grid and
the Z axis to its P(i j) value It is easy to observe the mountain with the peak at the
central (or central pair or quadruple) processor

The Uniform Distribution Scheme for the shared object directory is the natural
choice of a DSM system designer since it provides uniformity in the distribution of
data and avoids bottlenecks and hot spots However as all DSM operations are

Improving the Performance of Distributed Shared Memory Environments 161

= 8o v Unfom Bebion _# | implemented by explicit message
00 1 wﬁ'&?‘é«%&;Bti:ﬁ:ﬁ;g:[%:? A .= | passing between the processors
Symhe SiEven, Regprocal Distriouion -4 o the centralisation observed at X

1Y routing will be passed on to
| the system and therefore have an
impact on the systems
1 performance It will cause easier
| congestion to the central parts of
the network (that are accepting
1 more traffic) reduce the message

150

Shared Read Latency

100

50

. , , (‘ ‘ bandwidth and effectively reduce

’ o 0 praomssins o ™ the performance of the DSM
Fig 3 Benchmark Results Average Shared Read SYStem . .
Times The idea behind reversing the

effects of XY centralism is

simple Our simulations revealed that 70% 90% of all messages exchanged in a
DSM system start from or end to the Directory Handler Therefore if we alter the
directory distribution in order to move some traffic from the central processors to
processors closer to the edges of the grid we can create an anti force to the X Y
centrality and equalise the communication load throughout the grid Intuitively the
distribution should be done inverse proportionately to the centrality of each
processor ie the processors residing on the edges of the grid will get a bigger part
of the directory (more directory entries) than the processors closer to the centre of the
grid

According to our distribution scheme (Reciprocal Directory Distribution) the
directory data are distributed proportionately to the sixth power of the average
distance between the processor and any other processor The simulated traffic per
operation on an 16x16 processor grid is presented in Figure 2 along with the traffic
resulting using the normal uniform directory distribution The suppression of the
centralism caused by X Y is obvious

The price that we have to pay for decentralisation is the extra distance that the
messages have to travel in order for an operation to complete as a result from the
placement of more directory data in the outer parts of the grid The increase varies
from 3% in the 4x4 case to 9 3% in the 64x64 case

4 Implementation Results

MaDCoWSJ3] (MAssively Distributed COnfigurable Variable Validation System) is
a scalable multi parametric DSM system for 2D grid multiprocessors developed at
the Athens High Performance Computing Laboratory and the Dpt of Informatics of
the University of Athens It implements arbitrary size variable sharing as well as
global semaphore barrier and read modify write operations MaDCoWS has been
developed as a runtime system under the parallel operating environment PARIX[4]

162

Shared Write Latency

700

Dimitris Dimitrelos and Constantine Halatsis

Synthetic. Uniform Distribution, RAW=0 —+—
Odd-Even, Uniform Distribution ---x---
Synthetic, Reciprocal Distribution. RAW=3 -~
0Odd-Even, Reciprocal Distribution ---&:
Cormnect4, Uniform Distribution -
Connect4, Reciprocal Distribution ---6-~
Synthetic. Uniform Distribution, RAW= 1 --#---
Synthetic_Reciprocal Distribution, R/W=1 --- < ---

1 and has been used tested and
| benchmarked on the Parsytec
1 GCel 1024 a 1024 processor
| machine The
| currently being ported to the
1 Intel Paragon and to the
| Parsytec GC PP

system is

In order to evaluate the
| performance and scalability of
| the reciprocal directory
1 distribution we run several
synthetic benchmarks and two
real life applications two
games The first is a virtual odd
even game played by the processors that exhibits a high degree of sharing both
temporally and spatially The second application is a connect 4 game played by the
system vs a human

The average shared read and shared write times for the 3 benchmarks are
presented in Figures 3 and 4 In all cases the Reciprocal Directory Distribution
scheme performs better than the Uniform Directory Distribution improving the
DSM system s performance by up to 24% for shared read operations and up to 21%
for shared write operations The scheme performs better in the cases of dense sharing
(as in the case of the Odd Even benchmark) and for large grids In the case of sparse
sharing and very small numbers of processors (<64) a up to 10% increase in the
write latency was observed

0 200 400 600 800 1000
Processors

Fig 4 Benchmark Result Average Shared Write Times

Acknowledgments

The authors would like to thank Dr Alexander Reinefeld and the PC2 centre of
the University of Paderborn for allowing us to use their parallel computers for
benchmark runs

References

1 1i K Shared Virtual Memory on Loosely Coupled Multiprocessors PhD thesis
Department of Computer Science Yale University September 1986

2 Dimitrelos D and Halatsis C On the Distribution of Directory Information in a
Software Controlled Distributed Shared Memory System In Proc of the Workshop on
Parallel Programming and Computation (ZEUS 95) pages 75 89 Linkoping May 1995

3 Dimitrelos D and Halatsis C MaDCoWWS A Scalable Distributed Shared Memory
Environment for Massively Parallel Multiprocessors in Proc of HPCN 99 pp 784 793

4 Parsytec Computer GmbH PARIX 1 2 Software Documentation March 1993

	Improving the Performance of Distributed Shared Memory Environments on Grid Multiprocessors1
	The Environment
	Reciprocal Directory Distribution
	Implementation Results
	References

