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Abstract. We present a protocol that allows a sender to gradually and 
verifiably release a secret to a receiver. We argue that the protocol can 
be efficiently applied to exchange secrete in many cmw, for example 
when the secret is a digital signature. This includes Rabin, low-public- 
exponent RSA, and El Gamal signatures. In these cases, the protocol 
requires an interactive bpass initial phase, after which each bit (or block 
of bits) of the signature can be released non-interactively (i.e. by sending 
1 message). The necessary computations can be done in a few seconds 
on an uptedate PC. The protocol is statistical zersknowledge, and 
therefore releasea a negligible amount of aide information in the Shannon 
Benae to the receiver. The sender is unable to cheat, if he cannot factor 
a large compoaite number before the protocol is completed. 
We also point out a simple method by which any type of signatures can 
be applied to fair contract signing using only one signature. 

1 Introduction 

1.1 The Basic Problem 

Suppose partiea A and B each pcmsees a secret, BA and 8 8  reap. Suppose further 
that both secrets represent some value to the other party, and that they are 
therefore willing to "trade" the secrets against each other. For example, 8~ 

might be A's digital signature on a commitment to deliver some kind of service 
to 8,  while 8 8  could be a bank's signature on some digital cash. But if the 
parties do not trust each other, it is clear that none of them are willing to go 
first in releasing the secret - once one of them haa done this, he may never get 
anything in return. 

If the two secrets are represented aa bit strings of the same length, this can 
be solved by exchanging the secrets bit by bit; if this is done honestly, no party 
will be more than one bit ahead of the other; put another way: if at some point, 
A can compute 8~ in time T, then B can compute 8.4 in at most t h e  2T by 
guessing the bit he may be missing (this assumes, of course, that a bit of 8 8  telle 
A just aa much aa a bit of 8~ tells B - we'll get back to this problem in Section 

However, this "solution" haa created another problem: one party may have 
given away his secret, only to find in the final stage that in return he haa been 
given garbage instead of bits of a genuine secret. Hence what we need is a way to 
release the secrets in small parts, such that the receiver can werifv for each part 

2.2). 
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that he has been given correct information. The alternative, namely to assume 
a trusted third party, is not attractive and probably not very realistic either. 

Thus we can distill a basic primitive (introduced in [4]) which we will call 
gmdual and verifiable release of a secret, the intuitive meaning of which should be 
clear from the above. It should also be clear that a gradual and verifiable release 
protocol can be used to implement an exchange of secrets between any number 
of parties. In order for such an exchange to be fair, the secreta involved have to 
satisfy certain conditions (see Section 2.2 and 2.3). In addition, the concept of 
a release protocol makes sense in its own right, and might be useful for other 
purposes than implementing exchanges of secrets. 

1.2 Comparison with Earlier Work 

Exchange and release of secrets haa attracted a lot of attention in the past, and 
a large body of literature exists on the subject [4, 6,6,7,9,10, 16, 17, 18,19,20, 
22, 241. However, since the discovery of zero-knowledge prooh and arguments 
for any NP-language [3, 121, the problem has lost most of its theoretical interest 
because these techniques can be used to construct a release protocol that is as 
secure as the bit-commitment scheme used in the zero-knowledge proof. Thus 
exietence of any oneway function is a sufficient assumption to implement a 
secure gradual release. This is relatively trivial to see for methods that release 
specific bits of the secret, while more advanced methods are required to release 
probabilistic information, which can amount to less than 1 bit at a time, see for 
example [18,13]. It is even possible to make the choice of bits to release adaptive 
h7l. . .  

The resulting solutions would be very far from practical, however, and a so- 
lution that is both practical and provably secure does not seem to have appeared 
before. 

Before looking at the basic problem with earlier practical solutions, we have 
to point out a fundamental fact: the demand that the released parts of the 
secret be correct makes sense only if the secret is itself determined by some 
public piece of information. Otherwise, not even the secret itself can be verified. 
Typically, something like f(s) is public, where s is the secret and f is some 
one-way function. 

Earlier practical release protocols assume a priori that the secret is given in 
some particular form, e.g. a discrete log in [4], a factorization in [6]. However, 
when trying to apply such protocols, we are likely to find that the application 
dictates the way in which the secret is given, i.e. the particular one-way function 
f involved is determined by the application. For example, if we want to release an 
M A  signature on a given meeaage, f would be the function mapping a signature 
to the message it signs. Thus, if we wanted to use e.g. [4], we would have to 
make both f(s) and g' known, where g is chosen in some appropriate group. 
The problem is that this may releaee additional information about s, and so is 
very unlikely to lead to a provably secure scheme. 

The release protocol of this paper solves the problem by using a new tool - 
an unconditionally hiding bit commitment echeme that allows commitment to 
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a string of any length (but such that the commitment has constant length) and 
can be opened bit by bit. In addition, we present efficient protocols for checking 
that the contents of such a commitment has a particular form, for example that 
it is the Rabin, RSA or El Gamal signature on a given message. This leads to 
provably secure release protocols for such signatures. 

Since digital signatures are obvious candidates for representing value or com- 
mitments in practical applications, methods for releasing or exchanging such 
signatures seem to be of very strong practical relevance. 

