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Abstract 

Ivan Damgard [4] suggested at  Crypto’89 concrete examples of hash functions 
including, among others, a knapsack scheme. In [B], P. Camion and myself have 
shown how to break this scheme with a number of computations in the region of 23’ 
and about 128 Gigabytes of memory. More precisely in [3] we showed how to find 
an t such that h ( z )  = b,  for a fixed and average b. (1). 

But in order to show that h is not collision free, we have just to find z and p, 
t # y such that h ( r )  = h(y) .  (2). This is a weaker condition than (1). 

We will see in this paper how to find (2) with a number in the region of 224 com- 
putations and about 812 hlegabytes of memory. That is to say with about 256 times 
less comptation and memory than 13). hforeover, ways to extend our algorithm to 
other knapsacks than that (256. 128) suggested by Damgird are investigated. 

Then we will see that for solving problems like (1) or (2) for various knapsacks it 
is also possible to use less memory if we are allowed to use a little more computing 
time. This is a iisefiill remark since the memory needed was the main problem of 
the algorithms of [B]. 

Finally, at the end of this paper, we will briefly study some ideas on how to 
avoid all these attacks by slightly modifying the knapsack Hash functions. However 
some different attacks could appear. and it is not so easy to find a colision free Hash 
function, hoth very quick and with very simple hlathematic expression. 

The Proposed Knapsack 
Let n l ,  . . . , a 8  be fixed integers of A binary digits, randomly selected. If T is a plaintext 

of s binary symbols, T = 11 . . . I , ,  then h ( z )  = x x i u i  will be the proposed hashed value. 

In paragraph 1 and 2, values assigned are 256 for s and 120 for A, as suggested in [4]. 
Thus h(s) has at most 120+8=128 binary digits. 

8 

i= l  

1 The general scheme of our modified algorithm 
Our algorithm for finding I and such that h(s) = h ( y )  will he  mainly a variation of 
the algorithm described in 131 in order to find I such that h ( z )  = b, where b is a fixed 
and average value. But our modified algorithm wil l  he in O(?24)  computations instead of 
O(Z3’), and it will need about 512 Megabytes of memory instead of about 12s Gigabytes. 
Nowadays it is quite common to have ,512 h4egabytes but still quite unusual to have 128 
Gigabytes of Memory. So our modified algorithm will appear more practical. Our modi- 
fied algorithm will proceed in 16 steps, plus a step 0 a t  the beginning. 
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Step 0 : We choose integers m ,  m, ,  m2, m3,  m,  and b such that : 

a )  m = mlm2m3m4 > 

b) The mi are pairwise coprime, and 
a ml N 2', a m2 N 224, a m3 =i 224, e m4 
(so 

224. 
,I. - - p + 2 4 + 2 4 + 2 4  = 280, 

c) Let b be a fixed integer, b z 212', for example. 
And Vi, 1 5 a 5 4,  we define bi = b mod mi. 

In order to have a general view of our algorithm. the diagram given below shows the 
sequence of operations that will be carried out. Let us outline the meaning of the diagram 
before going into detail. Each black point represents a step of the algorithm. The number 
224 associated with the black point represents the evaluation of the number of partid 
solution that will be found for this step. Each step will study binary sequences. The 
length of those sequences is 32 for steps 1, 2, 3, 4, 5, 6, 7, 8. It is 64 for steps 9, 10, 11, 
12. It is 128 for steps 13, 14. And then step 15 will produce about 2*' sequences of length 
256 among which in step 16 we will find a collision with probability close to 1. 

Number bits : of soning i2 " 3[ i' 
3[ 3i i' -c ml : 8 bits , 224. , 12f' , 12: , 1'2: , 224. , $4 , 224 . , SlCpP 1. 2. ... 8 : 

- m2 : 24 bits 

slep9.10.11.12: f2.4 , '"1 i:* , z;, - m, : 24 bits 

224 224 

*'* 
Steps 13. 14 : 

-c m4: 24 bits I 
step I5 : 

Step 16 : 

224 

- 48 b i s  I 
Collision 

We will now go through each step in detail. 

