
A CrypteEngine

George I. Davida
Frank B. Dancs

University of Wisconsin-Milwaukee
Milwaukee,WI 53201

Ahstract

In this paper we present a design for a crypto-engine. We shall discuss the design
and show the instruction set of this coprocessor and then show how this could be used
to implement most of the known encryption algorithms. We will discuss why a copro-
cessor approach may be a better solution than adoption of q e d c encryption algorithms
which can be broken or dem-tified.

L Introduction

With the ever increasing use of encryption techniques to safeguard data, a need has
become apparent for special hardware to implement these schemes due to the ineffiaency
of software methods. Special hardware such as DES chips have the draw back of being
useful for only one encryption technique. Many have discussed the weekness of the
method and site potential problems with the sboxs. Furthermore, if DES is not certified
as the standard for encryption, many existing chips will become obsolete.

Taking this into consideration, a hardware design that could increase the efficiency
of computation while allowing versatility for many existing encryption algorithms and
possibly future ones has been considered. Much like a floating point coprocessor, we
have designed an encryption coprocessor. With basic instructions common to the variety
of algorithms used today, the design presented in this paper facilitates implementing of
most encryption algorithms.

The design of this coprocessor has been based on the Motorola 68O0O1 coprocessor
protocol. It has been implemented in software for testing purposes. Implementation de-
tails will also bediscussed later in the paper.

T research reported in this paper was supported in part by NSF grant DCR- 8 504230.

C. Pomerance (Ed.): Advances in Cryptology - CRYPT0 '87, LNCS 293, pp. 257-268, 1988.
0 Springer-Verlag Berlin Heidelberg 1988

II. Need For a Coprocessor

With chip prices coming down, replacing software tools with hardware tools has be-
come more practical. The problem with hardware is that it may not always be as flexi-
ble as one would want. Take for example the DES chips that are on the market.
Although they are excellent for preforming their assigned tasks, they can only preform
one task and that is encrypting data with the D B standard. If this standard is broken
or decertified as the standard, these chips would be obsolete. Replacement costs for this
specialked hardware could be expensive.

Unlike other types of hardware, encryption hardware has the drawback of poten-
tially becoming useless with the ever possible chance that the algorithm the hardware
implements is broken. Other types of hardware could become obsolete with the advent
of a new and better device, however; the old hardware is stiU useful.

The other disadvantage of a standard encryption chip is that standards can be
changed. A specializRd chip can only implement one encryption technique. If the stan-
dard would change then those using the standard would not be able to communicate
with those using the old standard. Since reprogramming is not possible, this desired ver-
satility Cannot be achieved by these specialized chips. After all, what is the difFerence
between a calculator and a computer? It is not the greater capability of the computer or
its faster processing. It is the versatility of the computer brought about by the ability
to be programmed for many different applications.

With this in mind a coprocessor with special instructions that would be useful for
encryption appears to be a better solution. If a standard encryption technique is
decertified a coprocessor could easily be reprogrammed. A new technique could easily be
installed. Not only could a new standard be adopted without any hardware changes,
diferent techniques could be used simultaneously for different applications. Further-
more, techniques could be altered to meet speafic requirements of local environments.
The advantage over just pure software implementations of the encryption techniques is,
of course, special instructions implemented in hardware would bring about a speed ad-
vantage.

IIL Coprocessor Design

To make a hardware device that can implement most of the known algorithms of
today and still leave room for tomorrows, we need to consider what are the basic opera-
tions of encryption algorithms. There are two basic operations that are used for encryp
tion. They are substitution and transposition 2. Most crytographic techniques use a
Combination of both.

Substitution operations can be table lookup, many types of arithmetic operations
such as multiplication, exponentiation, etc. Transposition operations on the other hand
are of the form, permutation on the bits of a word, shift registers, and modular arith-
metic, where the m u t a t i o n is of the entire message space.

With this in mind, we propose a set of encryption primitives. The substitution in-
structions include all arithmetic in large register form, an actual table lookup and its
supporting instructions, and three of the boolean operators, and, or, and xw. For the
permutation operations, we included a bit permuter, three different shift operations, and
the modular arithmetic operation.

259

b y t e O b y t e l b y t e 2 b y t e 3 . . .

