
GRADUAL AND VERIFIABLE RELEASE OF A SECRET
(Extended Abstract)

Ernest F. Brickell

Bell Communications Research;
435 South Street; Morristown, NJ 07960; USA

David Chaum
Ivan B. Damgbrd

Jeroen van de Graaf

Centre for Mathematics and Computer Science
Kruislann 413; 1098 SJ Amsterdam; The Netherlands.

Abstract:
Protocols are presented allowing someone with a secret discrete logarithm to release it, bit
by bit, such that anyone can venfy each bit's correctness as they receive it. This new
notion of releare of secrets generalizes and extends that of the already known exchange of
secrets protocols. Consequently, the protocols presented allow exchange of secret discrete
logs between any number of parties.

The basic protocol solves an even more general problem than that of releasing a discrete
log. Given any instance of a discrete log problem in a group with public group operation,
the party who knows the solution can make public some interval Z and convince anyone
that the solution belongs to I , while releasing no additional information, such as any hint
as to where in Z the solution is.

This can be used directly to release a discrete log, or to rransfer it securely between
Werent groups, i.e. prove that two instances are related such that knowledge of the solu-
tion to one implies knowledge of the solution to the other.

We show how this last application can be used to implement a more efficient release pro-
tocol by transferring the given discrete log instance to a group with special properties. In
this scenario, each bit of the secret can be verified by a single modular squaring, and
unlike the direct use of the basic protocol, no interactive proofs are needed after the basic
setup has been done.

Finally, it is shown how the basic protocol can be used to release the factorization of a
public composite number.

C. Pomerance (Ed.): Advances in Cryptology - CRYPT0 '87, LNCS 293, pp. 156-166, 1988.
0 Spnnger-Verlag Berlin Heidelberg 1988

157

1. Related work

Two of the first contributions to the field of secrets exchange were made by Blum(BL811
and Rabm[Ra81]. They both showed how to exchange secrets using oblivious transfer.
Later, BlWB1831 proposed his well known protocol for exchange of factorizations; see
Hastad and Shamir [Hash851 for a discussion of some problems with this protocol. It
cleverly expoits the fact that the factorization of an integer is a secret of many bits. In
the o n p a l version, one participant would sometimes know one secret bit more than the
other. Tedrick’s work (Te831, re841 is one approach to reducing the amount of unfair-
ness introduced by this fact. A different approach to exchanging one bit was taken by
Luby, M i d and Rackoff [LMR83] and Vazirani and Vazirani [VaVa83] Here, the infor-
mation exchanged is probabilistic, i.e. in each round of the protocol additional certainty is
gained about the value of a single secret bit. The work of Yao Waf361 implies the
existence of extremely general two party exchange-of-secret protocols, in connection with
the problem of secure computations with private inputs.

While the practical proposals in the literature involve disclosure of secret factorizations
(combined with square roots), the present protocol allows disclosure of discrete loga-
rithms. This is of practical importance for protocols based on m e t discrete logs, since
means to transfer a secret from a discrete log form to a factorization form are not known.

Perhaps a more fundamental difference between the related literature and the present pro-
tocol, however, is that they only provide for exchange of secrets, while we allow the more
general releare of secrets (one possible exception is [VaVa83]. Still, the fact that the infor-
mation released by our protocol is deterministic, remains a fundamental difference
between the protocols). In earlier exchange of secrets protocols, it was either inherent in
the protocol that an exchange had to take place [LMR83], or the work done by the party
with the secret would increase rapidly with the number of parties who were to recieve it
[B183]. In a release protocol the party with the secret is essentially just broadcasting
information about it. Therefore, a release can be simultaneous to any number of parties,
and can be readily used to implement an exchange of secrets between any number of par-
ties.

The theoretical existence of of such release-of-secrets protocols can be proved using tech-
niques from the work of Brassard and Crepeau [BrCr86], of Chaum [Ch86] and of Gol-
dreich, M i d and Wigderson [GMW86]. But since their methods (as Yao’s Wa861)
involve individual processing of all gates in a boolean circuit or a reduction to 3COL, the
resulting protocols would be impractical. We propose a more practical solution to the
problem: in the most efficient version, to release one bit, one modular square root has to
be computed, while the correctness of that bit can be checked by one squaring.