S tep  1 : Let bl = b mod ml. 

We find all sequences (zi), 1 5 i I 32, xi = 0 or 1, such that '&;ui E b l [ml ] .  

We will find about 224 such sequences because there are 232 sequences (xi) of 32 bits, and 
mI is close to 28. In fact, we will see in Section 2 the number of solutions that we may 
expect to obtain when the algorithm is brought to completion. 
It is important to notice that it is possible to do this step 1 with a number in the region 
of 2" operations, with a memory of about Z2' words of 32 bits. Indeed, we just have to 

32 

i= l  
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do the following : 

a)  Compute and store all values of bl - c x , u ,  modulo ml.  

The  “store” is done such that we will have easy access to  all the sequences (5:) such that  

b, - Xx,u ,  has a given value modulo ml .  

b)  Compute, one by one, all the values of z,u, modulo ml and look if there are some 

sequences (x,), 1 5 i 5 16, which gived the same value modulo ml in a). If it is SO, keep 
all the pairs of sequences obtained (I ,) ,  1 5 i 5 32. 

For a )  we will need about one field of 216 words of 16 bits. And for b )  we will need 
about one file of 224 words of 32 bits. 

16 

:=I 

16 

, = I  
32 

,=17 

Step k, k=2 to  8 : In the same way, we find about P4 sequences (x,) such that  

I.0, = O [ r n l ]  
1=3’2(k-1)+1 

31 64 

Step 9 : We denote ~ x , u ,  by 5 1  and ~ x , u ,  by s l .  

From the sequences (5,) found at  Steps 1 and 2, we find about 224 sequences ( x l ) , l  5 
t 5 64 such that  s1 + sz For there are about 
224 x sequences (I,), 1 5 i 5 G4 such that (xl,. . . , q2) is a solution from Step 1 
and (~33,. . . ,zm) is a solution from Step 2. So if the numbers sI + s2 are about equally 
distributed modulo mz, m 2  ‘v 2“, we find about = 224 among those sequences such 
that  51 + sz h[m2]. A11 sequences (2,) to  be found in Step 9 also have the  following 
property : 

I S 1  r=33 

bz[mz]. (where bz = b mod mz). 
= 

s1 + s2 = b2[m2] and s1 + s2 = bl[ml]. 
This is because s1 5 bl[ml] and s2 = O[ml]. It is important to  notice that  it is possible 

to do this step 9 with a number in the region of 2z4 operations, with a memory of about 
224 words of 64 bits. Indeed, we just have to  do the following : 
a) Compute and store all values of h2 - s1 modulo mz, where s1 has been found in step 1. 
11) Compute and store all the values of s2 modulo m2, where s2 has been found in step 2. 
c )  keep all pairs of sequences (5,) which give the same value modulo mz in a) and b). 

Step k, k = 10, 11 and 12 : The same way as step 9, we find about 224 sequences (Ti) 

such that 
64( k - 8 )  

x,u; = O[rn,],i = 1,2.  
i=64(k-Y)+1 

S t e p  13 : Combining solutions of steps 9 and 10, we find about 224 sequences (xi) 
128 

such that  x z , u ,  s b;[rn;],i = 1 ,2 ,3 .  (This is done with about 224 computations, the 

same way as step 9). 
i= 1 

Step 14 : Combining solutions of steps 11  and 13, we find about 224 sequences (xi) 

such that 
256 

xis, E O[m,],i = 1 ,2 ,3 .  
i=129 
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S t e p  15 : Combining solutions of steps 13 and 14, we find about 224 sequences (z;) 
such that 

256 

x z , u ; = b , [ m , ] , i =  1,?,3,4. (1) 
i= l  

The rn, are pairwise coprimes, so (1) means : we have about 224 sequences (5 , )  such that 

