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Abstract 

The optimal values for the parameters of the McEliece public key cryptosystem are a m -  
puted. Using these values improves the cryptanalytic complexity of the system and decreases i ts  data 
expansion. Secondly it is shown that the likelihood of the existence of more than one trapdoor in the 

system is very small. 
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1. Introduction 

McEliece [1978] has introduced a public-key cryptosystem which is based on algebraic 
coding theory. In this system, the receiver first constructs an easily-solvable linear error-correcting 
Goppa code C with generator matrix G and then transforms this matrix into G‘, a generator matrix 
for a seemingly difficult-to-solve linear code C‘. The matrix G’ is the public key of this system -- a 
message is encrypted by multiplying it with G’ and adding errors to the resulting codeword. The legi- 
timate receiver can recover the message by using a decoding algorithm for the original code C. 

In the first part of this paper we compute the optimal number of errors that should be 
introduced in the encryption algorithm; in the second part we comment on the likelihood of finding 
transformations that will map the code C‘ into the code C, or into some other easily-solvable Goppa 

code. The results indicate that introducing the optimal number of errors yizlds very high security for 

this cryptosystem and that there is, with high probability, only one transformation from C’ into an 
easily-solvable Goppa code (this is the transformation known to the receiver). 

We will begin this paper with a short description of McEliece’s system. We continue in 

Sections 3 and 4 with an analysis of two attacks which may be considered by an intended eaves- 
dropper and close, in the final section, with some concluding remarks on our results. 
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2. McEliece's System 

MdEliece's public-key cryptosystem can be briefly described as follows: 

The receiver constructs an easily-solvable, binary, error-correcting Goppa code C which has a 
(k x n) generator matrix G and an error-correcting capability o f t  errors (note that G is neces- 
sarily of full rank). 

The matrix G is transformed by 

where S is a (k x k) invertible scrambling matrix and P is an (n x n) permutation matrix. The 

(k x n) matrix G' is then a generator matrix for an apparently arbitrary linear code C' (i.e. one 

for which a fast algorithm for correcting errors is  not known). 

G' is published as the encryption key; the sender encrypts a k-bit message vector m into n-bit 
ciphertext vector c by 

where g is an n-bit error vector of weight t chosen by the sender. 

The receiver, knowing that 

G'=SGP (1) 

- c = m G '  @ 4 (2) 

- c = m G '  @ e 
= - m SGP @ 5 

computes 

and uses a decoding algorithm for the original code C to remove the error vector g P-l and 
recover the vector m S. The sender's message is then easily found by 

The private key for this system, therefore, consists of the three matrices G, S, and P. 

- c P- l=  @ S) G @ g P-l 

1 - m = b s )  S -  . 

This paper is mainly concerned with equations (1) and (2) above. We begin by calculat- 
ing the optimal weight of the error vector e in equation (2),  where a weight is "optimal" if it yields 
maximum security for this system. We then go on to consider equation (1). From (1) we have 

G = S'lG'p-l. (3) 
We will compute the expected number of matrices Si and Pi such that the code Ci with generator 
matrix 

Gi= SiG'P. 1 

is an easily-solvable Goppa code. 

3. Parameters k and t. 

AS noted in [Adams 19851 and WcEliece 19781, there are several ways of attacking 

McEliece's cryptosystem. Of the h o w n  attacks, the one which follows has the lowest complexity. 

We wil l  show how a suitable choice of parameters k and t will m a e  this complexity and thus 
strengthen the algorithm against this attack. 

Recall equation (2): 
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Since g is a k-bit vector, we can reduce this to 

where c k denotes any k components of c (ie. 

k components of e ,  and GL is the square matrix consisting of columns il, 5, ..., ik of G’. Thus we 

have 

= ci ..., ci ), g denotes the corresponding 11‘9 k 

sk El3 i?k=rnGk 

or, if Gi( is invertible, 

Note that if the k components of 5 are all zero, (4) reduces to 

and an enemy can recover the sender’s message without decoding (since c and G’ are known). 
The work factor for this attack can be calculated as follows. The-error vector g is an n- 

bit vector with t ones and n-t zeros. Therefore, the probability of choosing (without replacement) k 
zero components from 5 is 

Note that the enemy must, on average, make l / p  attempts before being successful and, for each 

attempt, must invert the (k x k) submatrix Gk. Assuming that matrix inversion requires ka steps 

(see, for example, [Bunch, Hopcrolt 19741 and [Pan 1978]), this gives a total expected work factor for 

this attack of 

w =  ka [;I/ steps. 

From [Berlekamp 19731 or WcEliece 19771 it can be seen that for n = 2l, n, k, and t are 

related by 
k = 2’ - it = n - it. 

Therefore, for n = 1024 (as suggested in WcEfiece 1973]), we have k = 1024 - lot. It can easily be 

shown by exhaustive search that for values of a between 2 and 3 the value of (5) is maximal for t = 
37. For a = 3, the value of (5) is approximately 284*1 for t = 37, while for t = 50 (the value 
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proposed in WcEliece 19781) (5) has the value 280.7. 

reduces the data expansion of the cryptosystem. 