N. DesignDetails

byte 255

The registers, illustrated below, that wiU be needed to support these instructions
must be of a larger than normal size For example, RSA uses numbers approximately of
200 decimal digits large. For this type of arithmetic, there are four large registers, 1024
bits each. This will allow for roughly 300 decimal dighs. These registers will S U P P ~ ~
all the arithmetic instructions. There will also be the need for smaller registers for sub-
stitution and permutation operations. There are five 128 bit registers. One of these r e
gisters, the general register, can be addressed as four 32 bit registers, two 64 bit registers,
or the entire 128 bit register. Finally, there are 16 tables consisting of 256 bytes each
supporting the table lookup operation.

Register Layout of the Encryption Coprocessor

The larger register layout
1024 bits L1 Large Purpose register

1024 bits L2 Large Purpose register

1024 bits L3 Large plupose register

1024 bits L4 Large plupose register (ML) Modules constant

S y t e O b y t e l b y t e 2 b y t e 3 . . . /byte 2551

General register, key register and modular constant layout (128 bits)

I 128 bits MS Small Modular constant reaister I

sbox Array
Array For Slice 1

. . .

. . .

. . .

Array For Slice 16

The instructions Listed in Appendix A are the instructions that we have considered
necessary to fulfill the requirements of our list of basic operations. The instructions
listed in the Appendix follow these rules of use. Those that have <reg>, <greg>, or
<lreg> can support the register direct addressing mode on any register, the general re-

260

gister only, and one of the large registers only, respectively. The instructions that have
<regl> or <reg2> as their operands have the following addressing modes: register
direct, register indirect, memory immediate, and memory indirect. Furthermore, the in-
direct addressing mode using the main processors registers a0, a6, and a7 has the follow-
ing subdivisions: register indirect, register indirect with auto-increment, register indirect
with auto-decrement, and register indirect with index.

V. Detailed Description of Some Selected Instructions

The brief description of each instruction presented in the Appendix may not give
enough information on some of the more complex instructions, and may not completely
show the versatility of them.

The sbox substitution is probably the most complex operation. The esbox inStruC-
tion can do substitution on a number of bit combinations. The programmer t an choose
from 8, 6, or 4 bits into the substitution and 8, 6, or 4 bits out of the substitution. The
number of input bits does not have to be the same as the number of output bits. To id-
tialize this we will need the einitsbox instruction. This wiU set up the esbox instruction
for operation with one of these combinations of input bits and output bits. We will
refer to a string of bits that will be used for one atomic substitution, either 8, 6, or 4
bits in size, as a substitution word.

As seen by the register layout diagram, there are 16 sbox arrays, each having 256
bytes of storage. Each of these anays are to be used for one substitution. That is, one
substitution word will be an index to one of these sbox arrays. When the substitution
word indexs one of the bytes in the array, 8 bits, 6 bits, or 4 bits will be used depending
on the number of bits that has been set up by the einitshx instruction for output.

All of the memory in the sbox array will not be utilized for every substitution
combination. For example, if a programmer where to initialize this operation to 4 bits in
and 8 bits out with a 64 bit register, all of the 16 sbox arrays would be used, however,
only 16 bytes out of each array would be used.

To load the sbox arrays the eldSb0;r instruction will be used. The number of the ar-
ray will be needed as well as the number of bytes in that array. In the example above,
there will be 16 eldsbox instructions needed to load a l l of the arrays. Each of these in-
struction will specify n-1 as the number of bytes to load and m for the slice number.
The only address mode that will be allowed is memory indirect. This will allow the
programmer to initialize their sbox arrays somewhere in memory with a label, and use
that label with the instruction.

There are two permutation instructions, eperrns and epennd, representing control
from the source and control for the destination. These will be used for two different
types of permutations. The epenns instruction will allow permutation of one bit to
multiple bits, while, the epennd instruction, will allow multiple bits to be permuted to
one bit. Below is a diagram that should clear up the two different permutation instruc-
tions. Note, only four bits of the general register is used, and the first four bytes of the
11 registers are used. In the 11 registers we will store the following first four control
bytes, these will control the first four bits in the general register signified by a letter in
the alphabet.

[4 l i 1 2 1 4 1

261

This is what is stored in the first four bits of the origmal general register, g.

Permuting the original with the instruction: eperms 11,g

Permuting the orij$nal with the instruction: epennd 11,g

The example above points out the situation for the epermd instruction where no bit was
assigned to destination of the third bit location. In this case, the third laxtion obtains
the value zero. Furthermore, if two or more bits go to the same destination, the values
of those two or more bits are xored together.

The epenns instruction would be used in something like the sbox expansion of DES,
and the epamd instruction would be used in something like a linear shift register with a
finite state machine.