256 

xz,u, G b[m], where m > 280. 
i = l  

Step 16 : Among the 22' sequences (T,) found in Step 15, we will have with a "good" 
probability a collision, that is to  say two sequences (I,) and (y,) such that  : 

256 256 

Cx,a, = Cw,. 
:=I , = I  

This is because all the sequences found in step 15 have the same value modulo m, 
where rn > .Zm. So the probability that  h ( z )  = h(y), where z and y are found in step 15, 

found in step 15. So it is possible to prove (this is a classical "birthday paradox") that  
with a "good" probability we will obtain an z and an y such tha t  h ( z )  = h(y). And the 
collision will be found in about 224 computations after step 15 : we just have to compute 

and store all the  values ~ T , u ,  where (I,) has been found in step 15 (about 224 such (z i )  

have been found) and this will give us the collisions. 

24 224 , 
z + y, is 2 1 = $. But we have about 2 couples (z,y) where z and y are 

236 

,=I 

Differences be tween our a lgor i thm a n d  t h e  or iginal  a l g o r i t h m  of [3] 

There are three main differences in the design of the algorithm that  we have described 
and the original algorithm of [3] : 

1. The number of solutions after each step is about 224 instead of 232, in order to 
require less memory and to do less computations. 

2. We have one more stage where steps 1 to  8 are done. And for these steps we use 
reduction modulo m, where ml 'v 2'. 

3. At the  end we find a collision with a "Birthday Paradox" like attack. 
We will now give more details about the 'good" probability t o  find a collision with our 
algorithm, and the memory required. 

2 More details and small improvements of our al- 
gorit hm 

What do we do if at the end of our algorithm no collision is found ? It is possible to 
use the algorithm again, but with new chosen values. For example we can replace bl by 
s1 A[ml] a t  step 2, where X is any fixed integer in 
10, ml - 11. Or we can permute the ui*s. We can also change the value of b or of the  mi's. 

bl  - A[rnl] a t  step 1, and 0 by s2 

But it is much better to  keep the same value for band m : this is because the probability 

b[m]. 
258 

of success in Step 16 depends only on the number of (I,) found such that  '&i 
i= 1 
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So all the solutions ( I , )  found in step 15 with the first application of our algorithm will 
be useful with the second application of our algorithm. For this second application we 
can decide t o  find less solutions in step 15 than P4, because they will be  combined with 
the “previous” solutions. 

“Good” probability 
But in fact, even one iteration of our algorithm has a probability of success near 1. This 
is because h ( z )  is not equidistributed. If we denote by P ( b )  the number of (2;) such that  
h ( + )  = 6, the function P ( h )  will have a diagram as follows : 

And it is possible to prove that, if the a , ’ s  are random numbers of 120 bits, for about 
99 % of the (I,) we will have : 108.2110 5 h( z )  5 148.2116. 
So for about 99 % of the (G), h(z)  will have less than 40.2Il9 values, thus less than 
%Iz5. So the “collision” i n  step 16 of our algorithm is easier than expected, and then it is 
possible to prove that the probability ol finding a collision after step 16 is near 1. 

Me niory 
In order to use less memory, it is useful to  begin with steps 1, 2 and 9, then steps 3, 4, 10 
and 13. Then steps 5,G and 11, then steps 7,8, 12 and 14. Then steps 15 and 16. Thus 
with a file of about 2’‘ words of 2.56 bits it will be possible to do all these steps. This is 
512 Megabytes of memory. It is high but 256 less than what was needed in [3]. (In [3] 
it is explain that 64 Gigabytes are needed for one basic step. But  it seams that  at least 
about 128 Gigabytes are needed for all the steps). In paragraph 4 we will see some other 
ideas in order to  use less memory but a t  the cost of a little more computations. 

