
Practical and Provably Secure Release of a
Secret and Exchange of Signatures

Ivan Bjerre Damgird

Aarhus University, Mathematical Institute

Abstract. We present a protocol that allows a sender to gradually and
verifiably release a secret to a receiver. We argue that the protocol can
be efficiently applied to exchange secrete in many cmw, for example
when the secret is a digital signature. This includes Rabin, low-public-
exponent RSA, and El Gamal signatures. In these cases, the protocol
requires an interactive bpass initial phase, after which each bit (or block
of bits) of the signature can be released non-interactively (i.e. by sending
1 message). The necessary computations can be done in a few seconds
on an uptedate PC. The protocol is statistical zersknowledge, and
therefore releasea a negligible amount of aide information in the Shannon
Benae to the receiver. The sender is unable to cheat, if he cannot factor
a large compoaite number before the protocol is completed.
We also point out a simple method by which any type of signatures can
be applied to fair contract signing using only one signature.

1 Introduction

1.1 The Basic Problem

Suppose partiea A and B each pcmsees a secret, BA and 8 8 reap. Suppose further
that both secrets represent some value to the other party, and that they are
therefore willing to "trade" the secrets against each other. For example, 8~

might be A's digital signature on a commitment to deliver some kind of service
to 8, while 8 8 could be a bank's signature on some digital cash. But if the
parties do not trust each other, it is clear that none of them are willing to go
first in releasing the secret - once one of them haa done this, he may never get
anything in return.

If the two secrets are represented aa bit strings of the same length, this can
be solved by exchanging the secrets bit by bit; if this is done honestly, no party
will be more than one bit ahead of the other; put another way: if at some point,
A can compute 8~ in time T, then B can compute 8.4 in at most t h e 2T by
guessing the bit he may be missing (this assumes, of course, that a bit of 8 8 telle
A just aa much aa a bit of 8~ tells B - we'll get back to this problem in Section

However, this "solution" haa created another problem: one party may have
given away his secret, only to find in the final stage that in return he haa been
given garbage instead of bits of a genuine secret. Hence what we need is a way to
release the secrets in small parts, such that the receiver can werifv for each part

2.2).

T. Helleseth (Ed.): Advances in Cryptology - EUROCRYPT '93, LNCS 765, pp. 200-217, 1994
0 Spnnger-Verlag Berlin Heidelberg 1994

201

that he has been given correct information. The alternative, namely to assume
a trusted third party, is not attractive and probably not very realistic either.

Thus we can distill a basic primitive (introduced in [4]) which we will call
gmdual and verifiable release of a secret, the intuitive meaning of which should be
clear from the above. It should also be clear that a gradual and verifiable release
protocol can be used to implement an exchange of secrets between any number
of parties. In order for such an exchange to be fair, the secreta involved have to
satisfy certain conditions (see Section 2.2 and 2.3). In addition, the concept of
a release protocol makes sense in its own right, and might be useful for other
purposes than implementing exchanges of secrets.

1.2 Comparison with Earlier Work

Exchange and release of secrets haa attracted a lot of attention in the past, and
a large body of literature exists on the subject [4, 6,6,7,9,10, 16, 17, 18,19,20,
22, 241. However, since the discovery of zero-knowledge prooh and arguments
for any NP-language [3, 121, the problem has lost most of its theoretical interest
because these techniques can be used to construct a release protocol that is as
secure as the bit-commitment scheme used in the zero-knowledge proof. Thus
exietence of any oneway function is a sufficient assumption to implement a
secure gradual release. This is relatively trivial to see for methods that release
specific bits of the secret, while more advanced methods are required to release
probabilistic information, which can amount to less than 1 bit at a time, see for
example [18,13]. It is even possible to make the choice of bits to release adaptive
h7l. . .

The resulting solutions would be very far from practical, however, and a so-
lution that is both practical and provably secure does not seem to have appeared
before.

Before looking at the basic problem with earlier practical solutions, we have
to point out a fundamental fact: the demand that the released parts of the
secret be correct makes sense only if the secret is itself determined by some
public piece of information. Otherwise, not even the secret itself can be verified.
Typically, something like f(s) is public, where s is the secret and f is some
one-way function.

Earlier practical release protocols assume a priori that the secret is given in
some particular form, e.g. a discrete log in [4], a factorization in [6]. However,
when trying to apply such protocols, we are likely to find that the application
dictates the way in which the secret is given, i.e. the particular one-way function
f involved is determined by the application. For example, if we want to release an
M A signature on a given meeaage, f would be the function mapping a signature
to the message it signs. Thus, if we wanted to use e.g. [4], we would have to
make both f(s) and g' known, where g is chosen in some appropriate group.
The problem is that this may releaee additional information about s, and so is
very unlikely to lead to a provably secure scheme.

The release protocol of this paper solves the problem by using a new tool -
an unconditionally hiding bit commitment echeme that allows commitment to

202

a string of any length (but such that the commitment has constant length) and
can be opened bit by bit. In addition, we present efficient protocols for checking
that the contents of such a commitment has a particular form, for example that
it is the Rabin, RSA or El Gamal signature on a given message. This leads to
provably secure release protocols for such signatures.

Since digital signatures are obvious candidates for representing value or com-
mitments in practical applications, methods for releasing or exchanging such
signatures seem to be of very strong practical relevance.

1.3 Fair Exchange and Contract Signing

Intuitively, a fair exchange of secrets protocol is one that avoids a situation
where A can obtain B's secret, while B cannot obtain that of A. If there is no
assumption made that third party intervention is possible, the best we can do is
to guarantee that if one party stops the protocol early, both parties are left with
roughly the same computational task in order to find the other party's secret.
This is the model used in this paper. In Section 2.2, we will discuss to what
extent such a fair exchange followe'from a gradual and verifiable releme.