1.3 Fair Exchange and Contract Signing 

Intuitively, a fair exchange of secrets protocol is one that avoids a situation 
where A can obtain B's secret, while B cannot obtain that of A. If there is no 
assumption made that third party intervention is possible, the best we can do is 
to guarantee that if one party stops the protocol early, both parties are left with 
roughly the same computational task in order to find the other party's secret. 
This is the model used in this paper. In Section 2.2, we will discuss to what 
extent such a fair exchange followe'from a gradual and verifiable releme. 

But in any case, it is clear that if for example A has much more powerful 
hardware than B the actual time A would need to find the secret in case of early 
stopping would be much smaller than for B. Depending on the application this 
may or may not be a problem. One example where this comes up is if we use 
exchange of secrets to implement fair contract signing. This is straightforward: 
A and B both sign the contract, and then exchange gradually their signatures. 
However, if the contract involve8 time related issues, such as a commitment 
taking effect at a certain date, the above "real-time" problem could be serious 
in case one party cheats. 

In [2] Ben-Or, Goldreich, Micali and Rivest show how to avoid this problem, 
if we assume that a judge is available to settle disputes. Moreover, their protocol 
can make use of any signature scheme. The difference to our work is first the 
assumption about the judge, and secondly that the protocol of [2] is a dedicated 
protocol for solving the contract signing problem: it does not implement an 
exchange or a relase of secrets. 

The protocol in [2] involves a certain computational overhead: the signature 
scheme must be employed a large humber of times by both parties. In Section 7 
we show that this overhead can be avoided. 

2 Basic Definitions 

This section gives some basic definitions and some connections between them. 
Although the model is certainly not the most general possible, it does describe 
appropriately the protocols we present in the following. In subsection 2.3 we 
argue that the model is in fact useful in many practical situations. 
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2.1 Release Protocols 

In this section we give a formal definition of a secure release protocol. Intuitively, 
we are modelling the situation, where party A has a secret 8, which he will release 
bit by bit to B who knows t ,  where (if A is honest) t , s  satisfy some predicate 
P. Typically, P will be satisfied if t is the image under some one-way function 
of a. At any point in the protocol, B should be able to compute some of the bits 
of 8 correctly, but not more, i.e. he should be in the same situation as if he had 
been given t and the bits of s by an oracle. 

We will think of the pair (A, B) as interactive Turing machines as defined 
in [ll]. In particular, both A and B will be polynomial time bounded in the 
input length, and are equipped with knowledge tapes containing their private 
inputs. In the following X will mean A or B. Following [ll], we let X denote 
a machine following the protocol specified for party X, while denotes-an 
arbitrary cheating participant playing the role of X. X will represent X or X. 

The properties of ( A , B )  will be defined with respect to a fixed polynomial 
time computable predicate P. P takes as input a k-bit string t and a bit string 
a of length at most f(k), where f is a polynomial. 

A receives as private input on its knowledge tape a string s of length at most 
f(E),  while the E-bit string t is common input to A and B. B receives the string 
kB on its knowledge tape. sli denotes the first i bits of a (sl0 is the empty string). 
The interesting cme is of course when P( t ,  a) = 1. 

The event that one party sends a message to the other is called a pass. Passes 
are numbered ordinarily, starting from 1. The protocol is required to define a 
series of increasing functions {pr}g1, where 

and where pk(f (E))  is polynomially bounded. The meaning of pk is that, for input 
length k, p k ( i )  is the index of the first pass after which B is able to compute sli. 
After each pass, the participant receiving a message may output "reject" and 
stop, indicating that cheating has been detected. We say that (A, B) completes 
paae i if no party outputs reject after paas i .  

As usual, the view of a participant is defined to be the ordered concatenation 
of the messages sent in the protocol, followed by the random bits read by the 
participant. This is denoted by Viewx(t,s ,rA, k~,rg), where r x  is the contents 
of the random tape of party X. Viewk(t ,  a, ?A,  k ~ ,  re) denotes party X's view 
of the truncated protocol where we only consider passes number 1 through i 
(note that this view may be shorter than i passes if the protocol stops earlier). 
In the following, Vtewg( ...) will always refer to a conversation with A, while 
ViewB( ...) will refer to a conversation with d. 

Finally, the protocol must define a set of polynomial time computable func- 
tions {hit L = l .m,i  = l..f(E)}, such that h', takes aa input a sample of 
Viet$(')(t, 8 ,  PA, bB , TB). As output , it produces an i-bit string. These func- 
tions should be used by B to compute the first i bits of the secret after paas 
p i ( ; )  is completed. An hf-value is said to be correct if there is a 1 of length at 
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most f(k) bits such that P ( t , z )  = 1 and zJi  = h',(VieuP,L(')(t ,s ,rA,kB,r~)).  
Otherwise it is incorrect. 

We can now give the following 

Definition 1 The pair (A, B) is called a secuw =lease protocol with reapect io  
P, { p k }  and { h i }  if the following three properties are satisfied: 

- hf-values computed on views of conversations between A and B are always 
correct. 

- VAVc3koVItI > k o V ~ , r A , k ~ V i  = l . . f (k)  : 

Prob(hf(Vie$(')(t, s , r ~ ,  k ~ , r ~ ) )  incorr. and ( A ,  B) completes pass p k ( i ) )  

5 k" 
The probability is taken over the choice of rB. 