3 Generalization of the new algorithm for other sizes 
of Knapsacks 

Values for complexity 232 

Let ((1,.  . . , n, be fixed integers of A binary digits. 

If I is a plaintext of s binary symbols, i.e. I = q . . . z,, then h ( z )  = x z , a ;  is the proposed 

hashed value. The hash value h ( z )  has less than E binary digits, i.e. E u A + log, S. 
In [3] some algorithms were given to find an z such that  h ( z )  = 6 (where 6 is a fixed and 
random value in [1,2’]). In complexity 0(232) (in time and memory) these algorithms can 
find such 1: in the following cases : 

1 

*=I  
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Value of s (or more)
128
256
512
1024
204S

Value of B (or less)
96
128
160
192
224
etc.

In paragraph 1, we have seen how to find a collision h(x) = h(y) for * = 256 and
B = 128 in 0(224) complexity. By using the same ideas, we will now see that, in 0(232)
complexity our algorithms will find a collision h(x) = h(y) in the following cases :

Value of 5 (or more)
128
256
512
1024
2048

Value of B (or less)
128
160
192
224
256
etc.

Example 1 : let s = 128 and B = 128

In this case the function h is not a real "hash"1 function since from integers of 128 bits, it
gives integers of about the same size. But the function is not collision free, even in this
case. In the diagram below we will see how to find an x and y such that h(x) = h(y) in
0(232) complexity.
We will not give details because this algorithm is similar with algorithm of paragraph 1.

Starting bits: 64

Steps 1.2

64

2 " ,

Step 3

Step 4

232

m2 : 32 bits

64 bits

Collision

Example 2 : let s = 256 and B = 160
We will not give the details because it is just the same algorithm but with one more stage.
The diagram is
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64 64 64 64 : Starting biu - m, : 32 bits 

232 

232 

- 64 bits I 
Collision 

With the same technique, by using two, three, etc. more stages and still about 2" 
operations we can solve the cases s = .512 and B = 192, or 5 = 1024 and B = 224, etc. 
And we obtained in this way the values given in this section before example 1 .  If we 
compare these values with the values given in [3], we see that, when 5 is given. we can 
obtain a collision on 32 extra bits. Or. when B is given. we can obtain a collision with a 
length of the Text which is twice as small. 

Note. It is not a surprise that to find a collision we need a length of the text twice 
as small. If x = y.: (that is to say i f  x is the concatenation of y and i )  then 

And (2) is similar to  the problem of finding collision on texts y and t twice as small as x. 
h ( z )  = b (1) H h ( y )  = b - h ( ~ )  (2). 

A general formula 
With the same technique by using e stages, with a t  most about 2" memories and in 2" 
operations, and with eventually one extra-stage with a reduction modulo c bits (all the 
others stages perform reductions modulo m bits), w e  will obtain these genera! properties : 

Number of starting bits : 2'(m + c) hits (or more). 
I t  invert h on : ( 1  + e ) m  + c bits (or less). 

0 It find collisions on : (2  + e ) m  + c bits (or less). 

With O(fZrn) time and a t  most a(?") memory. 

Example a. 
knapsack in 0(224) complexity. This is exactly what we did in paragraph 1. 

\Vith m = 24,c = 8,e  = 3, we can find a collision for the (25G,128) 

Example b. 
knapsack in 0(232) complexity. This is what we did in example 2 above. 

With rn = 32,c  = 0 , e  = 3, we can find a collision for the (256, 160) 
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4 Time-Memory trade off (for 3 or 4 stages)

All the algorithms given in [3] and in paragraphs 1, 2, 3 above have been designed in order
to minimize the time of computing. But the main practical problem of these algorithms
is the memory needed, and not the time needed. This is because to perform about 232

basic operations is faisable with modern computers quite easilly, but to find hundred of
Gigabytes of memory is still less easy.

However, we will see in this paragraph that all our algorithms can be modify in order
to use less memory, at the cost of a little more computing time. So it will be possible to
adapt the algorithm to the memory available.