But in any case, it is clear that if for example A has much more powerful
hardware than B the actual time A would need to find the secret in case of early
stopping would be much smaller than for B. Depending on the application this
may or may not be a problem. One example where this comes up is if we use
exchange of secrets to implement fair contract signing. This is straightforward:
A and B both sign the contract, and then exchange gradually their signatures.
However, if the contract involve8 time related issues, such as a commitment
taking effect at a certain date, the above "real-time" problem could be serious
in case one party cheats.

In [2] Ben-Or, Goldreich, Micali and Rivest show how to avoid this problem,
if we assume that a judge is available to settle disputes. Moreover, their protocol
can make use of any signature scheme. The difference to our work is first the
assumption about the judge, and secondly that the protocol of [2] is a dedicated
protocol for solving the contract signing problem: it does not implement an
exchange or a relase of secrets.

The protocol in [2] involves a certain computational overhead: the signature
scheme must be employed a large humber of times by both parties. In Section 7
we show that this overhead can be avoided.

2 Basic Definitions

This section gives some basic definitions and some connections between them.
Although the model is certainly not the most general possible, it does describe
appropriately the protocols we present in the following. In subsection 2.3 we
argue that the model is in fact useful in many practical situations.

203

2.1 Release Protocols

In this section we give a formal definition of a secure release protocol. Intuitively,
we are modelling the situation, where party A has a secret 8, which he will release
bit by bit to B who knows t , where (if A is honest) t , s satisfy some predicate
P. Typically, P will be satisfied if t is the image under some one-way function
of a. At any point in the protocol, B should be able to compute some of the bits
of 8 correctly, but not more, i.e. he should be in the same situation as if he had
been given t and the bits of s by an oracle.

We will think of the pair (A, B) as interactive Turing machines as defined
in [ll]. In particular, both A and B will be polynomial time bounded in the
input length, and are equipped with knowledge tapes containing their private
inputs. In the following X will mean A or B. Following [ll], we let X denote
a machine following the protocol specified for party X, while denotes-an
arbitrary cheating participant playing the role of X. X will represent X or X.

The properties of (A , B) will be defined with respect to a fixed polynomial
time computable predicate P. P takes as input a k-bit string t and a bit string
a of length at most f(k), where f is a polynomial.

A receives as private input on its knowledge tape a string s of length at most
f(E), while the E-bit string t is common input to A and B. B receives the string
kB on its knowledge tape. sli denotes the first i bits of a (sl0 is the empty string).
The interesting cme is of course when P(t , a) = 1.

The event that one party sends a message to the other is called a pass. Passes
are numbered ordinarily, starting from 1. The protocol is required to define a
series of increasing functions {pr}g1, where

and where pk(f (E)) is polynomially bounded. The meaning of pk is that, for input
length k, p k (i) is the index of the first pass after which B is able to compute sli.
After each pass, the participant receiving a message may output "reject" and
stop, indicating that cheating has been detected. We say that (A, B) completes
paae i if no party outputs reject after paas i .

As usual, the view of a participant is defined to be the ordered concatenation
of the messages sent in the protocol, followed by the random bits read by the
participant. This is denoted by Viewx(t,s ,rA, k~,rg), where r x is the contents
of the random tape of party X. Viewk(t , a, ?A, k ~ , re) denotes party X's view
of the truncated protocol where we only consider passes number 1 through i
(note that this view may be shorter than i passes if the protocol stops earlier).
In the following, Vtewg(...) will always refer to a conversation with A, while
ViewB(...) will refer to a conversation with d.

Finally, the protocol must define a set of polynomial time computable func-
tions {hit L = l .m,i = l..f(E)}, such that h', takes aa input a sample of
Viet$(')(t, 8 , PA, bB , TB). As output , it produces an i-bit string. These func-
tions should be used by B to compute the first i bits of the secret after paas
p i (;) is completed. An hf-value is said to be correct if there is a 1 of length at

204

most f(k) bits such that P (t , z) = 1 and zJi = h',(VieuP,L(')(t ,s ,rA,kB,r~)).
Otherwise it is incorrect.

We can now give the following

Definition 1 The pair (A, B) is called a secuw =lease protocol with reapect io
P, { p k } and { h i } if the following three properties are satisfied:

- hf-values computed on views of conversations between A and B are always
correct.

- VAVc3koVItI > k o V ~ , r A , k ~ V i = l . . f (k) :

Prob(hf(Vie$(')(t, s , r ~ , k ~ , r ~)) incorr. and (A , B) completes pass p k (i))

5 k"
The probability is taken over the choice of rB.

- For each B, and for each i = O..f(k), there exists an expected polynomial
time machine Mh, which on input bit strings 2 , t , kB and with random tape
rM simulates B's view of the first p k (i) passes of the conversation with A.
Let Mh(z,b, k ~ , r M) denote ML's output, considered as a random variable
with distribution taken over rM.
We then require that for i = O...f(k), whenever t = slj for some s with
P (t , s) = 1, then the distribution of Mh(x,t,k~,r~) is statistically indis-
tinguishable from that of Vie<(i)(t, d, rA, kg , r g) , where the distribution
ie taken over rA and rB , and where sf is any string such that sf li = S l i and
P(t,s') = 1.

Remark

- For simplicity, we only consider a bit by bit release in the above definition.
The definition could trivially be generalized to talk about a releaee of a block
of bits per pass.