158

2. Showing membership of an interval.

Suppose one party - the prover (P) - knows a solution z to the equation d =
a and B belong to some group with a public group operation. One obvious example of
this is the multiplicative subgroup of the integers modulo p , denoted as Z i , where p is a
large prime. Suppose also that z E [a,a + B] , where a and B are public. The protocol
below can then be used by the prover to convince someone else - the verifier (0 - that
y E [U -B,u +2B].

Although we talk about a single vedier for convenience, it should be noted that any set
of participants could easily play the part of V without loosing the efficiency of the proto-
col. This is so because the role of Yis passive: he !lips coins (in public) and expects
answers from P according to the coinflips. Thus, h s protocol has the basic properties we
require from a release of secrets protocol.

An important tool used in the protocol is a bit commitment scheme. When a party P com-
mits to a bit, this means that he encrypts a 0 or 1 in such a way, that
-
-
-

where

the other party cannot tell what the value of the bit is:
P cannot later change his mind about the bit.
P can convince anyone about the value of the bit. ?his is referred to as opening the
commitment.

For the purpose of the protocol presented in this paper, it is not necessary to fix a partic-
ular choice of bit commitment scheme. The above properties will be sufficient to see why
the protocol below is minimum knowledge. In [CDG87] bit commitment schemes are dis-
cussed in more detail; also a specific example is given that relies on the hardness of the
discrete log problem. More precisely, with this scheme a commitment releases no infor-
mation in the Shannon sense about the bit it contains, and the party committing to a bit
cannot change it, unless he can solve a discrete log problem before the protocol is over.
With this scheme, the protocol below will be perfect zero knowledge in the terminology of
[GMW86] i.e. the secret of the prover is unconditionally protected, but the verifier will
only be convinced modulo his belief that the prover has not been able to solve the hard
problem that prevents him from cheating. Note that this flavour of commitment scheme
does not fit into the original model of [GMRSS], where the prover has infinite computing
power. The term “perfect zero knowledge” therfore only referres to the fact that a simu-
lation will produce the exact same probabllity distribution as the actual protocol. Other
choices of commitment schemes (like one based only on the existence of a one-way per-
mutation) will imply that the verifier will always be convinced with an exponentially small
residue of doubt, and that the protocol will be “ordmary” zero knowledge, even with an
infinitely powerful prover. In this case, however, the secret of the prover will only be con-
ditio~nally protected, and will be revealed if the cryptographic assumption is broken at any
point after completion of the protocol. For a more detailed discussion of these problems,
consult [BCC87j.

Having chosen a bit commitment scheme, the prover can commit to a string of bits by

159

simply computing commitments bit by bit. For the bitstring s, the resulting string of
commitments is denoted BC(s).

PROTOCOL RELEASE INTERVAL

P picks C I E[O,B] and computes t 2 = t l -B .
P computes a bit commitment of a'' and of ar t , and sends the unordered pair
(BC(ar1),BC(d2)) to V.

V flips a coin and requests either
(a) to receive t l and t 2 and opening by P of both BC(a") and BC(ar2), or
(b) to receive (z +ti) for i = 1 or 2, and opening by P of BC(a")

On request (a) P sends t 1 and t 2 , and opens both commitments.
On request (b) P sends either (z + t l) or (z + t 2) , whichever is in the interval
[a,a + B] , and opens the corresponding bit commitment.

On request (a), V checks that the two commitments did indeed contain at' and art ,

that t l E [O,B] , and that t l - r z = B.
On request (b), V checks that a'
opening of one of the commitments).

equals Ba" (he knows a" as a result of the

Steps 1-4 are repeated n times.

Lemma 1: If the prover cannot change the contents of his commitments after step 1, and
is able to satisfy both request (a) and request (b), then z E [u - B, u + 2B].

Proof: The result follows immediately from t 1 E [O,S], t 2 E [- 401, and
z+ t j E [a ,a+B]forei ther i=l o r 2 . n

By this lemma, if the protocol is repeated n times, then the verifier will be convinced with
confidence 1 -2-", assuming that the prover could not change the content of his bit com-
mitments. As mentioned before, changing the content of a commitment is either impossi-
ble or occurs with only neghgible probabihty, depending on the choice of bit commitment
scheme.

Note that there is a discrepancy between the requirement for z, namely z E [a,a + B] , and
what is actually proven, namely z E [a -B,a + 2 B] . Below we will show that only if
z E [u,u + B] , no knowledge is released by the above protocol.

There are several related definitions for minimal knowledge, which are quite technical. In
the full paper, we will give all of the formal definitions and the proof that our protocol is
minimum knowledge, but for this extended abstract, we will only give intuitive definitions
and proofs.

