
Boolean functions satisfying a higher order 

strict avalanche criterion 

Thomas W. Cusick 
Department of Mathematics 

State University of New York at Buffalo 
106 Diefendorf Hall 

Buffalo, New York 14214 
e-mail: V36OEAKBQPUBVMS.CC.BUFFALO.EDU 

Abstract. The Strict Avalanche Criterion (SAC) for Boolean functions 
was introduced by Webster and Tavares in connection with a study of 
the design of S-boxes. Later ForrC extended this notion by defining 
strict avalanche criteria of order k for Boolean functions of n 
variables, where 0 I k 5 n - 2 ; the case k = 0 is the original SAC. 
Recent work by Lloyd, Preneel and others has been concerned with the 
problem of counting the functions which satisfy SAC of various orders. 
If the order is n - 2  or n - 3  , this problem has been completely 
solved; the work in these cases is made easier by the fact that only 
quadratic Boolean functions occur. In this paper, we give good 
estimates for the number of Boolean functions which satisfy the SAC of 
order We also give a detailed description of the functions 
which satisfy SAC of order n - 4 , so the actual construction of these 
functions for cryptographic applications is made easy. 

n - 4 . 

1. Introduction 

The Strict Avalanche Criterion (SAC) was introduced by Webster and 

Tavares [lo] in connection with a study of the design of S-boxes; a Boolean function 

is said to satisfy the SAC if complementing a single input bit results in changing the 

output bit with probability one half. ForrC [3] extended this concept by defining 

higher order strict avalanche criteria. A Boolean function on n variables satisfies 

the SAC of order k , 0 < k 5 n - 2 , if whenever k input bits are fixed arbitrarily, 

the resulting function of n - k variables satisfies the SAC. I t  is easy to see (Lloyd 

[5]) that if a function satisfies the SAC of order k > 0 , then it also satisfies the 

SAC of order j for any j = 0, l,...,k - 1 . As is the case with any Boolean function 

criterion of cryptographic significance, it is of interest to count the functions which 

satisfy the criterion. A number of recent papers have dealt, wholly or in part, with 

counting functions that satisfy the SAC of various orders, for example, Lloyd [5, 6, 

7) and Preneel et al. [8]. In all of these papers, when the  number of variables is 

large only quadratic Boolean functions (that is, functions whose algebraic normal 
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form contains only terms of degree 5 2) are counted. The simplest cases involve the 

functions satisfying the SAC of order n - 2  or n - 3 ; in these cases, no 

non-quadratic function can satisfy the criteria, so a complete count is obtained. 

The problem of counting the functions which satisfy the SAC of order 

5 n - 4 is difficult, because many of the functions in these cases are non-quadratic. 

In this paper we apply some methods from group theory and combinatorics to give 

good estimates for the number of functions which satisfy the SAC of order n - 4 . 

It is known (see Lemma 2 below) that all such functions have degree 5 3 . We also 

give a detailed characterization of the quadratic and cubic functions which can occur 

in this case, so the actual construction of such functions is made routine. 

2. Preliminaries 

We define the degree of a Boolean function f(x l,...,xn) (notation: deg(f)) 

to be the maximum of the degrees of the terms which occur in the algebraic normal 

form 

@ "12. ..nx1x2...xn f(Xl,  ..., Xn) = I; aixi @ E a..x.x. @ ... 
@ 15i<n l<i<j<n 'J ' J 

(Here @ denotes addition modulo 2. Some writers use the term "nonlinear order'' 

instead of degree.) We say the Boolean function f is linear if it has degree one with 

no constant term a. and we say f is affine if it has degree one. We say f is 

quadratic or cubic if i t  has degree 2 or 3, respectively. 

We use the abbreviation SAC(k) for the Strict Avalanche Criterion of order 

Our first lemma states the simple result that in testing whether a Boolean k .  

function f satisfies SAC(k) , we can discard the affine terms (if any) in f . 

Lemma 1. If a Boolean function f of n variables satisfies SAC(k) for some 

k ,O 5 k 5 n - 2 , then SO does f @ g , where g is any affine function of n variables. 

Two fundamental results on Boolean functions satisfying SAC(k) were given 

by Preneel et al. [8]. 
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Lemma 2 (Preneel et al. [8, Th. 10, p. 1691) Suppose f is a Boolean function of 

n 2 2 variables. If f satisfies SAC(n - 2) , then f has degree 2. If f satisfies 

SAC(k) , 0 5 k < n - 3 , then' deg(f) < n - k - 1 . 