- We need a simulator for each i = O..k, because we want A to be protected,
even if 6 stops bef'ye all bits are released. The beet we can do in euch a case
is to require that B can compute only what he caa get from the information
he is entitled to know at the given time.

2.2 Exchange Protocols

In this section, we shall discuss to what extent release protocols can be used to
build fair exchange protocols. It is clear that if parties X and Y poesees secrets
a x , B Y , resp., defined by (possibly) different predicates P, F, then if we have
release protocols for these predicates as in Definition 1, it ie natural to try to
exchange the secrets by interleaving the releaee of sx with that of BY.

Consider now the question whether this exchange protocol is fair, where we
think of fairnese as defined by Yao [24]: even a cheating Y (or, symmetrically, a

205

cheating X) cannot force a situation where it is feasible for him to find 8 x , but
infeasible for X to find s y .

It ie clear from Definition 1 that the interleaving approach forces the parties
to send correct bits of their secrets, and also that each party knows at each
point only a prescribed number of bits of the opponent’s secret. Nevertheless,
the exchange will not neceasarily be a fair one in general: it is possible that for
example sx is uniquely determined already from the first half of its bits. If this is
not the case for ey, then Y could gain an unfair advantage by quitting half way
through the protocol, perhaps leaving X with only useless information about
SY *

The point is of course that the problem Y has to solve to find sx may be
of a totally different nature than the one X is facing to find 8 y . We therefore
have to restrict to a set of ”nicer” cases, where it is possible to connect the
two problems. A firat step in this direction is to require that SX, sy are defined
by the same predicate (i.e. P = P’), and that the corresponding public strings
t x , t y are drawn independently from the same distribution. This leads to the
following definition of the exchange protocol induced by a release protocol:

DeAnition 2 Let (A , B) be a release protocol secure with respect to P, { p k }
and { h i } (we Definition 1). The following two-party protocol (X , Y) is called
the erchange protocol induced by (A , B):

X and Y receive two common inputs t x , t y , both of length h bits and drawn
independently from the same probability distribution X k . X and Y get as private
input sx resp. 8 y , such that P (t x , S X) = P (t y , 8x) = 1.

X simulates copies A x , B x of A and B, giving s x , t x as input to Ax and
t y as input to B x . Correspondingly Y runs copies Ay , By on inputs 8 y , t y and
tx. X , Y will now for i = 1,2, ... execute pass i of (Ax, B y) followed by pass i
of (A y , B x) , until both protocols halt.

Even an induced exchange protocol is not guaranteed to be fair if we do not
know anything about the predicate P: it is possible that for a non-negligible
fraction of the t’s, finding 8 , such that P(t,s) = 1 is much easier than for other
t-values. If t x happens to be such an easy case, Y is clearly in a better situation
than X. What we need to avoid this ie that the problem of finding 8 such that
P(t ,s) = 1 based on t and some bits of s is of about the same difficulty for
nearly all choices o f t under ?rk. One way of stating such ”uniform hardness”
of a problem a little more precisely is to say that any algorithm that solves a
non-negligble fraction of the instances of the problem can be turned into an
algorithm that u r n not much more time, and solves nearly all instances.

With this assumption on P, we can say the following about the induced
exchange: assume that some ? has a strategy for aborting the protocol at some
stage and subsequently finding sx with some non-negligible probability. When
the protocol is aborted, this leaves ? with t x and, say, i bits of ax . X is left with
ty and i or i - 1 bits of sy . It follows from Definition 1 that from this information
only, the views of X , resp. Y can be simulatewd. So except for perhaps 1 bit X

206

has to guess, this means that both parties are faced with samples of the same
problem, drawn from the same distribution. By the above assumption on P, this
implies that whatever method ? uses to find sx will also work for X to find s y ,
and therefore the protocol is fair.

Using the simulators guaranteed by Definition 1, one can formalize this rea-
soning. In this paper, however, where we focus on practical protocols, we leave
thia to the reader. In stead we concentrate on the question whether the types
of secrets one might want to exchange in practice are likely to have a uniform
hardness property as the one we have discussed.

We have already discussed that digital signatures are interesting in this con-
text. So as an example, assume that t specifies a message and an RSA public
key, and that P(t, 8) = 1 precisely if s is a valid RSA signature on the message.
With our current knowledge, we can only conjecture that this predicate has an
appropriate uniform hardness property. Some evidence is known in favor of thia
conjecture, however: from the multiplicative property of WA, it follows easily
that if you can sign in poynomial time a polynomial fraction of the messages
for some modulus, then you can sign all messages using that modulus in ex-
pected polynomial time. Moreover the results of [l] give strong indications that
something similar holds when some number of bits of s are given.

Since El Gamal signatures are known to satisfy a similar property, we conjec-
ture that at least the signature schemes we consider in this paper have uniform
hardness sufficient to make induced exchange protocols fair when using these
signatures.

At this point one could perhaps complain that the assumptions made in
the definition of induced exchange protocols are too demanding in practice, in
particular the aesumption that t x and t y are identically distributed. What if
Y could somehow manipulate the distribution of t x and/or t y , presumably to
make life easier for himself? However, if messages are hashed before they are
signed - as is nearly always the case in practice - he is not likely to benefit
from this: if the hash function used is strong, he will not be able to control the
hash result and for example force t x to be an easily signed haeh value (of which
there are only very few). This is the same kind of reasoning that underlies the
Fiat-Shamir signature scheme.

