On the Extension of the Code GAM
for Parallel Computing*

Felice Iavernaro and Francesca Mazzia

Dipartimento di Matematica, Universita di Bari.
Via Orabona, 4. 1-70125 Bari (Italy)
mazzia@dm.uniba.it

Abstract. The code GAM numerically solves initial value ordinary dif-
ferential equations by means of a family of variable-step variable-order
block Boundary Value Methods. Here we consider the possibility of per-
forming the code on parallel machines. Some numerical tests and com-
parisons are presented.

Key words. linear multistep formulas, Runge-Kutta methods, stiff initial

value problems
AMS(MOS) subject classifications. 65L05, 65120

1 Introduction

The code GAM [§] implements the Generalized Adams Methods (GAMs) of
orders 3,5,7 and 9 [3] 16}, [7] to solve initial value problems of the form

{y’(t) = f(t,y), f:la,a+T]|x H— H, (1)
y(a) = Yo,

where H = R". Its effectiveness has been established on the basis of its good
behaviour on a wide variety of test problems as compared to the performance
of some well-known codes such as RADAU5 and MBDFDAE (see [7]). At the
moment there exist two different versions of the code, both conceived to run on
sequential machines. In this context our interest is in deriving some techniques
that may allow an efficient implementation of the code on a parallel computer.
It is our experience that most of the time (about 85 %) spent to advance the
solution is devoted to solving the nonlinear systems underlying the integration
procedure: the whole performance of the code will substantially benefit from an
efficient parallelization of this part and our efforts will be concentrated to face
this problem. In particular the result presented here will concern one of the above
mentioned versions of the code as specified in the next section. The organization
of the paper is as follows. In the next section the GAMs are briefly introduced

* Work supported by MURST (40% project).

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 1136-[IT43] 1999.
© Springer-Verlag Berlin Heidelberg 1999

On the Extension of the Code GAM for Parallel Computing 1137

together with an outline on how these implicit formulae have been solved, with a
closer inspection of those steps that will be subject to parallelization, as described
in section 3. Here a possible approach is reported and analyzed for achieving
parallelization at different levels: this matter forms the background for a future
gradual development of the parallel code. In section 4 we present some numerical
results related to the very first experiments concerning the parallel version of
GAM. In the sequel, when needed, an N1 x No matrix 7', will be viewed as a linear
operator HV? — HN1, that is for example, given a block vector Y € HN?, AY
will stand for (A ® I,.)Y € H™ with I, the r-dimensional identity matrix.

2 Inside the Code GAM

Hereafter we give a short account of those sections of the code that, via a suita-
ble modification, will be performed in parallel by a number of processes. Details
about definitions, properties, implementation techniques and the overall functio-
nality of the code may be found in [3|, 6] [7]. During the integration process the
continuous problem () is solved over adjacent time intervals

W, = [tC7D 9], s=1,...,M, t© =q, tM =g 4T

In each W; the solution of (), say §(¢), is approximated by a vector Y =
(s) (shT No+1 S) RPN C)) ($)yNs ;
Yo s--s¥n.l" € H , that is y;”’ ~ y(¢t;”), where {¢t;”'};=5, is a uniform

K3
mesh over Wy such that t(s) = ¢t~ and t(s) = t(*); the positive number hy =
t(s) t(s)1 is the stepsize of integration. It must be observed that since W,_1 N

W, = {t*=1}, we also have y($) = yg\? Y that is the first component of the block

vector Y (®) should not be treated as an unknown because it takes information
from the preceding step. The other Ny components of Y () are the solution of
the following algebraic system of dimension Ng:

AY® —hBF(Y®)=0, s=1,...,M, (2)

where A, = {a;;} and B, = {Bij}, i=1,...,Ng, 5=0,...,Ng, are (Ng+1) x N,
real matrices and F(Y (%)) = [f(t(s) (S)), L f(t S),ygi))]T. Formula () may be
viewed as a set of linear combinations of yl(-) and f(¢; (=) yl(s)); it defines a block-

GAM of odd order p and dimension Ny if the followmg conditions are fulfilled
(to simplify the notation we omit in the sequel the superscripts (s)):

(i) each component of) assumes the form

kY
yi—yici=h Y Byfiy;, i=1,...,N,, (3)
j=—k

1138 Felice Iavernaro and Francesca Mazzia

with kgi) and k;i) nonnegative integers such that kgi) + kéi) =p—1and
4 i fori=1,...,(p—3)/2,
WY ={@-1/2 fori=(p-1/2.. N-(p-1)/2,

i—-N+p—1 fori=N-(p—3)/2,...,N;

(ii) assuming that yo = §(to), then for each i = 1,..., N, y; = §(t;) + O(hPT1)
that is the coefficients §;; are (uniquely) determined in order to provide a
(p+ 1) — st order approximation to the true solution at each time ¢;.