Lemma 3 (Preneel et al. [8, Th. 11, p. 1701) Suppose f is a quadratic Boolean 

function of n 2 2 variables. Then f satisfies SAC(k) , 0 5 k < n - 2 , if and only 

if every variable xi occurs in at least k + 1 second degree terms of the algebraic 

normal form. 

If we define 

then each variable xi occurs in exactly n - 1 terms. It follows immediately from 

Lemmas 1 to 3 that any Boolean function on n variables which satisfies 

SAC(n - 2) has nonaffine part equal to q(xl, ..., xn) , so we have: 

Lemma 4. There are 2n+1 Boolean functions of n 2 2 variables which satisfy 

SAC(n - 2) ; they are exactly the functions q(xl, ..., xn) ID g(xl, ..., xn) , where g is 

affine. 

The count in Lemma 4 was first found in a less direct way by Lloyd [5 ] .  

It is possible to use Lemmas 1 to 3 to  count the Boolean functions which 

satisfy SAC(n - 3): 

Lemma 5. Define the sequence {wi} of integers by w1 = 1 , w2 = 2 ,  

w = w + (n - 1 ) ~ , - ~  for n 2 3 . The number of Boolean functions of n I 3 

variables which satisfy SAC(n - 3) is Zn+lwn . 
n n-1 

Proof. By Lemma 1, it suffices to show that the number of functions which satisfy 

SAC(n - 3) and have no affine terms is By Lemmas 2 and 3, any such 

function is obtained by deleting zero or more terms from the sum in (1) in such a 
wn . 
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way that the remaining sum has the property that every variable xi occurs in at 

least n - 2 terms. Thus S is a set of terms which we are allowed to delete if and 

only if no subscript i occurs in a term X.X. in S more than once. It is easy to 

find a recursion for the number wn of such sets S: Obviously w1 = 1 (the empty 

set) and w2 = 2 . Clearly any set of terms T = {x.x.} which is counted in wn-l 

is also a set which must be counted in wn , and this includes all sets which do not 

contain any term wiwn . If we have any set T which includes n - 2 variables 

from X ~ , . . . , X ~ - ~  , we may add a term xkxn to T and get a set to be counted in 

wn if and only if xk does not already occur in a term in T . There are w ~ - ~  

such sets T , by our definitions, so we count wn-2 sets for each k , 1 3 k 5 n - 1 . 
Hence wn = w ~ - ~  t (n - l ) ~ , - ~  and the lemma is proved. 

1 J  

1 J  

The numbers wn have been previously studied in a combinatorid setting 

because wn is the number of permutations in the symmetric group Sn whose 

square is the identity. In particular, Chowla et al. [2, p. 3331 gave the following 

asymptotic formula for wn: 

(3) 

It is not difficult to use Lemmas 1 to 3 to deduce the expression 

n! 2n+ 1 x 
0<i<n/2 (n-2i )!i!2' 

for the number of Boolean functions of n 2 3 variables which satisfy SAC(n - 3) . 
This expression is more complicated to compute with than the recursion for wn 

and it does not seem simple to deduce the nice asymptotic result (2) from (3). 

Formula (3) was found in a more complicated way by Lloyd [6, p. 1711. 

3. Orbits of Boolean functions of 4 variables 

Our goal is to find good estimates for the number of Boolean functions of n 

By Lemma 1, we lose no generality in variables which satisfy SAC(n-4) . 
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confining ourselves to functions which have no affine terms; for brevity, we shall 

sometimes call such a function "affineless". We define tn  for n > 4 by 

tn = number of affindess Boolean functions of n variables which satisfy 

SAC(n - 4) . 

It is clear that the property of satisfying SAC(n - 4) is preserved if we 

apply any permutation of xl, ..., xn to a Boolean function of n variables which has 

that property. Thus if we let the symmetric group Sn of permutations of 

{1,2, ..., n} act on the set of Boolean functions of n variables in the natural way, 

either all or none of the functions in any orbit under this action will satisfy 

SAC(n - 4) . Therefore in estimating tn it suffices to estimate the size and the 

number of the orbits which contain affineless Boolean functions of n variables 

satisfying SAC(n - 4) . Given such a function, if we fix any n - 4 variables we 

have an affineless function of 4 variables which satisfies SAC . Our first theorem 

gives a complete description of all of the orbits of these functions of 4 variables. We 

abbreviate the terms xixjxk and X.X. in such a function by ijk and ij , 
respectively. 