In summary, we have argued that exchange protocols induced from release
protocols are useful in many caws that are important in practice. As a side
remark, it is also worth noting that more complicated exchange protocols that
can deal with seemingly incompatible types of secrets typically work by choosing
some auxiliary secret zu, make public some information connecting w and the
actucal secrets, and then release w bit by bit, see e.g. [24]. Thus a bit-by-bit
release aa defined here can also be useful BS a building block in other protocols.

3 A Bit Commitment Scheme

In this section, we define the bit commitment scheme we will use, and prove its
basic properties. To set up the commitment scheme, B must generate and make

207

public a E-bit Blum integer N , and g, a random quadratic residue modulo N.
Also, E must in zereknowledge prove that he knows the two prime factors of
N [21], prove that they are both congruent to 3 modulo 4 [15], and that g is
a quadratic residue [14]. The methods for doing this are well known and quite
efficient, and in any case this step will only be neceseary once, at system start-up
time.

In this phase, either A acts as the verifier, or this role ia played by a trusted
third party. The latter cme ie the most likely one in practice, aa setting up a
large scale public key system nearly always require6 a certification authority
that registers user8 and certifies the relation between identities and public keys
(moduli). Such a center might as well act as the verifier in the above, and certify
by a digital signature that N and g have been verified successfully.

Let S Q (N) denote the subgroup of quadratic residues modulo N. Having
established N and g, the partiee agree on a natural number 1. A can now commit
to any integer B satisfying -2I-l < 8 < 2I-I by choosing R uniformly at random
in S Q (N) and computing the commitment

BC,(R,s) := Ra'g'.

This is called a baaeg commitment. A commitment is opened by revealing R
and 8, which allowe B to verify the above equation.

The commitment scheme is baaed on the hash functions from [8]. In faet,
BC,(R,s) is precisely the hmh value of 8 computed with starting point R, using
the factoring baaed hash function from [S]. The same type of function was used
in [23] for the purpose of fail-stop signatures.

The basic properties of this commitment scheme are established in the fol-
lowing lemma:

Lemma 1 EC,(R, 8) haa distribution independent of 8 , when R L a uniformly
choeen square mod N.
If A can open the same commitment using values R,8 , reap. R', s', where 8 # 8')
then A can compute a square root modulo N of g .

Proof The first statement is clear from the fact that squaring modulo a Blum-
integer is a permutation, and that therefore a commitment ia always a uniformly
chosen element in S Q (N) . For the second statement, assume without loss of
generality that 8' > 8 and write 8' - 8 = (2h + 1)d. Clearly j < 1. Then the
equation

implies that

R2'g' = R'"g'' mod N

(R/R')2'-J = gab+' mod N

Actually, (151 only proves that N = prq', where r, s are odd and p, q are 3 modulo
4. But even for such numbers, squaring is a permutation of the quadratic residues,
and thia is the property we need.

and therefore (R/R')a'-'-lg-h ie a square root of g o

These properties of the function BC, were also used in [8]. The crucial prop-
erty in thie context, however, is that these commitments can be opened gradually:
given a commitment EC,(R,s) to a positive number 8, A can reveal the least
significant bit b of 8 by revealing X such that

Xa mod N = BC,(R,s) if b = 0

g . X a m o d N = B C # (R , s) i f b = l .
and

After this, X can be regarded as a commitment to s/2 (with 1 replaced by
J - 1) and more bits of 6 can be opened.

By essentially the same argument as in Lemma 1, it is easy to see that if A
knows how to open in one step the entire value of s > 0, he cannot open single
bits of 8 with values that are inconsistent, unless he can compute a square root

It is also clear that the procedure for opening 1 bit can be easily generalized

Since computing square roots of random numbers mod N is equivalent to

of 9.

to allow opening in one step of any number of the least significant bits of 8 .

factoring N, we will need the following assumption on hardness of factoring:

Factoring Assumption There exists a probabilistic polynomial time algorithm
A which on input 1) outputs a k-bit Blum integer N, such that for any prob-
abilistic polynomial size circuit families C, and any constant c, the probability
that C factors N is at most k-", for all sufficiently large k. This probability is
taken over the random choices of A and C.

It should be noted that from a practical point of view, this assumption iS
actually stronger than necessary for our protocol. What is needed is that the
sender A cannot factor N before the protocol halts. Even a polynomial time
factoring algorithm may not help him to do this.

4 Checking the Contents of Commitments

When A sends a commitment as above, there is no reason a priori to believe
that this represents anything useful: A may not even know how to open the
commitment he sends. We will therefore need the following protocol, which is
based on the proof system from [4], and allows us to check that A knows how to
open a commitment, and furthermore that the opening will reveal a number in
a given interval.

We let the interval be I =]a ... b] and put e = b - a. We define I f e =
]a - e...b + el. These parameters must be chosen such that I f e is contained in
the legal range for openings of commitments] - 2l-'...2'-'[. The protocol will

209

be secure for A - in fact statistical zero-knowledge - if he knows how to open a
given commitment c = BC,(R,s) to reveal 8 E I. Moreover, it will convince B
that a E If e.

PROTOCOL CHECK COMMITMENT
Execute the following k times in parallel:

1. A chooses t l uniformly in]O..e], and puts t2 = t l - e . He sends the unordered

2. B requests to see one of the following
pair of commitments 2'1 = BC,(Sl , t l) ,T! = BCO(S!,t3) to B .

(a) opening of both 2'1 and 'Tz

(b) opening of c * TI mod N, where A chooees i such that a + t i E I .
3. In the first case of step 2, B checks that both numbers opened are in] - e..e],

and that their difference is e. In the second caee, B checks that the number
opened is in I.

B outputs reject and stops if any of the openings are not correctly done, or

The properties of this protocol are summarized in the following two lemmas:
if any of the checks required are not satisfied.