Due to the lack of space, we will explain how to do this just in the cases with three of
four stages, because this is a very good number of stages for a lot of practical knapsacks.
However for others knapsacks less or more stages will be better. (For example if the
length of the text is appreciably more that the double of the length of the hash value,
more stages will be better).

We will denote by t and m two integers such that :
• the memory available is on the order of 2m .
• the time for computation available is on the order of 2'.

We will assume that - < m < t. And we will denote by c a parameter such that :

1/2 + c/2 < m and c > 0. Before going into details, we give the diagram of the steps :
The general diagram is :

Smiting bits: 4m+4c t+m+c(ifl m+c)
or 2m+2c 2 t + 2 c

l-w biu . m i+c bits

(Siep2) 2m 21 (Siep3)

I* U

(Slepl) .2' 2'.(Step 4)

L J
, t+m biu (to invert)

Or t+2m biu (collision).

(Step 5)

We now go through each step in more details.

Step 0 : We choose integers mi,mj,m3,m4 such that :
a) m1,mj,7n3,m< are pairwise coprime, and mj ~ 2C, m2 ~ 2m , 1713 2; 2'.
b) m4 ~ 2<+2m if we want a collision, or m4 ~ 2 l + m if we want to invert (i.e. to find

an 1 such that h(x) = b where b is given).

Step 1 : The aim of step 1 is to find, and store about 2m sequences of 4m + Ac bits
4m+4c

such that ]T] r,a, = 0[m,m2m3] in 0(2') time and 0(2m) memory.
1 = 1

Note. There are about 2< m + < c /2 '+ m + c ~ 23m~'+3c such solutions. Among these we want
only 2m such solutions, and this is in fact less or equal because m < 3m — t + 3c since
t < 2m and c > 0.
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For step 1, we proceed in 2'-" cases. Each of these 2'-" cases follows a diagram like 
that : 

m+c 

I 
Stmingbitr: m+c m+c 

chits-1 1 
p' , 2.7 

,2-m , 2.7 

m biu - - m bits 

22m-1 

So for each case 22m-t solutions are found. But all the solution of one case are distincts 
from the solutions of another case because for example in each case we found solutions 

such that z,ai I A[mlm2] where A is a parameter distinct in each cases. So in this 

step 1 we will find 2*-" x 22"'-t - - 2" solutions as claimed. And the total time for this 
step 1 in on the order of 2'-" x 2" = 2'. (Note that  the time for each reduction modulo 

c bits is about 2F+i 5 2" since c 5 m since c/2 5 m - - 5 -). And the total memory 
is on the  order of 2". 

2m+Zc 

i= l  

t m  
2 2  

Step 2 : The aim of step 2 is to  find, and store, about 2"' sequences of l = t + m + c bits 

(if t 2 m + c) or of e = 2 m  + 2c bits (if t 5 m + c )  such that q a ,  = O[mlms) in O(2') 

time and O(2") memory, where CY = 4m + 4c + 1 .  

I+o 

i=a 

Case 1 :  t > r n + c  
Then for step 2 we proceed in 2' cases. Each of these 2' cases follows a diagram like that : 

So we will found about 2' x 2"-' N 2" solutions as wanted. 

Note. Here we have 2" solutions for step 2 and we found all of them. The time on 
the right side was 2c x 2" = 2"'+' and this is 5 2' because here m + c 5 t .  So for step 
2 the total time is in O(2'). And the value 2'-c in the diagram is a number of sequences 
that are found one by one, and not stored. So the total memory is in O(2"). 
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Case 2 : t < m + c  
Then for step 2 we proceed in 2'-" cases. Each of these 2'-" cases follows a diagram like 
that : 

m+c m+c : S t ~ t i n g  bits 

chits -1 1 -chits '* t hits 

22m-1 

a+c 

Here we have about 22mt2c/2'+c = 22m+c-1 solutions such that  z;aj O[mlm~] and 
*=a 

with the diagram above we find 2'-" x 2*"-' = 2 
t 5 m + c here). 