The concept of zero knowledge proofs was introduced by [GMR85]. Rougly speaking,
they defined knowledge to be something that cannot be computed in random polynomial
time. Essentially, they call a proof that a string x is in a language L, a zero knowledge
proof if a probabilistic polynomial time turing machine wdl be convinced (With high

160

probability) that x EL, but will learn nothing other than this one bit of knowledge.

To describe what we know about the discrete logarithm release protocol, we need to
change the [GMR85] definition a little: First we will, as in [GHY87] and [FFS87], assume
that both the prover and the verifier are restricted to polynomial time computations. This
corresponds better to a practical situation, and allows use of both types of bit commit-
ment schemes mentioned above. secondly, we will say that a protocol is a (L1,Lz)
minimum knowledge protocol if the verifier will be convinced (with high probability) that
x E L 1 but the verifier will receive no knowledge other than the fact that x E L2. More
precisely, the definition is satisfied if it is possible, assuming only that x E L2, to simulate
a protocol conversation such that no probabilistic polynomial time algorithm can tell the
difference between a simulated and a genuine conversation. This definition allows for a
discrepancy between what the verifier is told and what he wi l l be convinced of. It reduces
to the [GMR] definition of zero knowledge when L1 = L2, apart from the assumption on
the computational power of the prover.

We are now ready to give our informal proof that the discrete logarithm release protocol
is an (L1,L2) minimum knowledge protocol, where L1 = {d[1 x ~ [a -B,a + 2 B] } and

Lemma 2 If z E[a,a +B], then the distribution of the value of (z + t ,) sent in step 3(b)
of RELEASE INTERVAL is independent of the value of z.

ProoC: It is trivial to check, that if some number d E [a,o + B] is sent as (z + t i) , then
exactly one value in [O J] must have been chosen as i 1. So if r 1 is chosen uniformly in
[O,B], then (Z + t i) must be uniform in [a,a + B] 0 .

kmma 3 There eXiStS a simulator for RELEASE INTERVAL.

Proof: Using the following observation it is easy to see that the protocol can be simulated.
Since the protocol proceeds in rounds, the simulator (P') can rewind (i.e. stop and go
back to a previous state) the protocol if the simulation gets stuck at any point. Thus, we
can essentially assume that the simulator knows in advance which choice the verifier will
make in step 2. It is therefore trivial to compute a message for step 1 that will satisfy the
verifier if he is going to make choice (a). For choice (b) the simulator chooses
dE[a,a + B] at random, to serve as z +t,. It then puts y = $/3-'. Now P' can commit
to y, and to something totally random that has the same number of bits as y. These com-
mitments are sent in step 1; in step 3, d is sent in place of z + r,, and the bit commit-
ment containing y is opened.

If unconditionally secure bit commitments are used, it is now clear from Lemma 2 that
the simulated conversation will have exactly the same distribution as the actual protocol
conversation.

If the other type of commitments mentioned above is used, i.e. a scheme based on proba-
bilistic encryption, the distributions will be different, but the Merence cannot be recog-
n i s e d in polynomial time, if the encryption function is secure against polynomial time
attacks. 0

L2 = {d; I x E[UJ + B] } .

161

P is of course free to choose z E [a +B,a +2B], but then the protocol releases informa-
tion. For instance, if z is almost equal to u +2B, P must always choose t l close to 0, and
release (z + ? 2) which is close to a +B. We could, however, take away P's freedom to
choose t 1 himself. The protocol could start by a sequence of cointlips with the property
that both parties trust their randomness, but only P gets to see the outcome. This can
easily be implemented using bit commitments. The protocol would now proceed as
before, but in step 3(a), P would have to prove that he computed t 1 from the coiTltlips
generated initially. This modification means that there is now a non-zero probability of
catching P if z is not in [a,a + B]. This probability is larger, the further away z is from
[a,a + B] , and will tend to 0 with increasing n for any fixed z not in [a,a + B] . In fact,
this means that we can get exponentially large confidence about any interval that properly
contains [a,a +B], at the cost of a larger n. More details will be given in a full version of
this paper.

2.1 Release Interval Without Bit Commitments.

There is a variation of RELEASE MTERVAL that does not require the use of bit committ-
ment. This variation makes use of a parameter 6 which we will assume is equal to cB for
some c E (0,l). The protocol proceeds as folIows:

RELEASE INTERVAL I1

The prover

1. Picks t E[B,B+6]

2.