From the (p — 1)-step linear multistep formulae (@) it is deduced that A is
bidiagonal and Toeplitz with o;; = 1 and a;41,; = —1 as diagonal and lower
diagonal entries. We remark that the dimensions Ny of each system (2)) could be
in principle arbitrarily large so as to cover (under the same hg) wider or smaller
intervals W. All the same, inside the code, once the order has been selected, the
dimension of the corresponding formula remains fixed and is equal to 4, 6, 8, 10
for the orders 3, 5, 7 and 9 respectively. These dimensions allow the estimation
of the error and the order changing routines to operate (for an explicit list of
the coefficients (;; see []).

Performing the partitions

}Z = [y()?YT]T’ F:O’;) = [f(tO’yO)>F(Y)T]T’

A:[ao,A}, B:[bOaBL

with Y = [y1,...,y~|T, F(Y) = [f(t1,y1),...,f(tn,yn)]T and ag, by the first
column of A and B respectively, we can move in () all the known terms to the
right hand side, thus obtaining

AY — hBF(Y) = b, (4)

with b = —agyo+hbof(to, yo) (ap and by are used as linear operators H — HY).
We now consider one of the two approaches adopted to solve equation ().

3 Simplified Newton Iteration

The system (@) may be recast as Y — hCF(Y) = §, with C = A~!B and
& = A~'b, thus obtaining an expression analogous to that used to derive the
internal stages of a Runge-Kutta formula. It follows that methods for handling
the nonlinear systems arising from the application of a R-K method may be as
well applied in this context. Indeed we followed the approach used in RADAU5S
(see] pages 118-122), although we preferred to maintain the expression (H)
because it allows an easy estimation of the error. The modified Newton method
is used to linearize (@) whose solution is consequently obtained as the limit of
the sequence {Y*} defined as

YO given,
(A® I, —h(B®I,)D;) AY* =b — AY* + hBF(Y'F), (5)
VEHL = YF 4 AYF,

On the Extension of the Code GAM for Parallel Computing 1139

of
oy W
by extrapolation considering the solution computed at the previous step (see [7]).
To avoid more than one Jacobian evaluation per step we make the approximation

where Dj = diag[g—;:(tl, v9),.. (tn,¥%)]- The starting value Y is obtained

of o of .
@(tzayi) ~J= ay<t0ay0)7

consequently the linear systems to be solved become

(AR I, —hB®J)AY* = G(YH), (6)

with G(Y*) = b — AY* + hBF(Y*). It is possible to further reduce the compu-
tational cost recasting () into block-diagonal form. This is done by first consi-
dering the block diagonal form of A~!B (its existence and well conditioning has
been verified for all the considered GAMs)

oy =

B ax
T-'A='BT = 4, A= .
AN/2 —5N/2
5N/2 AN/2
and then performing the transformations of variables Z% = T—1Y*.

Setting S = AT, multiplying both sides of () by S~—! and exploiting the relation
(AT Y)Y ® J=(A® J)(T~! ® I.), the iteration scheme becomes:

(In®1I, —hA®J)AZF = ST'G(TZ%), (7)

which consists of N/2 decoupled systems having the form

I, —ha,J —0B,J u, Cn
(ﬁnJ Ir_ﬁhanJ> (Vn>(dn>a n:17~.-’N/27 (8)

where u, = z5! — 25 |, v, = 25" — 25 and analogously c,, d, are the

(2n—1)-st and 2n-th block components of the vector S~1G(Y*). Further amount
of computation is gained transforming these 2r-dimensional real subsystems into
the r-dimensional complex systems

(I, — hapJ) + ifnJ) (U, + ivy) = ¢y + id,, n=1,...,N/2. (9)

The total work to obtain the solution of (@) is then shared as follows: one
Jacobian evaluation; N/2 complex LU factorizations; for each iteration (@) the
computation of Y* = TZ* F(Y*), S~'G(Y*) and the solutions of N triangular
complex systems of dimension 7.