such solutions. (rn 5 2m + c - t since 

Step 3 : The aim of step 3 is to  find, one by one, about 2' sequences of 2t + 2c hits such 

that [[rnlm3] in O(2') time and 0(2m) memory, where /3 = ! + a + 1 (P and 

o as in step 2) and where [ is a fixed and given value. For s tep 3 we proceed in 2'-" 
cases. Each of these 2'-" cases follows a diagram like that : 

P t 2 t t 2 c  

i=p 
ziai 

l+C : S ~ ~ f l i n p  bits 

__c m bits 

2m 

Note. Here, at the begining of this diagram, a t  least 2"z+c/z computations are done 
in each one of the 2'-" cases. So we want that  t / 2  + c / 2  + t - m 5 t ,  That  is to say : 
t/2 + c/2 5 m. And this was exactly a property given a t  the begining for our parameters. 

Step 4 and 5 : Each time a solution of step 3 is found, that  solution is combined 
with the solutions of steps 2 and 1, as shown in the general diagram. The  property of our 
algorithm (with 3 or 4 stages) is finally : 

Number of starting bits (or more) : 

It invert h on 
It find collision on 

3t + 5m + 7c  if t 2 m + c 
0 2 t + 6 r n + 8 c i f t L : r n f c  

2t + 2m + c bits (or less). 
2t + 3m + c bits (or less). 

With O(3') time. O(2") memory, and 1 2 rn 2 t / 2  + c/2. 
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Examples. 
E x a m p l e  1. With m = 32, t = 32. c = 0 we can invert the (25G, 128) knapsack. This 
was done in [3). But with m = 24 ,1  = 39, c = 2 we can solve the same problem with less 
memory (and a little more time). 
Example 2. With m = 48,t  =, 4S,c = 16, or with m = 42,t = 5 6 , ~  = IS, we can find 
a collision for the (512, 256) knapsack. (However here the algorithm still need a huge 
amount of time and memory). 

5 How to avoid these attacks 
In (41, I. Damgird gave a great theorem which shows that  if we can have a collision free 
hash function f from 256 to  128 bits (for example), then we can design a collision free 
hash function h from any size to  128 bits. And it will be  possible to  calculate h very 
quickly if we can calculate f very quickly. The Knapsack Hash function with s = 256 
and B = 128 is quick to calculate. Moreover for example on a 32 bit computer it seems 
that  it will b e  about 4 times slower than MD4. (MD4 is a concrete example of really used 
hash function, see [5] for details). Another problem of this Knapsack Hash function is 
that  it  requires an array of about 256 words of 120 bits for the numbers al, 1 5 i 5 256, 
(this is 3.75 Kbytes), and MD4 doesn’t need this. However the main problem, of course, 
is that  we have seen that this Knapsack Hash function is not collision free. But most of 
the  hash functions that are used today (as MD4, MD5 or SHS) do not have a very simple 
mathematical description. So, is it possible to  describe a candidate hash function which 
will be : 

1. Very quick to  calculate. 
2. Collision free. 
3. With a very simple mathematical description. 
4. With about 128 bits in output. 

In [6] ,  G. G m o r  suggested a candidate for points 1, 2, 3 above based on multiplication in 
the group G = SLZ(F,) of 2 x 2 matrices of determinant 1 over F,. 

However, in order to avoid some potential attacks, GI Z m o r  suggested to  take for p 
a prime of about 150 bits. So the hash value will be a hash of about 450 bits (instead of 
128 for MD4 for example). 