1 J  

Theorem 1. There are exactly 90 orbits under the action of S4 on the set of the 

21° Boolean functions of 4 variables with no affine terms. The tables below give 

the following information about these orbits: a representative function for each 

orbit, the size of the orbit, and whether the functions in the orbit satisfy SAC . 

The tables group all orbits with representatives having a given number of third 

degree terms in the algebraic normal form of the Boolean function. Presence of a 

given second degree term in the representative is indicated by an "x". 



107 

Four third degree terms - 11 orbits containing 64 functions 

Fiepresentative = 123 @ 134 @ 124 @ 234 @ indicated quadratic terms 

Orbit 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Quadratic terms included 
12 13 14 23 24 

X 
X 

X X 
X X X 
X X X 
X X 
X X X 
X X X 
X X X X X 
X X X X X 

Orbit 
34 size 

1 
6 

X 3 
12 
4 
4 

x 12 
X 3 
x 12 

6 
X 1 

Three third degree terms - 20 orbits containing 256 functions 

Representative = 123 @ 124 @ 234 8)  indicated quadratic terms 

Orbit Quadratic terms included Orbit 
number 12 13 14 23 24 34 size 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

29 
30 
31 

28 

4 
X 12 

X 12 
X x 12 
X X 12 

X X 12 
X X 24 
X X X 4 

X X X 4 
X X X 12 
X X X 12 

X X X 24 
X X X 24 

X X X x 12 
X X X x 12 

X X X X 12 
X X X x 24 
X X X X x 12 
X X X X x 12 
X X X X X X 4 

SAC 

Yes 
no 
no 
no 
Yes 
no 
no 
Yes 
no 
no 
no 

SAC 

no 
no 
no 
no 
no 
no 
no 
no 
no 
no 
no 
no 
no 
no 
no 
no 
no 
no 
no 
no 
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Two third degree terms - 28 orbits containing 384 functions 

Representative = 123 @ 234 e indicated quadratic terms 

Orbit Quadratic terms included 
number 12 13 14 23 24 34 

32 
33 X 
34 X 
35 X 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 

59 
58 

X X 
X X 
X X 
X X 

X X 
X X 
X X X 

X X X 
X X X 
X X X 
X X X 

X x X 
X X X 
X X X 
X X X X 
X X X X 
X X X X 

X X X X 
X X X X 

X X X X 
X X X X X 
X X X X X 

X X X X X 
X X X X X X 

No third degree terms - 11 orbits containing 64 functions 

Representative = indicated quadratic terms 

Orbit 
number 

a0 

a2 
a3 
a4 
a5 

a7 
aa 

81 

86 

89 
90 

Quadratic terms included 
12 13 14 23 24 34 

X 
X X 
X X 
X X X 
X X X 
X X X 
X X X X 
X X X X 
X X X X X 
X X X X X X 

Orbit 
size 

16 
6 
6 

24 
6 

12 
12 
12 
24 
24 
12 
12 
12 
12 
12 
12 
24 
24 

6 
12 
12 
12 
24 
24 

6 
6 

24 
6 

Orbit 
size 

1 
6 
3 

12 
4 
4 

12 
3 

12 
6 
1 

SAC 

no 
no 
no 
no 
no 
no 
no 
no 
no 
no 
no 
Yes 
no 
no 
no 
Yes 
no 
no 
no 
Yes 
Yes 
no 
no 
no 
no 
no 
no 
no 

SAC 
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One third degree term - 20 orbits containing 256 functions 

Representative = 134 e indicated quadratic terms 

Orbit Quadratic terms included Orbit SAC 
number 12 13 ' 14 23 24 34 size 

60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 

4 
X 12 

X 12 
X x 12 
X X 12 

X X 12 
X X 24 
X X X 4 

X X X 4 
X X X 12 
X X X 12 

X X X 24 
X X X 24 

X X X x 12 
X X X x 12 

X X X X 12 
X X X x 24 
X X X X x 12 
X X X X x 12 
X X X X X X 4 

no 
no 
no 
no 
no 
no 
no 
Yes 
no 
no 
no 
no 
no 
no 
no 
Yes 
no 
Yes 
no 
Yes 

Proof. The number of orbits can be predicted in advance from the well-known 

Burnside counting formula (for example, see Artin [l, p. 196]), which says that if a 

group G with IGI elements acts on a set S then 

(4) number of orbits = 1GI-l X f(g) , 
gcG 

where f(g) = the number of elements of S fixed by the action of g . In our case 

I G 1 = S4 I = 24 and a computation shows that the sum in (4) is 2160. 