- For each B, and for each i = O..f(k), there exists an expected polynomial 
time machine Mh, which on input bit strings 2 ,  t ,  kB and with random tape 
rM simulates B's view of the first p k ( i )  passes of the conversation with A. 
Let Mh(z,b, k ~ ,  r M )  denote ML's output, considered as a random variable 
with distribution taken over rM. 
We then require that for i = O...f(k), whenever t = slj for some s with 
P ( t , s )  = 1, then the distribution of Mh(x,t,k~,r~) is statistically indis- 
tinguishable from that of Vie<(i)(t,  d,  rA, kg , r g ) ,  where the distribution 
ie taken over rA and rB , and where sf is any string such that sf li = S l i  and 
P(t,s')  = 1. 

Remark 

- For simplicity, we only consider a bit by bit release in the above definition. 
The definition could trivially be generalized to talk about a releaee of a block 
of bits per pass. 

- We need a simulator for each i = O..k, because we want A to be protected, 
even if 6 stops bef'ye all bits are released. The beet we can do in euch a case 
is to require that B can compute only what he caa get from the information 
he is entitled to know at the given time. 

2.2 Exchange Protocols 

In this section, we shall discuss to what extent release protocols can be used to 
build fair exchange protocols. It is clear that if parties X and Y poesees secrets 
a x ,  B Y ,  resp., defined by (possibly) different predicates P, F, then if we have 
release protocols for these predicates as in Definition 1, it ie natural to try to 
exchange the secrets by interleaving the releaee of sx with that of BY.  

Consider now the question whether this exchange protocol is fair, where we 
think of fairnese as defined by Yao [24]: even a cheating Y (or, symmetrically, a 
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cheating X) cannot force a situation where it is feasible for him to find 8 x ,  but 
infeasible for X to find s y  . 

It ie clear from Definition 1 that the interleaving approach forces the parties 
to send correct bits of their secrets, and also that each party knows at each 
point only a prescribed number of bits of the opponent’s secret. Nevertheless, 
the exchange will not neceasarily be a fair one in general: it is possible that for 
example sx is uniquely determined already from the first half of its bits. If this is 
not the case for ey, then Y could gain an unfair advantage by quitting half way 
through the protocol, perhaps leaving X with only useless information about 
SY * 

The point is of course that the problem Y has to solve to find sx may be 
of a totally different nature than the one X is facing to find 8 y .  We therefore 
have to restrict to a set of ”nicer” cases, where it is possible to connect the 
two problems. A firat step in this direction is to require that SX, sy  are defined 
by the same predicate (i.e. P = P’), and that the corresponding public strings 
t x , t y  are drawn independently from the same distribution. This leads to the 
following definition of the exchange protocol induced by a release protocol: 

DeAnition 2 Let ( A ,  B) be a release protocol secure with respect to P, { p k }  
and { h i }  (we Definition 1). The following two-party protocol ( X , Y )  is called 
the erchange protocol induced by  ( A ,  B): 

X and Y receive two common inputs t x ,  t y  , both of length h bits and drawn 
independently from the same probability distribution X k .  X and Y get as private 
input sx resp. 8 y ,  such that P ( t x ,  S X )  = P ( t y ,  8x)  = 1. 

X simulates copies A x , B x  of A and B, giving s x , t x  as input to Ax and 
t y  as input to B x .  Correspondingly Y runs copies Ay , By on inputs 8 y , t y  and 
tx. X ,  Y will now for i = 1,2, ... execute pass i of (Ax,  B y )  followed by pass i 
of ( A y  , B x ) ,  until both protocols halt. 

Even an induced exchange protocol is not guaranteed to be fair if we do not 
know anything about the predicate P: it is possible that for a non-negligible 
fraction of the t’s, finding 8 ,  such that P(t,s) = 1 is much easier than for other 
t-values. If t x  happens to be such an easy case, Y is clearly in a better situation 
than X. What we need to  avoid this ie that the problem of finding 8 such that 
P(t ,s)  = 1 based on t and some bits of s is of about the same difficulty for 
nearly all choices o f t  under ?rk. One way of stating such ”uniform hardness” 
of a problem a little more precisely is to say that any algorithm that solves a 
non-negligble fraction of the instances of the problem can be turned into an 
algorithm that u r n  not much more time, and solves nearly all instances. 

With this assumption on P, we can say the following about the induced 
exchange: assume that some ? has a strategy for aborting the protocol at some 
stage and subsequently finding sx with some non-negligible probability. When 
the protocol is aborted, this leaves ? with t x  and, say, i bits of ax .  X is left with 
ty and i or i -  1 bits of sy . It follows from Definition 1 that from this information 
only, the views of X ,  resp. Y can be simulatewd. So except for perhaps 1 bit X 
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has to guess, this means that both parties are faced with samples of the same 
problem, drawn from the same distribution. By the above assumption on P, this 
implies that whatever method ? uses to find sx will also work for X to find s y ,  
and therefore the protocol is fair. 

Using the simulators guaranteed by Definition 1, one can formalize this rea- 
soning. In this paper, however, where we focus on practical protocols, we leave 
thia to the reader. In stead we concentrate on the question whether the types 
of secrets one might want to exchange in practice are likely to have a uniform 
hardness property as the one we have discussed. 