I t  is possible to suggest many different candidates (for example with modular multi- 
plication, but then the function will be  much slower than MD4). We will now give some 
example of functions obtained by modifying just a little the Knapsack Hash function. 
T h e  hash values of these functions will b e  128 bits long. However, in all the  examples 
below our functions (designed in order to  avoid the attacks of paragraphs 1-4) will not 
be collision free, due to other attacks. Nevertheless, we think that, from a theoretical 
point of view, it is very interesting to study simple mathematical hash functions, in order 
to  gain a better understanding of what makes such a function “collision free” and what 
doesn’t. 

E x a m p l e  1 

Let z be a plaintext of 256 binary symbols. Let h ( r )  = C z i u ;  be the (256,1283 Knapsack 

Hash function that we have studied in paragraph 1. Let I = (z;), 1 5 i 5 256,zi = 0 or 
1, and let g = (xi), 1 5 i 5 128 and z = ( x i ) ,  129 5 i 5 256. (SO I is the concatenation 
of y and z ) .  Then let H ( z )  = h ( z )  + I/ + 2. 

256 

i=1 
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Is H collision free ? In fact, we will see that H is not collision free. If 1 5 i 5 128, let 

h, = r i l+2I - ' .  Ant1 if 129 5 i 5 3.56, let h, = u,+2'- '2'.  Then H ( z )  = x x , b , ,  so His just 

another Knapsack like h. So H is not collision free as explained in [3] and in paragraph 
1. 

Example 2 
Let z, h ( s ) ,  y and z be as in example 1. l\'e now define an auxiliary function F that takes 
as input three 128-bit words and produces as output one 128-bit word : F ( X ,  Y, 2) = 

(In this formula X Y  denote the bit-wise AND of A' and Y, ;Y V Y denote the bit-wise 

Each bit position F acts as a conditional : i f  z then y else z. (In MD4 a similar 

256 

r = l  

Y X  v (1X)Z. 

OR of X and Y, and 1X denote the bit wise complement of X).  

function is used, but for 32 bit words). Finally, we define 

H ( r )  = JYh(z),Y,Z). 

Then H is just a slight variation of the Knapsack. The time needed to calculate H and 
h is about the same and all the attacks described for the Knapsack seem to be ineffective 
for H. However, this function is not collision free. In fact if y = z = b, then H ( z )  = b. 
So H is really easy to  invert ! 

Example 3 
Let 5 ,  h ( z ) ,  y, z and F be as in example 2. 
And let H ( z )  = F ( h ( z ) ,  y,  z) + h(z ) .  
This function H is defined in order to  avoid the attacks of paragraphs 1-4 and the attack 
of example 2. ( H  computes only additions except one single use of F in order to have a 
simple mathematical description and he quick to  calculate). 
However, H is not collision free. 
In fact, if y = 0 and z = 1, then H ( y z )  = 1. 
And more generally, if y = 0 then H ( 0 ,  z )  = h V z .  
So by chosen a z with only one zero, the probability that  H ( 0 ,  z )  = 1 = H ( 0 , l )  is about 
1/2. This property will give easily a collision. 
As all our three examples show it can be very dangerous to  add a n  extra composition of 
functions. It could be a good idea to  reuse the input t~ and z with h in order to  design 
an hash function H to avoid the attacks of paragraph 1-4, but this must be done very 
carefully. 

6 Conclusion 
\Ye have seen how t o  modify the algorithms described in [3] in order to find collisions 
with less memory, or in order to  find collisions for stronger Knapsack. For example, with 
about 512 Megabytes of memory (instead of about 12s Gigabytes) is it possible to find 
a collision for the (256,138) Knapsack. Or, in complexity 0(232) it is possible to  find a 
collision for the (128,12S) Knapsack. The technique is very efficient for various values of 
the Knapsack. Moreover it is possible to adapt the algorithms by using less memory if a 
little more computing time is allowed. Finally, we have study some slight modifications 
of the Knapsack in order to  avoid these attacks. Although these modifications did not 
avoid collisions we think that it is interesting to study simple mathematical candidate 
hash functions. 
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