Now it is a matter of calculation (we used the Mathematica software 

system), using the properties of the group action in order to minimize the work, to 

enumerate the orbits and test whether SAC is satisfied. This proves the theorem. 

For our later work, it will be important to have more conceptual descriptions 

of the 18 orbits containing functions satisfying S A C .  These are given in the 

Corollary below. In every case, the description in the Corollary follows in a 

straightforward way from the information given in Theorem 1 for the orbit in 

question. 
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Corollary to Theorem 1. T h e  18 orbits in Theorem 1 which contain functions 

satisfying SAC can be described as follows. The  orbit numbers are the  same as i n  

Theorem 1. The  quadratic terms are described in terms of the digit set { 1, 2, 3, 4) 

= {h, i ,  j, k) , where t h e  letters can stand for any one of t h e  four numbers. 

Orbit 
number 

1 

5 

8 

43 

47 

51 

52 

67 

75 

77 

79 

82 

85 

86 

87 

88 

89 

90 

Orbit 
size 

1 

4 

3 

12 

12 

12 

12 

4 

12 

12 

4 

3 

4 

12 

3 

12 

6 

1 

No. of 
degree 3 
terms 

4 

4 

4 

2 

2 

2 

2 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

Description of quadratic terms 

None 

Three terms containing only 3 digits, each 

Four terms, consisting of two disjoint pairs 

hi, hj, hk; h occurs only once in the two cubic terms 

hi, hk, jk; h and k occur only once in the two 
cubic terms 

hk and i j  and two disjoint pairs, where h and k 
occur only once in the two cubic terms 

hk and three pairs from one of the cubic terms; h 
and k occur only once in the cubic terms 

hi, hj, hk; h does not occur in the cubic term 

Four terms, where the two missing terms do not 
contain the number not in  the cubic term 

Five terms; the missing term is one of the 3 not 
containing the number not in the cubic term 

All six possible pairs 

One disjoint pair, e.g. 12, 34 

Three pairs hi, hj, hk 

Three pairs hi, ij, jk 

Four terms consisting of two disjoint pairs 

Four terms, where the two missing terms are not 

Any five pairs 

All six possible pairs 

twice 

disjoint 
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4 h c t i o n s  with no affine terms satisfying SAC(n - 4) 

We have already defined tn (n 2 4) to be the number of affineless Boolean 

functions satisfying SAC(n - 4) . By Lemma 2, if f is any such function, then 

deg(f) < 3 . We let T(f) denote the set of triples ijk such that xixjxk is a term 

in the algebraic normal form of f and we let P(f) denote the corresponding set of 

pairs i j  . o u r  next two lemmas give conditions that T ( f )  must satisfy if f 

satisfies SAC(n - 4) . 

Lemma 6. If f(xI, ..., xn) is a Boolean function satisfying SAC(n - 4) , then no 

more than two triples in T ( f )  can have exactly two integers in common. 

Proof. We give a proof by contradiction. Suppose f satisfies SAC(n - 4) and 

T(f) contains three triples 23i, 23j, 23k . We can assume with no loss of generality 

that the triples are 123, 234, 23k . If g is the function obtained when all variables 

except xi (1 < i < 4) are set equal to zero, then from Theorem 1 Corollary we see 

that if g satisfies SAC then P(g) must be one of the eight sets 

(12, 13, 14}, (12, 14, 34}, (13, 14, 24}, (14, 24, 34) , 

(12, 13, 14, 23}, (12, 14, 23, 341, (13, 14, 23, 24}, (14, 23, 24, 34) 
(5) 

(notice 14 is in every set and the last four sets are just the first four sets with 23 

added). 

First suppose 12 and 13 occur in P(g) (an analogous argument deals with 

the case when 24 and 34 occur). If g, is the function obtained when all variables 

except x2, x3, x4 and xk are set equal to zero, then P(gl) (which is in the list (5) 

with 1 replaced by k) must contain both 2k and 3k (otherwise either 24 or 34 is in 

P(gl) , so P(g) contains 12, 13, 14 and at least one of 24, 34; this contradicts the 

fact that P(g) is in the list (5)). If g2 is the function obtained when all variables 

except xl, x2, x3, xk are set equal to zero, we now have that P(g2) (which is in 

the list (5) with 4 replaced by k) contains at  least l k ,  12, 13, 2k and 3k ; this 

contradicts the fact that P(g2) can have no more than 4 elements. 
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NOW suppose 12 and 34 occur in P(g) (an analogous argument deals with 

the case when 13 and 24 occur). It follows that P(gl) must contain both 2k and 

4k (otherwise 24 occurs in P(gl) and so in P(g) , contradicting the fact that P(g) 

is in the list (5)). This means P(g2) must contain both 12 and 2k , which is 

impossible since P(gz) is in the list (5) with 4 replaced by k . This completes the 

proof. 