/ A I B I c I D I

[D I A 1 B 1 D]

I B I c I o I A ~ D I

VL Details of Various Algorithm Implementation

The following implementations are written in the high level language of C and the
program listings are found in Appendix B. The asm is a construct that allows a pro-
grammer to give an instruction directly to the assembler. After compiling this code the
modified assembler can translate the coprocgsor instructions into machine language. All
of the coprocessors instructions are noted by italics. Note, some parts of main line,
functions, and anay initializations are omitted to conserve space

DES3 was an important consideration in the design of the coprocessor. As long as
DES is the standard there will be a need to implement it.

A few points need to be noted for clarity. First, the sbox expansion is done like a
standard DES sbox expansion. However, after the MT with the key, the bits must be
permuted again to facilitate the b5Wb4b3b2bl pattern. In other words, Since the sbox
substitution instruction of the coprocessor does a direct table lookup on the address that
the six given bits generate, they must be permuted to follow the pattern that is neces-
sary to follow the DES algorithm. T3i.s is because the algorithm calls for the first and
last bit of the six bit substitution word be the index to the row and the middle bits be
the index to the column. In the coprocessor the data is layed out continuously instead
of having a row and column; thus, the last bit needs to be moved to the second bit. Since
the large registers are capable of holding a 128 bit permutation, the sbox-expansion ar-
ray will hold both permutations, which in turn is moved to the 14 register.

The RSA implementation is pretty straight forward since the algorithm is nothing
more than:

C = Mc mod n (encrypt)
M = Cd mod n (decrypt)

where e is the encryption key and d is the decryption key. This means that the only
steps that need to be done are load one of the large registers with the data, do an ex-
ponential instruction with an automatic modular arithmetic with the ml register, and
move the data from the large register back into memory.

The Pohlig-Hellman scheme is another exponential encryption technique; however,
it could be implemented in two different ways. The basic algorithm is

C - W m o d p

262

M = Cd mod p
where e is the enciphering key and d is the deciphering key. The p could either be a
prime or a GF(2m) i r rduab le polynomial. Either way, it could be implemented quickly
and easily.

The first implementation, where p is a prime, could be done exactly like the RSA
listed in Appendix B, except ml would receive the prime value To do the next imple-
mentation, do the exact implementation as the RSA example with these two changes.
Put a irreduable polynomial in ml, and replace the following line:

with
asm(' e e x p d 11.22");

asm(" e e x p g w l1,22');

VII. Remarks

Many other algorithms could be implemented. For example, the Shamir Lagrange
Interpolating Polynomial Scheme could be done with the arithmetic under Galois Fields
instructions. All the necessary instructions are available to implement this scheme: ad-
dition, division and multiplication all in GF(2m). Consider the irreducible polynomial
p(x) = x3 + x + 1; the corresponding binary representation would be 1011. This number
would be put in the d or m register depending on the size of the integer arithmetic
"%is would then mean that a l l the arithmetic would be done under the Galois Field
GFo3) with 1011 as the irreducible polynomial.

Another method for encryption could be implemented just as easily. The Block Ci-
phers with Subkeys could be implemented with the basic arithmetic mod instructions.
In this scheme the basic operations are inverse (e d i d) , multiplication (e r m h d) , and
addition (eaddml).

The software implementation was done on a Motorola 68010 based system. The
68000 protocol for coprocessor instruction identiiication is what is r e f 4 to as an F-
line instruction. This F-Line instruction will precede any coprocessor instruction. I t will
have the coprocessor identification number as well as other information. If the coproces-
sor doesn't exist in hardware, the processor will invoke a F-line emulation trap (vector
11). With this, we can trap the instruction in the kernel and start the emulation pro-
cess. On a UNIX bsd 4.2 system this is just a quick addition in the trap.c code to cap-
ture the interrupt and a function call to the emulation routines. In the emulation rou-
tines, the first step is to check what the instruction is and call the appropriate emulation
function.

The implementation of the Galois fields followed the Scott, Stafford and Peppard'
algorithm for multiplication and the Davida and Litowl algorithm for inverse. Other
implementations of arithmetic were done by methods that made the software easiest to
write, not considering hardware problems.