We have already discussed that digital signatures are interesting in this con- 
text. So as an example, assume that t specifies a message and an RSA public 
key, and that P(t,  8 )  = 1 precisely if s is a valid RSA signature on the message. 
With our current knowledge, we can only conjecture that this predicate has an 
appropriate uniform hardness property. Some evidence is known in favor of thia 
conjecture, however: from the multiplicative property of WA, it follows easily 
that if you can sign in poynomial time a polynomial fraction of the messages 
for some modulus, then you can sign all messages using that modulus in ex- 
pected polynomial time. Moreover the results of [l] give strong indications that 
something similar holds when some number of bits of s are given. 

Since El Gamal signatures are known to satisfy a similar property, we conjec- 
ture that at least the signature schemes we consider in this paper have uniform 
hardness sufficient to make induced exchange protocols fair when using these 
signatures. 

At this point one could perhaps complain that the assumptions made in 
the definition of induced exchange protocols are too demanding in practice, in 
particular the aesumption that t x  and t y  are identically distributed. What if 
Y could somehow manipulate the distribution of t x  and/or t y ,  presumably to 
make life easier for himself? However, if messages are hashed before they are 
signed - as is nearly always the case in practice - he is not likely to benefit 
from this: if the hash function used is strong, he will not be able to control the 
hash result and for example force t x  to be an easily signed haeh value (of which 
there are only very few). This is the same kind of reasoning that underlies the 
Fiat-Shamir signature scheme. 

In summary, we have argued that exchange protocols induced from release 
protocols are useful in many caws that are important in practice. As a side 
remark, it is also worth noting that more complicated exchange protocols that 
can deal with seemingly incompatible types of secrets typically work by choosing 
some auxiliary secret zu, make public some information connecting w and the 
actucal secrets, and then release w bit by bit, see e.g. [24]. Thus a bit-by-bit 
release aa defined here can also be useful BS a building block in other protocols. 

3 A Bit Commitment Scheme 

In this section, we define the bit commitment scheme we will use, and prove its 
basic properties. To set up the commitment scheme, B must generate and make 
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public a E-bit Blum integer N ,  and g, a random quadratic residue modulo N. 
Also, E must in zereknowledge prove that he knows the two prime factors of 
N [21], prove that they are both congruent to 3 modulo 4 [15], and that g is 
a quadratic residue [14]. The methods for doing this are well known and quite 
efficient, and in any case this step will only be neceseary once, at system start-up 
time. 

In this phase, either A acts as the verifier, or this role ia played by a trusted 
third party. The latter cme ie the most likely one in practice, aa setting up a 
large scale public key system nearly always require6 a certification authority 
that registers user8 and certifies the relation between identities and public keys 
(moduli). Such a center might as well act as the verifier in the above, and certify 
by a digital signature that N and g have been verified successfully. 

Let S Q ( N )  denote the subgroup of quadratic residues modulo N. Having 
established N and g, the partiee agree on a natural number 1. A can now commit 
to any integer B satisfying -2I-l < 8 < 2I-I by choosing R uniformly at random 
in S Q ( N )  and computing the commitment 

BC,(R,s)  := Ra'g'. 

This is called a baaeg commitment. A commitment is opened by revealing R 
and 8, which allowe B to verify the above equation. 

The commitment scheme is baaed on the hash functions from [8]. In faet, 
BC,(R,s) is precisely the hmh value of 8 computed with starting point R, using 
the factoring baaed hash function from [S]. The same type of function was used 
in [23] for the purpose of fail-stop signatures. 

The basic properties of this commitment scheme are established in the fol- 
lowing lemma: 

Lemma 1 EC,(R, 8 )  haa distribution independent of 8 ,  when R L a uniformly 
choeen square mod N. 
If A can open the same commitment using values R,8 ,  reap. R', s', where 8 # 8') 
then A can compute a square root modulo N of g .  

Proof The first statement is clear from the fact that squaring modulo a Blum- 
integer is a permutation, and that therefore a commitment ia always a uniformly 
chosen element in S Q ( N ) .  For the second statement, assume without loss of 
generality that 8' > 8 and write 8' - 8 = (2h + 1)d. Clearly j < 1. Then the 
equation 

implies that 

R2'g' = R'"g'' mod N 

(R/R')2'-J = gab+' mod N 

Actually, (151 only proves that N = prq', where r, s are odd and p, q are 3 modulo 
4. But even for such numbers, squaring is a permutation of the quadratic residues, 
and thia is the property we need. 



and therefore (R/R')a'-'-lg-h ie a square root of g o  

These properties of the function BC, were also used in [8]. The crucial prop- 
erty in thie context, however, is that these commitments can be opened gradually: 
given a commitment EC,(R,s) to a positive number 8, A can reveal the least 
significant bit b of 8 by revealing X such that 

Xa mod N = BC,(R,s) if b = 0 

g . X a m o d N =  B C # ( R , s ) i f b = l .  
and 

After this, X can be regarded as a commitment to s/2 (with 1 replaced by 
J - 1) and more bits of 6 can be opened. 