Lemma 2 Given correct answers to both a) and b) in one instance of steps
1-3 above, one can efficiently compute a pair R,s such that 8 E I f e and
c = BC,(R, 8) .

Proof By assumption, we are given X , x, Y, y such that

Ti = X2'gx and c .Ti mod N = Y2'gv

where z €1 - e..e], y E I. These two equations imply that we can write c in
the form c = BC,(Y/X mod N , 9 - x) so that the result follows from putting
R = Y / X mod N and a = y - x 0

Lemma 3 Given the factorization of N, any B's view of CHECK COMMIT-
MENT when talking to A can be simulated perfectly, provided A is given an S

in I.

Proof With the factorization of N, modular square roots are easy to compute,
and so given a square Q, for any 8 , we can compute R, such that Q = BC,(R, 8) .

Armed with this observation, the simulation is quite trivial: we simply generate
all the unordered pairs TI, 2'2 aa random squares and send them to 8. If for a
given pair, we get request a) from B, we choose t l , t o as A would have done, and
open T1,Ta accordingly. If we get request b), we choose i at random to be 1 or
2, choose a random t E I, and open c - 3 to reveal 2. The simulation of c u e b)

210

works since, in the real conversation, s+tr is always a uniformly chosen number
in I, independently of s (provided s E I) O

A elight variant allows us to show that two commitments c,dcontain the .
same number, even if the commitments use different bases, say g and h:

PROTOCOL COMPARE COMMITMENTS
Execute the following k timm in parallel:

1. A chooses 11 uniformly in]O..e], and puts t z = t l - e. He sends to B the un-
ordered pair ((T1jTi), (TZ,Ti)), where each component of the pair is ordered
and is defined by (ZIT,!) = (BC,(Sj,ti),BCh(S,I,ti)).

(a) opening of (Z,q) for both i = 1 and 2.
(b) opening of c.% mod N and c ' s q , where A chooses i such that s+li E I.

3. In the firet case of step 2, B checks that opening Ti and q' has resulted in
the same number, that both numbers opened are in] - e.,e], and that their
difference ie e. In the second c a e , B checks that opening c - mod N and
c' - T,' reveals the same number, and that this number is in I.

2. B requests to see one of the following

B outputs reject and stops if any of the openings are not correctly done, or

The following two lemmas give the basic properties of this protocol:
if any of the checks required are not satisfied.

Lemma 4 Given correct answers to both a) and b) in one instance of steps 1-3
above, one can efficiently compute R, R', s such that s E Ife and c = BC,(R, s),
C' = BCh(R',e).

Proof Trivial from the proof of Lemma 2 0

Lemma 5 Given the factorization of N, any B's view of COMPARE COM-
MITMENTS when talking to A can be simulated perfectly, provided d is given
ansinI.

Proof Trivial from the proof of Lemma 30

6

We are now ready to present a complete protocol for release of a Rabin signature.
The common input to the parties will be a modulua n and a message m €10 ... n[,
while A's private input will be a number s in]n..2n] such that s2 mod n = rn.
Thus k will be 2ln1, where In1 is the bit length of n. For all commitments in the
following, we will use 1 = 214 + 3. The protocol has the following etepe:

Release of Rabin and RSA Signatures

21 1

PROTOCOL RELEASE RABIN SIGNATURE

1. B chooses the parameters of the bit commitment scheme N,g. These are
verified interxtively as explained in section 3.

2. A sends to B the commitment h = BC,(R,s).
A sends u = BCh(R',s) and w = BC,(R",d), where d is defined by s2 =
m + dn.
A opens (aa a basag commitment) the product gmwnu-l mod N to reveal
a 0. Note that if h,v are constructed correctly, then u = BC,(R'R',s2).

3. A us- the CHECK COMMITMENT protocol with I =In - 1...4n - 11 to
prove that he knows how to open w to reveal a value in] - 2n - 1..7n - 11.
A usea the COMPARE COMMITMENTS protocol with Z =In ... 2n] to prove
that he knows how to open h and u to reveal the same value, and that this
value is in]O..Sn]

4. A releases 8 bit by bit by opening h gradually aa explained in Section 3. B
checks each opening he receives and rejects if the check fails.

Note that in practice step 1 is only necessary once, and does not have to be
repeated for every release. Nevertheless, we have included it here to make the
formal proof easier.

Note also, that all the actions in Step 2-3 can be parallelized, so that they
take only 3 passes. The definition of p k below will be done with respect to this
organization of the messages.

For this protocol, we define pk(m,n,s) = 1 if and only if s E]0..3n] and
s2 mod n = m. Note that this predicate allows more than one possible s given
m,n. This is no problem, however, because there are only 3 possible solutions
for 8 given n,m, and from the first i bits of one solution, it is easy to compute
the first i bite of any other solution.

Assume step 1 takes a(k) passes. Then we define p r (i) = a(k) + 3 + i .
The h', functions are defined as follows: if the input view is shorter than pk(i)

p ~ ~ s e e , then output i 0's. Else output the i bits opened by A in the final i passes
of the input view.

We then have

Theorem 1 Under the factoring assumption, (A, B) is a secure release protocol
with respect to the P, P k and h', functions defined above.

Proof The first property is trivial by inspection of the protocol.
The proof of the second property is by contradiction. So assume that there

exists an A, a constant c and l's of infinitely many lengths, such that there are
inputs 8, f A , kB that make the probability of the definition be larger than k-'
for some i = 1.k .