Appendix A

Instruction Set

eadd <regl>,<reg2> The a d d instruction adds the source <regl> to
the destination <reg2> and stores the result in the

263

destination < reg2>.
eaddms <regl>,<reg2>
eaddml < reg 1 > , < reg2 >

eaddgfms < reg 1 > , < reg2 >
eaddgfml < regl > , < reg2 >

esub <regl>,<reg2>

esubms <reg1 > , < reg2 >
esubml < regl > , < reg2 >

esubgfms <reg 1 > , < reg2 >
esubgfml < reg 1 > , < reg2 >

emult < reg 1 > , < reg2 >

emultms < regl > , < reg2 >
emultml < reg 1 > , < reg2 >

emultgfms <regl> ,<reg2>
emultgfml < reg 1 > , < reg2 >

ediv < regl > , < reg2 >

edivms <regl>,<reg2>
edivml <reg 1 > , < reg2 >

edivgfms < regl > , < reg2 >
edivgfml < reg 1 > , < reg2 >

eexp <regl>,<reg2>

eexpms < regl > , < reg2 >

The eaddms and eaddml instructions do the same
addition mod the (ms) and (ml) registers respec-
tively.

The eaddgfms and eaddgfml instructions do the ad-
dition in the Galios Field GF(2m) usin fhe (ms)

ble polynomial Hx).
The esub instruction subtracts the source < regl >
from the destination <reg2> and stores the result
in the destination <reg2>.

and (ml) registers rgpectively to store t % e meduu-

The esubms and esubml instructions do the same
subtraction mod the (ms) and (ml) registers respec-
tively.

The esubgfms and esubgfml instructions do the
subtraction in the Galios Field GF(2m) usin the
(ms) and (ml) registers respectively to store t i e ir-
reducible polynomial P(x).

The emult instruction multi lies the source
< r 1> to the destination(reg$) and stores the
resz t in the destination < reg2>.

The emultms and emultml instructions do the Same
multiplication mod the (ms) and (ml) registers
respectively.

The emultgfms and emultgfml instructions do the
multiplicabon in the Galios Field GF(Zm) using the
(ms) and (ml) registers respectively to store the ir-
reducible polynomial Hx).
The ediv instruction divides the s o u r e <regl>
into the destination <reg2> and stores the result
in the destination < reg2>.

The e d i m s and edivml instructions do the same
division mod the (ms) and (ml) registers respec-
hvely.

The edivgfms and ediv fml instructions do the
division in the Galios FiJd GF(2m) using the (ms)
and (ml) registers respectively to store the rrredua-
ble polynomial P(x).

The eexp instruction takes destination <reg2> to
the wer of the source <re 1> and stores the
resugin the destination < reg25.

264

eexpml <regl>,<reg2>

eexpgfms <regl>,<regZ>
eexpgfml <regl>,<reg2>

eunset sign
esetsigned

mod <regl>,<reg2>

emov <regl>,<regZ>

The eexpms and eexpml instructions do the same
exponentiation mod the (ms) and (ml) registers
respectively.

The eexpgfms and eex ml instructions do the ex-
Gs) and (ml) r e v respectively to store t f e ir-
reducible plynormal Nx).

nentiatlon in the G !if 0s Field GF(2*) usl~l the

These two instructions wiU set all arithmetic in an
unsigned mode and set all arithmetic in a signed
mode, respectively.

The emod instruction will do a modular arithmetic
operation. The destination <reg2> mod sou.rce
<regl> and place the results in the destinatlon < reg2>.

The emov instruction will move <regl> to
<reg2>. This can also be used to load registers
with the different address modes available.

eldsbox #array,#bytes,memo location
eldsbox instruction wil l load one of the 16

sbox arrays. It will load the amount of bytes in
that table that is qeciiied by the #bytes field. The
only addressing mode allowed is memory indirect,
thus the program will have to give the locahon of
where the sbox array is s t o d in memory.

The einitsbox instruction will initialize the control
for the sbox instruction. The #cl will be the
number of bits inputed for each substitution in the
sbox operation and #c2 wil l be the number of bits
output for each substitution. These bits can have
the values four, six and eight.

einitsbox #cl,#c2

esbox <peg> The esbox instruction does a sbox array lookup
with the <greg> and stores the result in the same
register.

eperms < keg>, < reg> The eperm instruction will do a permutation on a
the destination <re > with the large control regis-
ter <lreg>. Each !!$ in the control register will
control where each it in the destination <reg>
will come from.

The epwm instruction will do a permutation on a
the destination <re > with the large control regis-
ter <Ire >. Each 6yte in the control r 'ster will
control t i e destination of correspondingyit in the
destination <reg>.

The eand instruction will do a bitwise and on the
two registers ven and stores the result in the des-
tination < rqj?>.