By essentially the same argument as in Lemma 1, it is easy to see that if A 
knows how to open in one step the entire value of s > 0, he cannot open single 
bits of 8 with values that are inconsistent, unless he can compute a square root 

It is also clear that the procedure for opening 1 bit can be easily generalized 

Since computing square roots of random numbers mod N is equivalent to 

of 9. 

to allow opening in one step of any number of the least significant bits of 8 .  

factoring N, we will need the following assumption on hardness of factoring: 

Factoring Assumption There exists a probabilistic polynomial time algorithm 
A which on input 1) outputs a k-bit Blum integer N, such that for any prob- 
abilistic polynomial size circuit families C, and any constant c, the probability 
that C factors N is at most k-", for all sufficiently large k. This probability is 
taken over the random choices of A and C. 

It should be noted that from a practical point of view, this assumption iS 
actually stronger than necessary for our protocol. What is  needed is that the 
sender A cannot factor N before the protocol halts. Even a polynomial time 
factoring algorithm may not help him to do this. 

4 Checking the Contents of Commitments 

When A sends a commitment as above, there is no reason a priori to believe 
that this represents anything useful: A may not even know how to open the 
commitment he sends. We will therefore need the following protocol, which is 
based on the proof system from [4], and allows us to check that A knows how to 
open a commitment, and furthermore that the opening will reveal a number in 
a given interval. 

We let the interval be I =]a ... b] and put e = b - a. We define I f e = 
]a - e...b + el. These parameters must be chosen such that I f e is contained in 
the legal range for openings of commitments ] - 2l-'...2'-'[. The protocol will 
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be secure for A - in fact statistical zero-knowledge - if he knows how to open a 
given commitment c = BC,(R,s) to reveal 8 E I. Moreover, it will convince B 
that a E If  e. 

PROTOCOL CHECK COMMITMENT 
Execute the following k times in parallel: 

1. A chooses t l  uniformly in ]O..e], and puts t2 = t l  - e .  He sends the unordered 

2. B requests to see one of the following 
pair of commitments 2'1 = BC,(Sl , t l ) ,T!  = BCO(S!,t3) to B .  

(a) opening of both 2'1 and 'Tz 

(b) opening of c * TI mod N, where A chooees i such that a + t i  E I .  
3. In the first case of step 2, B checks that both numbers opened are in ] - e..e], 

and that their difference is e. In the second caee, B checks that the number 
opened is in I. 

B outputs reject and stops if any of the openings are not correctly done, or 

The properties of this protocol are summarized in the following two lemmas: 
if any of the checks required are not satisfied. 

Lemma 2 Given correct answers to both a) and b) in one instance of steps 
1-3 above, one can efficiently compute a pair R,s such that 8 E I f e and 
c = BC,(R, 8 ) .  

Proof By assumption, we are given X ,  x, Y, y such that 

Ti = X2'gx  and c .Ti mod N = Y2'gv 

where z €1 - e..e], y E I. These two equations imply that we can write c in 
the form c = BC,(Y/X mod N ,  9 - x) so that the result follows from putting 
R =  Y / X  mod N and a = y -  x 0  

Lemma 3 Given the factorization of N, any B's view of CHECK COMMIT- 
MENT when talking to A can be simulated perfectly, provided A is given an S 

in I. 

Proof With the factorization of N, modular square roots are easy to compute, 
and so given a square Q, for any 8 ,  we can compute R, such that Q = BC,(R, 8 ) .  

Armed with this observation, the simulation is quite trivial: we simply generate 
all the unordered pairs TI, 2'2 aa random squares and send them to 8. If for a 
given pair, we get request a) from B, we choose t l ,  t o  as A would have done, and 
open T1,Ta accordingly. If we get request b), we choose i at random to be 1 or 
2, choose a random t E I, and open c - 3 to reveal 2. The simulation of c u e  b) 
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works since, in the real conversation, s+tr is always a uniformly chosen number 
in I, independently of s (provided s E I ) O  

A elight variant allows us to show that two commitments c,dcontain the . 
same number, even if the commitments use different bases, say g and h: 

PROTOCOL COMPARE COMMITMENTS 
Execute the following k timm in parallel: 

1. A chooses 11 uniformly in ]O..e], and puts t z  = t l  - e. He sends to B the un- 
ordered pair ((T1jTi), (TZ,Ti)), where each component of the pair is ordered 
and is defined by (ZIT,!) = (BC,(Sj,ti),BCh(S,I,ti)). 

(a) opening of (Z,q) for both i = 1 and 2. 
(b) opening of c.% mod N and c ' s q ,  where A chooses i such that s+li E I. 

3. In the firet case of step 2, B checks that opening Ti and q' has resulted in 
the same number, that both numbers opened are in ] - e.,e], and that their 
difference ie e. In the second c a e ,  B checks that opening c - mod N and 
c' - T,' reveals the same number, and that this number is in I. 

2. B requests to see one of the following 

B outputs reject and stops if any of the openings are not correctly done, or 

The following two lemmas give the basic properties of this protocol: 
if any of the checks required are not satisfied. 

Lemma 4 Given correct answers to both a) and b) in one instance of steps 1-3 
above, one can efficiently compute R, R', s such that s E Ife and c = BC,(R, s), 
C' = BCh(R',e). 