Let k be any input length for which the above holds, and assume that we are
given a k-bit Blum-integer N chosen with the same distribution B would have

21 2

used. We now describe a poly-time non-uniform algorithm which factors N with
probability at least a polynomial fraction, thus eatablishing a contradiction with
the factoring assumption.

We first choose a random element 2 modulo N, square it and call the result g.
We start up A with the inputs given by the assumption, and generate a random
view of Steps 1 and 2.

TO this end, we send N,g to A and simulate the proof of knowledge of the
factorization of N and the proof that N is a Blum integer with A acting as the
verifier. Since the proofs are almost perfect zero-knowledge, A's behavior in the
sequel will have the same distribution as in "real life" , except for a negligible
amount of probability mass. The proof that g is a square we can do according
to the protocol aa we know a square root z. Note that since this proof is perfect
Bereknowledge, it is in particular witness-indistinguishable, so since we will not
use z in the sequel, any root of g that can later be derived from messages sent
by A is independent of 2, and so leads to factorization of N with probability

A view of Step 1-2 is called good, if it can be completed up to pass p,(i)
with probability at least k-C/2, and the hi-value that can be computed from
the completed view is incorrect. The ansumption implies that the probability
of (A, 8) completing pass p b (i) with an incorrect hf-value is at least k-'. This
means that a random view of Step 1-2 is good with probability at least k'"/2.

Below we show how to factor N with probability at least 1/2 minus a super-
polynomially small fraction, assuming that the view of Step 1 we just created is
good. By the above, this will be sufficient.

By rewinding A to the start of Step 3 and iaeuiug randomly chosen requests,
we try to find correct answers to both requests in the same instance of the
CHECK COMMITMENT, resp. the COMPARE COMMITMENTS protocol.
Since the probability of acceptance is at least k e C / 2 , we can do this in polynomial
time and succeed with probability essentially 1. By Lemmas 2 and 4, this tells
us how to open h and u with the same value 8, and how to open w with some
value d, where 8 €10 ... 3n] and d €1 - 2n - 1...7n - 11. This means that we can
write v as a b e g commitment to gal which is a legal way of opening v , since
go < 2l-I. This in turn implies that we know how to legally open the number
gmwnu-l mod N as a base-g commitment, namely as m + dn - sa. Since A has
just told us how to open the same number as a 0, we get a factorization of N
by Lemma 1 with probability 1/2 unless ea = m + dn, in other words, unless s
is indeed a Rabin signature on m.

We now use rewinding A to its state at the start of Step 3, to generate random
views of the conversation, until we find one where paas p r (i) is completed, and
the bits releeeed by A are incorrect. Once again, by the amumption, this can
be done in polynomial time to succeed with probability essentially 1. But this
means that we have two different ways of opening part of the contents of h,
which by Lemma 1 gives us a factorization of N with probability 1/2.

The third condition in Definition 1 is proved by first observing that Step 1
contains a proof of knowledge of the factorization of N. Thus if B completes

1/2.

213

Step 1 with probability more than a polynomial fraction, we can always find the
factorization. Moreover, B cannot get a non-square accepted as g with probe
bility more than 2-k. Thus we see that except for negligibly few cases, we can
simulate the conversation perfectly by sending random squares in place of all
commitments, and opening them as needed using our knowledge of the factor-
ization of N. In particular, Step 3 ie simulated using Lemma 3 and 5, and Step 4
is simulated using the input we are given, which tells us what the least eignificant
i bits of s are0

It is easy to Bee that this protocol can be modified to release for example
an M A signature with public exponent 3 by introducing a new commitment u,
such that h = BC,(R, s), u = BC,,(R',s), and u = BC,(R", s), which will make
u a base g commitment to s3. It is also clear, however, that thie quickly becomes
impractical with increasing public exponents.

6 Release of El Gamal Signatures

In this eection we sketch how to release El Gmal signatures. We first recall the
usual setup of the El Gamal signature scheme: a k-bit prime p is chosen, together
with a generator o of 2;. A private key t is a number in [O..p - 1[, while the
corresponding public key is 1 = a" mod p , Measages are numbers in [O..p - 1[,
and a signature on message m is a pair (r , ~) such that

am E J . r' mod p.

For the owner of x, a signature is easy to compute by chooeing a random b
relatively prime to p - 1, putting r = ok mod p and solving the equation m =
zr+ke mod p- 1 for 8 . It is conjectured that computing signatures from scratch
is a aa hard as finding I from y. In the following, we aeeume that a really is a
generator of 2;. In practice, this may be justified because p , o WM generated
by a trueted party, or because the factorization of p - 1 is made public, which
makes it eaey to test a.

The following is based on the observation that gradual release of a discrete
log mod p is sufficient for relaee of an El Gamal signature. The idea is that we
first reveal r and then release bit by bit 8 , which will be the discrete log base r of
/3 = amp-' mod p. This reducee the problem to that of proving that the discrete
log base r of P equals the contents of a baae-g commitment h = BC,(R,s)
computed as in Section 3.

We will assume that the prover (sender) A knows such a discrete log 8 in
the interval I =J(p - 1)..2@ - l)]. Such an s can always be obtained from an El
Gamal signature by adding p - 1 to the laat component.

Using a technique similar to that of COMPARE COMMITMENTS, we get
the following protocol, which will be a proof that A knows a suitable s in]0..3@-
l)]. If A uses an s in I, the protocol will be eemknowledge.

21 4

PROTOCOL TRANSFER DISCRETE LOG
Execute the following k times in parallel:

1. A chooeen t l uniformly in]O..p- 11, and puts t 2 = t l - (p- 1). He sends to
B the unordered pair ((Tl,T'i), (T2 ,q)) , where each component of the pair
is ordered and is defined by (x,q) = (BC,(Si,ti),BC,(Sil,r*' mod p)).