The eor instruction will do a bitwise OT on the two
registers given and stores the result in the destina-
tion < reg2>.

epermd <lreg>,<reg>

eand <regl>,<reg2>

eor <regl>,<regZ>

265

exor <regl>,<reg2>

elshiftl #num of bits, <reg>
ershiftl #nun of bits,<reg>

elshiftc #nun of bits,<reg>
ershiftc #nun of bits, < reg>

elshifta #nun of bits, < reg>
ershifta #nun of bits, < reg >

The exor instruction wiLl do a bitwise XOT on the
two registers ven and stores the result in the des-
tination <reg !f >.

Yht The elshiftl and ershiftl will do a left or
respectively lo '+ spift on the register specified Y
the number of % its g~ven.

The elshiftc "d ershiftc will do a .left or ri ht
respemvely cucular shift on the r w e r speufd
by the number of bits given.

The elshifta and mhifta will do a !eft 2
ed

by the number of bits given.
respectively arithmetic shift on the r e m e r

Appendix B
DES Source Listing

#include <stdlo.h>

char

T nsigned int kd321;
unsignedint k1[4];
char

char

char

d1 - { 0x0, 0x0, 0x0, 0x0, 0x0, 0xO,0xO. 0x0,
0x0 0x0, 0x0, 0x0, 0x0, 0xo,oxo, 0x01;

initial(] = { /* initial permutation control values here */ 1;
find1 = { /* find permutation control valug here */ 1;
sbox-expansion[] - {127, 126, 125, 124, 123, 122, 121, 120,

119, 118, 117, 116, 115, 114, 113, 112, 47.42.46,
45,44,43,41, 36,40,39,38,37,35, 30,34,33,
32, 31,29,24, 28,27,26,25,23, 18, 22.21, 20,
19, 17, 12, 16, 15, 14, 13, 11.6, 10.9. 8, 7, 5,
0, 4, 3,2, 1,63,62,61,60,59,58,57,56,55,
54,53,52,51,50,49,48,0.31,30,29,28,27.
28,27,26,25,24,23,24,23,22,21,20, 19, 20,
19, 18, 17, 16, 15, 16, 15, 14, 13, 12, 11, 12, 11,
10, 9, 8, 7, 8, 7, 6,s. 4, 3,4, 3,2, 1,0, 31);

char

char pc-lu =

char pc-2u =

char sbox[8B64] - {(13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,
1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,
7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,
2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11},

{ /*sbox 6 */ 1

interndl = { /* internal permutation Control values here */ };

{ /* key pc-1 permutation value here */ };

{ /* key pc-2 permutation control values here */ 1;

{ /* sbox 7 */ 1
I /* sbox 5 */ 1

266

267

/* putdata function */

do-key(flag)
/* read in key and make 16 subkeys that are placed in the k0 array.

Note, this function will be done much like the main line */

RSA Source Listing

#include <stdio.h>

#define SIZE 128

unsignd int m1[321;
unsigned int 11[321;
char l2[SIZEl;

main(argc,argv)
int argc;
char *argd];
{
FILE *fpin, *fput , Ykey, *fopen();
char c;
int n,size;

/* find-ml-size, determines the size of the modulus so we don't read more
* into the large register than we have mom for Fn the modulus */

find-ml-size(ml)

/* body of routine */

268

References

I.

2.

3.

4.

5.

6.

7.

8.

Motorola Inc,
Englewd Cliffs (1985).

fC68020 32-bit Microprocessor L d s Manu0

D. Denning, Cryptography Md Gvnpter Secwity, Addison Wesley, Reading, MA
(1982).
NBS, “Data Encryption Standard,” N a t w d Bureau of standards, FIPS PUB 46,
(Jan 1979).
S. C. Pohlig and M. E. Hellman, “An Improved Algorithm for Computing Loga-
rithms over GF(p) and its Cryptographic SignikanCe,” IEEE Transactwns on Info?--
mation T h e w IT-=(January 1978).
A. Shamir, “How to Share a Secret,” Chnmwaicatwm of the ACM 22 pp. 612-613
(November 1979).
G. I. Davida, L. D. Wells, and J. B. Kam, “A Database Encryption System with
Subkeys,” ACM Trans. on Database Syst. 6(2) pp. 312-328 (June 1981).
P. Scott, “A Fast VLSI Multiplier for GF(2*m),” IEEE JmmuL on W e d Areas in

G. I. Davida and B. Litow, “Fast Parallel Inversion in Finite Fields,” C I S , The
Johns Hopkins Univer&y, (Davi85).

C o n ~ ~ ~ ~ i c ~ Z i o n s SAC4 pp. 62-65 (Jar~~ary 1986).