Lemma 7. If f(xl, ..., xn) is a Boolean function satisfying SAC(n - 4) , then no two 

triples in T(f) can have exactly one integer in common. 

Proof. We give a proof by contradiction. Let f satisfy SAC(n - 4). Suppose T(f) 

contains two triples 123 and 14k, k > 4 , and does not contain any of the triples 

124, 134, 234. If g is the function obtained when all variables except xl, x2, x3, 

x4 are set equal to zero, then Theorem 1 Corollary shows that if g satisfies SAC , 
then P(g) must be (14, 24, 34) plus any subset of (12, 13, 23) . If gl is the 

function obtained when all variables except xl,  3, x3, x4, xk are set equal to zero 

and xk = 1 , then T(gl) = (123) and P(gl) does not contain 14. This means gl 

does not satisfy SAC , so f cannot satisfy SAC(n - 4) . 

Now suppose T(f) contains 123, 14k and 234. With g defined as above, we 

saw in the proof of Lemma 6 that P(g) must be one of the sets in (5). Since 14 is 

in every set in (5), looking at gl defined above again gives a contradiction. A 

similar argument gives a contradiction in the case where T(f) contains 123, 14k 

and one of 124, 134. 

Finally suppose T(f) contains 123, 14k, 124 and 234 (the case 123, 14k, 134, 

234 is similar and other choices of two or more triples from (124, 134, 234) are 

ruled out by Lemma 6). If g is defined as above, then T(g) has three triples and 

so by Theorem 1 g does not satisfy SAC and f does not satisfy SAC(n - 4) . 
This completes the proof of the lemma. 

We turn to the quadratic functions which satisfy SAC(n - 4) . By Lemma 

3, such a function is characterized by the property that every variable xi occurs in 
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at least n - 3 of the terms X.X. in the algebraic normal form. Thus every such 

function with no affine terms is obtained from the sum in (1) by deleting a set S of 

zero or more terms in which no subscript i occurs more than twice; hence we can 

count the functions by counting the corresponding sets S (the same idea was 

already used in the proof of Lemma 5) .  In our next lemma we give a proof of an 

asymptotic formula for the number of these sets. By analogy with the proof of 

Lemma 5, we define 

* J  

vn = the number of quadratic functions B.x. of n variables 
1 J  

such that no variable xi occurs more than twice 

Lemma 8. The number of quadratic Boolean functions of n 2 4 variables, with no 

affine terms, which satisfy SAC(n - 4) is v We have n '  

as n - t m .  

Proof. The first sentence of the lemma follows from the remarks in the paragraph 

preceding the lemma. The number vn is clearly the number of graphs (no multiple 

edges) on the vertex set {1,2, ..., n} such that every component is an isolated 

vertex, an edge, a cycle (of length at least 3) or a path. By well-known 

combinatorial arguments (see [9, Example 6.5, p. 1341 for a similar problem), the 

exponential generating function is 

2 -1/2 x vnxn/n! = exp(-x /4 + x/(2(1- x)))( 1 - x) 
m 

n=O 
This function is "admissible" in the sense of Hayman [4] and it  follows from his 

Theorem I, Corollary I1 that (6) holds as n 4 00 . 

Lemma 8 Corollary. The number vn satisfies 

log vn N n log n as n 4 m . 
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Proof. This follows from (6) and Stirling’s formula n! N f i  (n/e)” . 

We are now ready to give our estimates for tn . 

Theorem 2. The following inequalities hold for the number tn of Boolean functions 

of n variables which satisfy SAC(n - 4) and have no affine terms: 

3 n!g(n) < tn < 3.2 n n! g(n - 4) 

g(n) N c ( n  + 1)-3/4 exp((i (n + 1)l1l2) 

where 

as n 4 m , with C = (25/2~))-1/2 = .237... . 