Proof Trivial from the proof of Lemma 2 0  

Lemma 5 Given the factorization of N, any B's view of COMPARE COM- 
MITMENTS when talking to A can be simulated perfectly, provided d is given 
ansinI. 

Proof Trivial from the proof of Lemma 30 

6 

We are now ready to present a complete protocol for release of a Rabin signature. 
The common input to the parties will be a modulua n and a message m €10 ... n[,  
while A's private input will be a number s in ]n..2n] such that s2 mod n = rn. 
Thus k will be 2ln1, where In1 is the bit length of n. For all commitments in the 
following, we will use 1 = 214 + 3. The protocol has the following etepe: 

Release of Rabin and RSA Signatures 
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PROTOCOL RELEASE RABIN SIGNATURE 

1. B chooses the parameters of the bit commitment scheme N,g. These are 
verified interxtively as explained in section 3. 

2. A sends to B the commitment h = BC,(R,s). 
A sends u = BCh(R',s) and w = BC,(R",d), where d is defined by s2 = 
m + dn. 
A opens (aa a basag commitment) the product gmwnu-l mod N to reveal 
a 0. Note that if h,v  are constructed correctly, then u = BC,(R'R',s2). 

3. A us- the CHECK COMMITMENT protocol with I =In - 1...4n - 11 to 
prove that he knows how to open w to reveal a value in ] - 2n - 1..7n - 11. 
A usea the COMPARE COMMITMENTS protocol with Z =In ... 2n] to prove 
that he knows how to open h and u to reveal the same value, and that this 
value is in ]O..Sn] 

4. A releases 8 bit by bit by opening h gradually aa explained in Section 3. B 
checks each opening he receives and rejects if the check fails. 

Note that in practice step 1 is only necessary once, and does not have to be 
repeated for every release. Nevertheless, we have included it here to make the 
formal proof easier. 

Note also, that all the actions in Step 2-3 can be parallelized, so that they 
take only 3 passes. The definition of p k  below will be done with respect to this 
organization of the messages. 

For this protocol, we define pk(m,n,s) = 1 if and only if s E]0..3n] and 
s2 mod n = m. Note that this predicate allows more than one possible s given 
m,n. This is no problem, however, because there are only 3 possible solutions 
for 8 given n,m, and from the first i bits of one solution, it is easy to compute 
the first i bite of any other solution. 

Assume step 1 takes a(k) passes. Then we define p r ( i )  = a(k) + 3 + i .  
The h', functions are defined as follows: if the input view is shorter than pk(i) 

p ~ ~ s e e ,  then output i 0's. Else output the i bits opened by A in the final i passes 
of the input view. 

We then have 

Theorem 1 Under the factoring assumption, (A, B )  is a secure release protocol 
with respect to the P, P k  and h', functions defined above. 

Proof The first property is trivial by inspection of the protocol. 
The proof of the second property is by contradiction. So assume that there 

exists an A, a constant c and l's of infinitely many lengths, such that there are 
inputs 8,  f A ,  kB that make the probability of the definition be larger than k-' 
for some i = 1.k .  

Let k be any input length for which the above holds, and assume that we are 
given a k-bit Blum-integer N chosen with the same distribution B would have 



21 2 

used. We now describe a poly-time non-uniform algorithm which factors N with 
probability at least a polynomial fraction, thus eatablishing a contradiction with 
the factoring assumption. 

We first choose a random element 2 modulo N, square it and call  the result g. 
We start up A with the inputs given by the assumption, and generate a random 
view of Steps 1 and 2. 

TO this end, we send N,g to A and simulate the proof of knowledge of the 
factorization of N and the proof that N is a Blum integer with A acting as the 
verifier. Since the proofs are almost perfect zero-knowledge, A's behavior in the 
sequel will have the same distribution as in "real life" , except for a negligible 
amount of probability mass. The proof that g is a square we can do according 
to the protocol aa we know a square root z. Note that since this proof is perfect 
Bereknowledge, it is in particular witness-indistinguishable, so since we will not 
use z in the sequel, any root of g that can later be derived from messages sent 
by A is independent of 2, and so leads to factorization of N with probability 

A view of Step 1-2 is called good, if it can be completed up to pass p,(i) 
with probability at least k-C/2, and the hi-value that can be computed from 
the completed view is incorrect. The ansumption implies that the probability 
of (A, 8)  completing pass p b ( i )  with an incorrect hf-value is at least k-'. This 
means that a random view of Step 1-2 is good with probability at least k'"/2. 

Below we show how to factor N with probability at least 1/2 minus a super- 
polynomially small fraction, assuming that the view of Step 1 we just created is 
good. By the above, this will be sufficient. 

By rewinding A to the start of Step 3 and iaeuiug randomly chosen requests, 
we try to find correct answers to both requests in the same instance of the 
CHECK COMMITMENT, resp. the COMPARE COMMITMENTS protocol. 
Since the probability of acceptance is at least k e C / 2 ,  we can do this in polynomial 
time and succeed with probability essentially 1. By Lemmas 2 and 4, this tells 
us how to open h and u with the same value 8,  and how to open w with some 
value d, where 8 €10 ... 3n] and d €1 - 2n - 1...7n - 11. This means that we can 
write v as a b e g  commitment to gal which is a legal way of opening v ,  since 
go < 2l-I. This in turn implies that we know how to legally open the number 
gmwnu-l mod N as a base-g commitment, namely as m + dn - sa. Since A has 
just told us how to open the same number as a 0, we get a factorization of N 
by Lemma 1 with probability 1/2 unless ea = m + dn, in other words, unless s 
is indeed a Rabin signature on m. 