(a) opening of (q,T,!) for both i = 1 and 2.
(b) opening of h . mod N and q!, where A chooses i such that 8 + t i E I.

3. In the first c w of step 2, B checks that the number contained in Ti is the
discrete log base r of the number contained in q!, and that this discrete
log is in] - (p - l). .p - 11. In the second case, B checks that the number
contained in h 7'j mod N is the discrete log base r of pz mod p where z is
the number contained in T:, and that the discrete log revealed is in I.

2. B requests to see one of the following

B outputs reject and stops if any of the openings are not correctly done, or if
any of the checks required are not satisfied. The following two lemmas give the
basic properties of this protocol:

Lemma 6 Given correct answers to both a) and b) in one instance of steps 1-3
above, one can efficiently compute either R, 8 such that 8 €10 ... 3(p - l)] and
h = BC,(R, e), f l = r' mod p; or a square root of g modulo N.

Proof Note that A must open T',' in both case a) and b). If these openings are
not consistent, we get a square root of g by Lemma 1. Otherwise, what we have
from the correct answers is numbers u, U, v , V such that

= BC,(U,u) h * = BC,(V, U)

and s,Z such that

q = BC,(Z, z) and z = r" mod p, pz = ru mod p.

Furthermore, u E I and u €1 - (p - l)..(p - l)]. From this follows trivially that
h = BC,(V/U, u - u) and that p = rU-" mod p 0

Lemma 7 Given the factorization of N, any B's view of TRANSFER DIS-
CRETE LOG when talking to A can be simulated perfectly, provided 8 E I.

Proof Follows by trivial modifications of the proof of Lemma 30

To define the parameters of the release protocol, we put k = IpI + 1, the bit
length of p plus 1, and we define the shared input to A and B to be p , a , p , r
and rn, all of length lpl. The private input to A is a k bit string s. The predicate

21 5

P for this situation is defined such that P(p,a ,y ,r ,m,s) = 1 if and only if
am = yrr' mod p and B ~] O . . 3 (p - l)].

Note that with this definition of the shared input, we have implicitely as-
sumed that the sender will make r known immediately at the start of the protc-
col. This does not lead to a security problem, because the receiver could easily
by himself simulate such an r by first finding a E such that (k , p - 1) = 1 and
putting r = a'. For any such r there is an 8 E I such that (r, 8) eigns m. In
other words, seeing r in the beginning does not help B to compute the signature
ahead of time.

In the complete release protocol, B will set up the bit commitment scheme, A
will commit to 8 by sending h as computed above, use TRANSFER DISCRETE
LOG to show that the commitment really contains the discrete log base r of P ,
and will finally release B bit by bit as explained in Section 3.

The hi and the pk functions are defined similarly to what was done in the
previous section.

Theorem 2 Under the factoring assumption, the protocol outlined above is a
secure releaae protocol with respect to the P, hi and pk functions defined in this
section.

Proof Sketch The first property is trivial. The second one is proved in essen-
tially the same way as for Theorem 1: since the TRANSFER DISCRETE LOG
protocol is a proof of knowledge, we can use rewinding of A to compute an s
that both opens h and satisfies r' mod p = p . Thus 8 is by definition the correct
secret. Therefore a view of the protocol that leads to an incorrect value must
give us a way of opening h that is inconsistent with a , and therefore enables us
to compute a root of g, and factor N with large probability. The third property
follows easily from Lemma 7 and the fact that B is required to give a proof of
knowledge of the factorization of No

We remark that the same basic idea can also be used for release of signatures
in other discrete log based schemes such aa NIST DSA and Schnorr's signature
scheme. This is because these signatures, like El Gamal signatures, include a
discrete logarithm that is hard to compute without knowledge of the secret key.
Thus the sender can reveal all components of the signature except this discrete
log, and release thia gradually using the above methods.

7 Efficient Contract Signing

As explained in the introduction, one possible application of exchange of signa-
tures is to fair contract signing,

However, under the assumption that intervention by a third party is possible,
a different solution to contract signing was proposed in [2]. As pointed out there,
that solution will sometimes be superior to simply exchanging signatures because

21 6

it will work, even if one party has much more computing power than the other,
and because any signature scheme can be used.

Very briefly, the solution works by having the parties first sign a message
stating that they intend to use the protocol below to sign the contract C. We
call this message M(C). Signing M(C) commits neither party to C, but prevents
them from claiming a different contents of C later.

They then exchange signatures on messages of the form ”this signature on
contract C should be considered valid with probability p”. Thie exchange is
repeated with increasing values of p. When p reaches 1, the attached signature
can be considered an ordinary signature on C. But if for example A stops early,
B can appeal to a jugde, showing him the last signed message he received from
A. Let PA be the pvalue used in this message. The judge then takes a biased
random decision: if the signature is valid, then with probability PA, he decides
that the contract is binding for party A. This introduces some computational
overhead, compared to simply signing the contract: a new signature is necessary
each time we increase the pvalue. Moreover, the number of signatures needed
increases with the ”granularity” with which the contract signing takes place.

The purpose of this section is to point out that all but one of these sign&
tures can be replaced by simple computatiom of a one-way function. With the
techniques known in practice today, this will much more efficient.

Our method makes uae of an arbitrary one-way function f . Such a function
always exists, if digital signatures do. Moreover, in practice, we have good candi-
dates for one-way functions based on conventional cryptography that are much
more efficient to compute than for example an RSA signature.