Proof. We see from the tables after Theorem 1 that there are no orbits which 

contain functions satisfying SAC and which have three third degree terms. It 

follows from this and Lemmas 6 and 7 that if f is an affineless Boolean function 

satisfying SAC(n - 4) , then the set of triples T(f) is either made up of disjoint 

triples or is made up of exactly two triples with a common pair of elements, and 

possibly some further disjoint triples. 

We define 

(7) g(n) = vn/n! 9 

where vn is defined above Lemma 8. 

We first consider the case where T(f) contains a single triple, which we may 

take to be 123. Suppose now that we fix a l l  of the variables except those with 

subscripts 1, 2, 3 and j for some j , 4 <_ j 5 n . The resulting function of 4 variables 

satisfies SAC and so by Theorem 1 it lies in one of four orbits which contain 

functions with a single term of degree 3. If 123 is the term of degree 3, then by the 

Corollary to Theorem 1 the set of pairs for the function of the variables 1,2,3,J is 

lj, 2j, 3j plus some subset of {12, 13, 23) ; 

all of the eight possible subsets can occur. It follows from this that the pair set 

P(f) for the function f of n variables must be 
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some subset of (12, 13, 23) plus 14, 24, 34, 15, 25, 35 ,... , 

In, 2n, 3n plus more terms involving x4, ..., xn . 

Let r(x ll...,xn) denote the quadratic function of n variables formed from the 

terms 15, 25, 35 and all the subsequent terms in the above list. If we fix variables 

x1,x2,x3 in some way, since our original function f satisfies SAC(n - 4) , the 

resulting quadratic function r of n - 3 variables must satisfy SAC of order 

n - 7 = (n - 3) - 4 . Since there is no choice for the affine terms in such a function 

r , by Lemma 8 the number of such functions n is 5 vn-3 . Thus the total number 

of functions f satisfying SAC(n - 4) and with T(f) containing a single triple is 

less than 

here the binomial coefficient gives the number of ways of choosing the single triple, 

say ijk ; 8 is the number of ways of choosing the associated subset of {ij, ik, jk} ; 

and (7) gives the final factors. 

NOW we suppose the set of triples T(f) contains t disjoint triples. A 

straightforward extension of the argument in the previous paragraph now gives the 

upper bound 

t n  8 (3t)  g(n - 3t)(n - 3t)! 

for the number of such functions f which satisfy SAC(n - 4) . Summing our 

estimates, we find that the number of functions f satisfying SAC(n - 4) and 

having T(f) made up of disjoint triples is less than 

[nb31 8t (3:) (n - 3t)! < (e 2 - l)n! g(n - 3) 
t = l  

- 3) 

since 

2 ‘“S3’ 8t/(3t)! < 
t = l  t = l  

8t/3/t! = e - 1 . 
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Next we consider the case where T(f) contains two triples with a common 

pair, which we may take to  be 123, 234. Suppose now that we fix all of the 

variables except those with subscripts 1,2,3,4. The resulting function of 4 variables 

satisfies SAC and so by Theorem 1 it Lies in one of four orbits which contain 

functions with two terms of degree 3. If we fix x4 we have a function of n - 1 

variables satisfying SAC(n - 5) with triple set 123 only. Thus our above analysis 

for the case of a singleton triple set applies (with n - 1 in place of n), and so the 

number of such functions of n - 1 variables is less than 

g(n - 4)(n - 4)! . 8 

To return to functions of n variables with two-element triple set made up of two 

triples with some pair i j  in common we must multiply this bound by 

( 3 3  (n - 3) ; 

here the binomial coefficient gives the number of ways of choosing the first triple, 3 

is the number of ways of choosing ij from the first triple and n - 3 is the number 

of ways of choosing the third element in the second triple. 

As in our previous work, we can extend the above argument to the case 

where the triple set is made up of two triples with a common pair plus t more 

disjoint triples. This gives the following upper bound for the number of functions f 

satisfying SAC(n - 4) and having triple set T ( f )  containing two triples with a 

common pair: 

rb-; 1/31 at g(n - 1 - 3t)(n - 1 - 3t)! 
t = l  

3(n - 3)@ 

1 [(n-4 1/31 < (n - 1)(n - 2)(n - 3)n! g(n - 4) C 8t/(3t)! 
t=l  

1 2  3 < 9 (e - 1)n n! g(n -4) . 

Since (e2 - 1) = 3.195 ..., putting together our estimates and using Lemma 8 gives 

the upper bound in Theorem 2. The lower bound follows immediately from (7) and 

Lemma 8. 
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