We now use rewinding A to its state at the start of Step 3, to generate random 
views of the conversation, until we find one where paas p r ( i )  is completed, and 
the bits releeeed by A are incorrect. Once again, by the amumption, this can 
be done in polynomial time to succeed with probability essentially 1. But this 
means that we have two different ways of opening part of the contents of h, 
which by Lemma 1 gives us a factorization of N with probability 1/2. 

The third condition in Definition 1 is proved by first observing that Step 1 
contains a proof of knowledge of the factorization of N. Thus if B completes 

1/2. 
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Step 1 with probability more than a polynomial fraction, we can always find the 
factorization. Moreover, B cannot get a non-square accepted as g with probe 
bility more than 2-k. Thus we see that except for negligibly few cases, we can 
simulate the conversation perfectly by sending random squares in place of all 
commitments, and opening them as needed using our knowledge of the factor- 
ization of N. In particular, Step 3 ie simulated using Lemma 3 and 5, and Step 4 
is simulated using the input we are given, which tells us what the least eignificant 
i bits of s are0 

It is easy to Bee that this protocol can be modified to release for example 
an M A  signature with public exponent 3 by introducing a new commitment u, 
such that h = BC,(R, s), u = BC,,(R',s), and u = BC,(R", s), which will make 
u a base g commitment to s3. It is also clear, however, that thie quickly becomes 
impractical with increasing public exponents. 

6 Release of El Gamal Signatures 

In this eection we sketch how to release El Gmal  signatures. We first recall the 
usual setup of the El Gamal signature scheme: a k-bit prime p is chosen, together 
with a generator o of 2;. A private key t is a number in [O..p - 1[, while the 
corresponding public key is 1 = a" mod p ,  Measages are numbers in [O..p - 1[, 
and a signature on message m is a pair ( r , ~ )  such that 

am E J . r' mod p. 

For the owner of x, a signature is easy to compute by chooeing a random b 
relatively prime to p - 1, putting r = ok mod p and solving the equation m = 
zr+ke mod p- 1 for 8 .  It is conjectured that computing signatures from scratch 
is a aa hard as finding I from y. In the following, we aeeume that a really is a 
generator of 2;. In practice, this may be justified because p , o  WM generated 
by a trueted party, or because the factorization of p - 1 is made public, which 
makes it eaey to test a. 

The following is based on the observation that gradual release of a discrete 
log mod p is sufficient for relaee of an El Gamal signature. The idea is that we 
first reveal r and then release bit by bit 8 ,  which will be the discrete log base r of 
/3 = amp-' mod p. This reducee the problem to that of proving that the discrete 
log base r of P equals the contents of a baae-g commitment h = BC,(R,s) 
computed as in Section 3. 

We will assume that the prover (sender) A knows such a discrete log 8 in 
the interval I =J(p - 1)..2@ - l)]. Such an s can always be obtained from an El 
Gamal signature by adding p - 1 to the laat component. 

Using a technique similar to that of COMPARE COMMITMENTS, we get 
the following protocol, which will be a proof that A knows a suitable s in]0..3@- 
l)]. If A uses an s in I, the protocol will be eemknowledge. 
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PROTOCOL TRANSFER DISCRETE LOG 
Execute the following k times in parallel: 

1. A chooeen t l  uniformly in ]O..p- 11, and puts t 2  = t l  - (p- 1). He sends to 
B the unordered pair ((Tl,T'i), (T2 ,q) ) ,  where each component of the pair 
is ordered and is defined by (x,q) = (BC,(Si,ti),BC,(Sil,r*' mod p)). 

(a) opening of (q,T,!) for both i = 1 and 2. 
(b) opening of h . mod N and q!, where A chooses i such that 8 + t i  E I. 

3. In the first c w  of step 2, B checks that the number contained in Ti is the 
discrete log base r of the number contained in q!, and that this discrete 
log is in ] - (p - l). .p - 11. In the second case, B checks that the number 
contained in h 7'j mod N is the discrete log base r of pz mod p where z is 
the number contained in T:, and that the discrete log revealed is in I. 

2. B requests to see one of the following 

B outputs reject and stops if any of the openings are not correctly done, or if 
any of the checks required are not satisfied. The following two lemmas give the 
basic properties of this protocol: 

Lemma 6 Given correct answers to both a) and b) in one instance of steps 1-3 
above, one can efficiently compute either R, 8 such that 8 €10 ... 3(p - l)] and 
h = BC,(R, e), f l =  r' mod p; or a square root of g modulo N. 

Proof Note that A must open T',' in both case a) and b). If these openings are 
not consistent, we get a square root of g by Lemma 1. Otherwise, what we have 
from the correct answers is numbers u, U, v ,  V such that 

= BC,(U,u) h * = BC,(V, U) 

and s,Z such that 

q = BC,(Z, z )  and z = r" mod p, pz  = ru mod p. 