The idea now is to let A and B initially each choose a list of f-inputs, al, ..., ut ,
reap. b l , ..., bt . They then exchange the f-valuee f(aj),f(bi) for i = l.A, and all
these values are included in M (C) , which is signed initially by both parties.

In stead of exchanging signed messages with increasing pvalues, the partiea
now exchange the f-preimages they have chosen, i.e. A starts by sending 01,

waits to receive b l , if b1 is valid he then sends 0 2 , etc. The only other change
needed in [2] is in the procedure of the judge: we fix a rule, stating what the
biaa of his decision should be, as a function of how many valid preimages the
complaining party can present to him.

Since as mentioned, almost all known digital signature schema are much
slower in practice than computing a conventional one-way function (such as
MD4 for example), this protocol requires very little extra computational effort
compared to simply signing the contract without being concerned about fairness.

References

1. Alcxi,W., Chor, B., Goldreich, 0. and Schnorr, C.P.: “RSA and Rabin Functions:
Certain Parts Are as Hard as the Whole”. Proc. of the 25th FOCS, 1984, pp.
449-457.

2. Ben-Or, Goldreich, M i d and Rivest: A Fair Protocol for Signing C O ~ ~ M C ~ , IEEE
Trans. Info. Theory, Vo1.36, 1‘990, pp.40-46.

21 7

3. G.Brassard, D.Chaum and C.Cr6peau: Minimum Disclosure Pmfs of Knowledge,
JCSS.

4. Brickell, Chaum, Damgkd and van de G r a d Gradual and Verifiable Release of a
Secret, Proc. of Crypto 87, Lecture Notes in Computer Science, Springer Verlag.

5. Blum: Thne Applicotions of the Oblivious h n s f e r , Dept. of EECS, University of
California, Berkely, 1981.

6. Blum: How to Exchange (Secret) Keys, ACM Tkansactions on Computer Systems,
vol.1, 1983, pp.175-193.

7. Cleve: Controlled Gmdual Disclosure Schemes for Random Bits and Their Appli-
cations, Proc. of Crypto 89, Lecture Notes in Computer Science, Springer Verlag.

8. I.Damg&rd Collbion h e Horh hnctionr and PuMic Key Signoture Schemes,
Proc. of EuroCrypt 87, Lecture Notea in Computer Science, Springer Verlag.

9. Even, Goldreich and Lempel: A Randomized Protocol for Signing Contmcta, Pro-
ceedings of Crypto 82, Plenum Press.

10. Even and Jacobi: Relationr Among Public Key Signature Systems, Comp. Sci.
Dept., Technion, Haifa Israel, March 1980.

11. U.Feige, A.Fiat and A.Shsmir: Zero-Knowledge Proofa of Identity, J.Crypt. Voll,
no.2, 1988.

12. O.Goldreich, S.Micali and A.Wigdereon: Proof that Yield Nothing but their Validity
and a Methodology of Cryptographic Protocol Design, Proc. of FOCS 86.

13. S.Goldwaoser and L.Levin: Fair Computation of Geneml Functions in Presence of
I m m o d Majority, Proc. of Crypto 90, Spinger Verlag LNCS series.

14. S.Goldwasser, S.Micali and C.Rackofk The Knowledge Complexity of Intemctive
Proof Systems, SIAM J.Computing, Vo1.18, pp.186-208, 1989.

15. J. van de G r a d and R.Peralta: A simple and Secure Way to Show the Validity of
your Public Key, Proc. of Crypt0 87, Lecture Notes in Computer Science, Springer
Verlag.

16. Hbtad and Shamir: The Cryptogmphic Security of Truncated Linearly Related
variables, Proc. of the ACM Sympoeion on the Theory of Computing, 1983, pp.356-
363. L

17. Impagliamo and Yung: Direct Minimum Knowledge Computations, Proc. of Crypt0
87, Lecture Notea in Computer Science, Springer Verlag.

18. Luby, Micali and Rackoff: How to Simultaneously Exchange a Secret Bit by Flipping
a SymmetrimllpBiored Coin, Proc. of the IEEE conference of the Foundations Of
Computer Science 1983.

19. Rsbin: How to Ezchange Secrets by Oblivious Tronsfer, Tech, Memo, TR-81, Aiken
Comp. Lab., Harward University, 1981.

20. Tedrick: Fair Exchange of Secrets, Proc. of Crypto 84, pp.434438, Lecture Notes
in Computer Science, Springer Verlag.

21. M.Tompa and H.Woll: Random Self-Reducibility and Zero-Knowledge Proofs of
Information Poasersion, Proc. of FOCS 87.

22. Vazirad and VatirSni: Il).opdoor Preudomndom Number Generators With Appli-
catioru to Cryptographic Protocol Derign, Proc. of the IEEE conference on the
Foundations Of Computer Science 1983, pp.23-30.

23. M.Waidner, B.Pfitrmann: The Dining Cryptographera at the Dirco: Unconditional
Sender and Recipient Untmceability with Computational Secure Senn'cability, Proc.
of EuroCrypt 89, Lecture Notes in Computer Science, Springer Verlag.

24. Yao: How to Generate and Exchange Secrets, Proc. of the IEEE conference on the
Foundations Of Computer Science 1986.

	Practical and Provably Secure Release of a Secret and Exchange of Signatures
	Introduction
	The Basic Problem
	Comparison with Earlier Work
	Fair Exchange and Contract Signing

	Basic Definitions
	Release Protocols
	Exchange Protocols

	A Bit Commitment Scheme
	Checking the Contents of Commitments
	Release of Rabin and RSA Signatures
	Release of El Gamal Signatures
	Efficient Contract Signing
	References