1140 Felice Iavernaro and Francesca Mazzia

4 Parallel Simplified Newton Iteration

A basic level parallelization is easily achieved solving the N/2 decoupled systems
(@) in parallel. The number of processors required for the generic step will there-
fore depend on the order of the GAM chosen to advance the solution: 2, 3, 4,
5 processors are needed for the orders 3, 5, 7 and 9 respectively. Obviously, if
the changing order rule is allowed to select the method between the minimum
and the maximum order, five processes must be initialized at the start up of
the program but some of them will remain idle unless the order 9 formula is di-
rectly involved in the integration step. When evaluating the expected speed-up
one should therefore get information about the global work carried out by each
process. Suppose a problem has been solved and the orders 3, 5, 7, 9 formulae
contributed to the solution by ns, ns,n7 and ng steps respectively (the rejected
steps must also be included). Then for that particular execution an estimation
of the expected speed-up S, is

5, = 2ns + 3ns + 4n7 4 5ng 23] (10)
n3 + ns + ny + ng

More precisely formula (I0) represents an upper bound of the theoretical
speed-up since it does not take into account the sequential nature of some parts
of the code such as the Jacobian evaluation, the stepsize selection and the com-
putation of the initial guess of the Newton iteration.

We see that, besides being problem dependent, once a problem has been fixed,
the value of S, is also related to the input tolerances and other possible input
values. However comparisons between the real speed-ups S, and expected speed-
ups S, are still possible because the numbers n; together with the execution
times are available as output variables of the code. In detail the iteration scheme
(@ executed in parallel proceeds as follows. Initially each of the N/2 processes
involved at the current step performs the LU factorization of the coefficient
matrix of the corresponding system (@). Later, the elements of the sequence
{Z*} are generated until convergence is attained. Assume that the process n
has evaluated its own piece [z5, 1,25]7 of the solution Z¥; let us see how the

, : k+1 k41T
construction of [z5,' ", z5 1 |

is carried out. For n =1,..., N/2, we set

Zk =l0,25, | 2% 0T € HY,

Y =10,y5,_1,¥5,, 0", Ff = [0,f(t2n—1,y5, 1), f(tan, ¥5,),0]" € HY,
bn = [0,b2n_1,b2,,0]T € RY,

Gk =b, — AY,F + hBFF,

and observe that
N/2

GY*) =>"aGh. (11)

The program now performs the following steps (points 1),3) and 5) are per-
formed for n =1,...,N/2):

On the Extension of the Code GAM for Parallel Computing 1141

1) the process n computes W,, = TZ¥;

2) each process takes part in the computation of Y* = Zg:/ ? W,, and receives
the corresponding block [y, _;,y5]7 (and therefore Y,¥);

3) the process n computes [f(tan_1,¥5,_1), f(t2n, y5,)]T and then G, (Y;F);

4) exploiting the relation ([T, all processes contribute to the computation of
S~1G(Y*) and receive the corresponding blocks of the known term [c,,, d,]
(see formula ([@));

5) the process n can finally solve the system (@) and get the solution [u,, v,]
and hence [z5 11, Z5FT.

The implementation described above represents a parallelization across the
method similar to that used for Runge-Kutta methods with associated matrix
having real and distinct eigenvalues (see for example [2]). There are a number of
starting points to take into consideration for subsequent developments of the pa-
rallel code. As an instance, to avoid that some processors remain idle during the
integration, one may chose N = 10 as the dimension of all considered GAMs.
As a generalization, more than five processors could be activated considering
N > 10, even though, in this case, the dependence of the convergence proper-
ties of the simplified Newton iteration on the dimension N, should be carefully
studied.

5 Numerical Tests

In this section we present some numerical results related to the parallelization
of the code GAM as described in section 3. The experiments were performed on
a Cray T3E machine with distributed memory, using at most five processors. In
the following the parallel code GAM will be referred to as P-GAM or P-GAM(n),
where n is the number of processors used. The communications are performed by
the MPI routines [10]. For numerical comparisons we choose the codes RADAU
in the version of April 1998 [5] and GAM in the version of September 1997 [8].