Moreover the lower value of t increases the value of k from 524 to 654 and therefore 

4. Trapdoors 

Brickell [1985] has shown that iterated knapsack cryptosystems (proposed in WerkIe, 

HelIman 19781) can be broken. The idea of the proof is that the public (difficult) knapsack can be 

transformed by the enemy into one of several easy knapsacks, finding the receiver's original easy 

knapsack is not necessary. We can examine McEliece's system in this light by estimating the UeIi- 

hood of there being several transformations from the public key G' into an easily-solvable decoding 

problem. 

To do this we define an equivalence relation R on the set of binary (k x n) matrices of 

furl rank as follows: 

A R B if and only if there exists a (k x k) invertible matrix S 
and an (n x n) permutation matrix P such that A = S B P. 

If we call [A] the equivalence class induced by R containing A then it is clear that the private matrix 

G of McEliece's system is in the equivalence class [G'] of the public matrix G'. However, if there are 
other Goppa code generator matrices in the equivalence class [G'], a Brickell-like attack on this c'yp- 

tosystem may be feasible. 

If we assume that Goppa code generator matrices are evenly distributed over the set of 

all (k x n) matrices of full rank, we can calculate the expected number EXP of Goppa code genera- 
tor matrices in an equivalence class of R by 

EXP= #G/#C 
where #G is the number of Goppa code generator matrices for a given n and k and #C is the 

number of equivalence classes of R. To our knowledge, the above assumption has never been men- 

tioned in the open literature (likely due to thc fact that Gop?a code generator matrices are not, in 
general, recognizable as such). 

The values #G and #C have been computed in [Adams 19851. For Goppa codes with 
error-correcting capability t = 50 and dimension k = 521 (the parameters suggested in (McEliece 

10 
1978]), #G is less than or equal to the number of irreducible polynomials of degree 50 over GF(2 ) 
(for n = 2'' = 1024) and #C is roughly equal to the total number of binary (524 x 1024) matrices of 

full rank divided by the average size of an equivalence class. Substituting the calculated values into (6) 

we have 
504 500000 <c E X P c 2  / 2  

It can be shown that for t = 37 and k = 654 (from the pre\<ous section) the value of EXF' is even 

smder .  
Given the above assumption, then, equation (7) shows that we expect that an arbitrary 
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equivalence class of R does not contain a generator matrix for a Goppa code. From the coxtruction 
of the cryptosystem, however, we know that the equivalence class of G’ contains the receiver’s private 

matrix G; therefore, we conclude from (’7) that G is the only Goppa code generator matrix in [G’]. 
Thus, the only transformation from G’ to an easy generator matrix is the original transformation (3) 
chosen by the receiver and a Brickell-like attack against this system. will be unsuccessful. 

5. Conclusions 

We conchde that McEGece’s public-key cryptosystem appears to be fairly secure. We 

have shown that the lowest complexity cryptanalytic attack yet proposed has a work factor of roughIy 
2 steps -- this is SigniGCantly higher than that of DES and compares very favourably with that of the 
RSA system. Furthermore, it seems that an attack similar in nature to Brickell’s attack on the Knap- 
sack cryptosystem will be unsuccessful. 

84 

References 

Adams, C.M. (1989, Examination and Analysis of McEEece‘s Public-Key Cryptosystem, M.Sc. 
Thesis, Department of Computing and Information Science, Queen’s University, Kingston. 

Berlckamp, E.R. (1973), Goppa Codes, IEEE. Transactions on Information Theory, Vol. IT-19 #5 
(Sept.). 

Brickell, E.F. (1985), Breaking Iterated Knapsacks, Advances in Cryptology: Proceedings of Crypt0 

84, Blakley, G.R., C h a m ,  D. (Editors), Springer-Verlag, Berlin. 

Bunch, J., Hopcroft, J.E. (1974), Triangular Factorization and Inversion by Fast Matrix Multiplica- 
tion, Mathematics of Computation, Vol. 28; 125. 

McEliece, RJ.  (1977), The Theory of Information and Coding (Volume 3 of the Encyclopedia of 
Mathematics and its Applications), Addison-Wesley, Reading, Mass. 

McEliece, RJ. (1978), A Public-Key Cryptosystem Based on Algebraic Coding Theory, DSN Progress 
Report (Jan, Feb), Jet PropuIsion Laboratory, California Institute of Technology, Pasadena, Calif. 

Merkle, R., Hellman, M (1978) Hiding Information and Signatures in Trapdoor Knapsacks, IEEE. 
Transactions on Information Theory, Vol. IT-24 #5 (Sept,) 

Pan, V. (1978), Strassen’s Algorithm is not Optimal, the 19th Annual Symposium on the Foundations 
of Computer Science. 