Furthermore, u E I and u €1 - (p - l)..(p - l)]. From this follows trivially that 
h = BC,( V/U, u - u) and that p = rU-" mod p 0  

Lemma 7 Given the factorization of N, any B's view of TRANSFER DIS- 
CRETE LOG when talking to A can be simulated perfectly, provided 8 E I. 

Proof Follows by trivial modifications of the proof of Lemma 30 

To define the parameters of the release protocol, we put k = IpI + 1, the bit 
length of p plus 1,  and we define the shared input to A and B to be p , a , p , r  
and rn, all of length lpl. The private input to A is a k bit string s. The predicate 
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P for this situation is defined such that P(p,a ,y ,r ,m,s)  = 1 if and only if 
am = yrr' mod p and B ~ ] O . . 3 ( p  - l)]. 

Note that with this definition of the shared input, we have implicitely as- 
sumed that the sender will make r known immediately at the start of the protc- 
col. This does not lead to a security problem, because the receiver could easily 
by himself simulate such an r by first finding a E such that ( k , p  - 1) = 1 and 
putting r = a'. For any such r there is an 8 E I such that (r, 8) eigns m. In 
other words, seeing r in the beginning does not help B to compute the signature 
ahead of time. 

In the complete release protocol, B will set up the bit commitment scheme, A 
will commit to 8 by sending h as computed above, use TRANSFER DISCRETE 
LOG to show that the commitment really contains the discrete log base r of P ,  
and will finally release B bit by bit as explained in Section 3. 

The hi and the pk functions are defined similarly to what was done in the 
previous section. 

Theorem 2 Under the factoring assumption, the protocol outlined above is a 
secure releaae protocol with respect to the P, hi and pk functions defined in this 
section. 

Proof Sketch The first property is trivial. The second one is proved in essen- 
tially the same way as for Theorem 1: since the TRANSFER DISCRETE LOG 
protocol is a proof of knowledge, we can use rewinding of A to compute an s 
that both opens h and satisfies r' mod p = p .  Thus 8 is by definition the correct 
secret. Therefore a view of the protocol that leads to an incorrect value must 
give us a way of opening h that is inconsistent with a ,  and therefore enables us 
to compute a root of g, and factor N with large probability. The third property 
follows easily from Lemma 7 and the fact that B is required to give a proof of 
knowledge of the factorization of No 

We remark that the same basic idea can also be used for release of signatures 
in other discrete log based schemes such aa NIST DSA and Schnorr's signature 
scheme. This is because these signatures, like El Gamal signatures, include a 
discrete logarithm that is hard to compute without knowledge of the secret key. 
Thus the sender can reveal all components of the signature except this discrete 
log, and release thia gradually using the above methods. 

7 Efficient Contract Signing 

As explained in the introduction, one possible application of exchange of signa- 
tures is to fair contract signing, 

However, under the assumption that intervention by a third party is possible, 
a different solution to contract signing was proposed in [2]. As pointed out there, 
that solution will sometimes be superior to simply exchanging signatures because 
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it will work, even if one party has much more computing power than the other, 
and because any signature scheme can be used. 

Very briefly, the solution works by having the parties first sign a message 
stating that they intend to use the protocol below to sign the contract C. We 
call this message M(C).  Signing M(C) commits neither party to C, but prevents 
them from claiming a different contents of C later. 

They then exchange signatures on messages of the form ”this signature on 
contract C should be considered valid with probability p”. Thie exchange is 
repeated with increasing values of p. When p reaches 1, the attached signature 
can be considered an ordinary signature on C. But if for example A stops early, 
B can appeal to a jugde, showing him the last signed message he received from 
A. Let PA be the pvalue used in this message. The judge then takes a biased 
random decision: if the signature is valid, then with probability PA,  he decides 
that the contract is binding for party A. This introduces some computational 
overhead, compared to simply signing the contract: a new signature is necessary 
each time we increase the pvalue. Moreover, the number of signatures needed 
increases with the ”granularity” with which the contract signing takes place. 

The purpose of this section is to point out that all but one of these sign& 
tures can be replaced by simple computatiom of a one-way function. With the 
techniques known in practice today, this will much more efficient. 

Our method makes uae of an arbitrary one-way function f .  Such a function 
always exists, if digital signatures do. Moreover, in practice, we have good candi- 
dates for one-way functions based on conventional cryptography that are much 
more efficient to compute than for example an RSA signature. 

The idea now is to let A and B initially each choose a list of f-inputs, al, ..., ut , 
reap. b l ,  ..., bt .  They then exchange the f-valuee f(aj),f(bi) for i = l.A, and all 
these values are included in M ( C ) ,  which is signed initially by both parties. 

In stead of exchanging signed messages with increasing pvalues, the partiea 
now exchange the f-preimages they have chosen, i.e. A starts by sending 01, 

waits to receive b l ,  if b1 is valid he then sends 0 2 ,  etc. The only other change 
needed in [2] is in the procedure of the judge: we fix a rule, stating what the 
biaa of his decision should be, as a function of how many valid preimages the 
complaining party can present to him. 

Since as mentioned, almost all known digital signature schema are much 
slower in practice than computing a conventional one-way function (such as 
MD4 for example), this protocol requires very little extra computational effort 
compared to simply signing the contract without being concerned about fairness. 
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