107 10 10° 10°
relative tolerance relative tolerance

Fig.1. SALESMAN problem

1142 Felice Iavernaro and Francesca Mazzia

The first test problem is the travelling salesman problem described in [I].
We chose this problem in order to compare the expected speed-up (S.) to the
numerical one (S,) by changing both the input parameters (rtol = atol = hy)
and the dimension r of the problem. In Figure [l we show the results obtained for
the dimensions r = 100 and r = 256 (the problem has a full Jacobian). The end
is to quantify the dependence of the performance of the code on the communica-
tion times. We see that, how one should expect, overloading the processors, the
obtained speed-ups are very close to the expected ones; this means that the com-
munication times, which are O(r), are almost negligible compared to the working
times per step of each processor (which depends on O(r?)). Better speed-ups for
lower dimensions should be expected on shared memory parallel computers. We
finally observe that the rise in speed-up (either S, and S,) when the accuracy
of the solution is increased, is due to the involvement in the integration process
of high order formulae which keep at work a greater number of processors.

10
—*— RADAU
—+— GAM
—e— P-GAM(1)
-0~ P-GAM(3) 0
-v - EP-GAM(3)
_
10' g
H
T
E
2
(@]
10° + E
&
v
107" I I I I I I I I I
1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

scd

Fig. 2. BEAM problem

The second test is the BEAM problem described in [9], an ODE of dimension
80. In Figure Bl we report the work precision diagram, that is a range of input
tolerances and a range of initial stepsizes were used to produce a plot of the
resulting minimum number of significant digits in the components of the numer-
ical solution at the endpoint (scd) against the CPU time in seconds needed for
the run (observe that a logarithmic scale is used for the y-axis). The format of
this diagram is as in [4]; naturally it strongly depends on the input tolerances

On the Extension of the Code GAM for Parallel Computing 1143

and on the default parameters of each code; the variation of a parameter may
considerably change the diagrams. For all problems we fixed atol = rtol = hg
while the values of rtol were chosen as follows: 10+ m = 0,...,10, for
RADAU and 10-3*t™) m =0,...,8 for GAM and P-GAM. A lower bound for
the expected execution times is obtained dividing the CPU times of P-GAM(1)
by S. and is drawn as EP-GAM(3). The expected speed-up is for all tolerances
less than 3 since the maximum order used is 5, the numerical speed-up is about

2.

References

1]

Bellen, A.: Pade test - A set of real-life test differential equations for parallel
computing, Technical Report 103, Universita di Trieste (1992)

Bendtsen, C.: A parallel stiff ODE solver based on MIRKs, Adv. Comput. Math.
7 1-2 (1997) 27-36

Brugnano L., Trigiante D.: Solving Differential Problems by Multistep Initial and
Boundary Value Methods, Gordon & Breach, Amsterdam, (1998)

Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and
Differential-Algebraic Equations, Springer Series in Computational Mathemat-
ics, 14, Springer-Verlag, Berlin, (1996)

Hairer, E., Wanner, G.: RADAU, April 1998. Available via WWW at URL
ftp://ftp.unige.ch/pub/doc/math /stiff /radau.f

Tavernaro, F., Mazzia, F.: Block-Boundary Value Methods for the solution of
Ordinary Differential Equations, SIAM J. Sci. Comput. (to appear)

Tavernaro, F., Mazzia, F.: Solving ordinary differential equations by Generalized
Adams Methods: properties and implementation techniques , Appl. Num. Math.
28 2-4 (1998) 107-126

Tavernaro, F., Mazzia, F.: F GAM August 1997. Available via WWW at URL
http://www.dm.uniba.it/“mazzia/ode/readme.html.

Lioen, W. M., de Swart, J.J.B., van der Veen, W. A.: Test Set for IVP Solvers,
CWI, Department of Mathematics, Amsterdam, Report NM-R9615, (1996)
Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,
(1995)

	Introduction
	Inside the Code GAM
	Simplified Newton Iteration
	Parallel Simplified Newton Iteration
	Numerical Tests