3.

4.

The verifier

5.

The prover

6.

picks t l € [O , t] and computes t 2 = t l -t.

permutes t 1 and f2.

Sends the unordered pair a" and a'* to the verifier.

Requests either (a) to receive t 1 and t 2 or (b) to receive z +ti for i = 1 or 2.

On request (a) sends t 1 and t q . On request (b) sends either i + t 1 or z + t 2 , which-
ever is in the interval [a,a +t] .

The verifier checks

7. on request (a), that the prover did indeed send a'] and a'', and that
1 t i = t 2 I E [B , B + ~] .

on request (b), that a' 8. equals either pa'' or paf2, and that z ft, E [a,a + B + 6] .

After RELEASE INTERVAL 11 has been repeated n times, the ven!?er will be convinced with

162

1
2"

wniidence 1 - - than z E [a - B -&,a + 2B + 261, but this interval can be shortened if

the verifier trusts the randomness of t and t l . RELEASE INTERVAL I1 is more efficient
than RELEASE INTERVAL. Further, assuming that

- the verifier does not have a probabilistic polynomial time algorithm that solves
discrete log given that the solution is in an interval of size B

- z E[a,a + B] ,

then RELEASE INTERVAL II is minimum knowledge (but clearly not perfect zero
knowledge). In other words, if the verifier cannot find the secret directly from the public
information, then he is in essentially the same situation after having executed the proto-
col. The proof of this is quite long and technical and has therefore been omitted in this
extended abstract.

3. Two applications

It is easy to see, how the RELEASE INTERVAL protocol can be used to re!ease information
about the solution to a. discrete log problem in a verifiable way, starting with the high
order bits: Use protocol RELEASE INTERVAL many times with ever decreasing values of
B. This Convinces the verifier that the solution is contained in smaller and smaller inter-
vals.

If it is easy to compute square roots in the group involved, we can also release the solu-
tion, starting With the low order bits. Consider for instance Z;, with p prime. Fix some
generator u of Zi. For any square fl E Zi, we let the principal square root of /3 be the

root with discrete log base a smaller than b. It is easy to see that the discrete log of
2

any number can be computed bit by bit, starting with the low order bits, given an oracle
that decides which of two square roots is the principal one. At each point in this compu-
tation, someone who already knows the discrete log could serve as the oracle by Using
RELEASE INTERVAL to prove the validity of his answers. Tim clearly leads to a protocol
that releases the discrete log starting with the low order bits.

4. An Efficiency Improvement.

In the previous two applications we had to go the RELEASE INTERVAL once for each bit
released. This can be quite time consuming in general because each instance of RELEASE

MTERVAL involves a cut-and-choose with many iterations. Using a technique to transfer
a discrete log from one group to another, we can reduce this to 1 application of RELEASE
INTERVAL. However, besides the protocol needed to transfer the logarithm, we the need
other protocols to prove that the groups used have specific properties. Recall that the

163

secret z is determined by C? = fl , where a,gEZj. Basically we transfer the secret from
(a) to (a1), where a1 E Z$ and N is a composite. a1 is chosen, such that 2' divides
order (a2), where I = 210g p . Then the secret is released just by showing square roots in
Z;, which are easily verified but hard to compute without the factorization. First we wil l
show how P can prove to Y that N has the required propemes. This is done in steps 1-3
below. Note that these steps are only necessary once, i.e. if many secrets are to be
released, the same N and a1 can be used for all of them.

Step 1:
Party P chooses a modulus N = qr, where q and r are large primes, constructed such that
P knows the factorization of q - 1 and r - 1, and such that 2' divides at least one of q - 1
and r - 1. This can easily be done , e.g. by a variation of Gordon's method [Go84].

Step 2
Let QR denote the set of quadratic residues modulo N . Next P selects a random element

a1 E 2; with J (-) = 1 and a not in QR. From the Chinese Reminder Theorem it can

easily be seen that such an a1 will always have the maximum possible 2-power dividing
its order, so 2' is certainly a divisor of the order of al .

Step 3
P makes public N and a1 . Then
a)
b)
i)

ii) Vsends to P:

a1
N

P proves that a1 is a quadratic non-residue, e.g. by using the protocol in jGMR851.
P proves that 2' divides order(a1) :
Vchoses a random odd number r, with 0 < r < R, where R is fixed (the choice of
R is considered later). V chooses b E (0,l).

r.P if b = 1. a1 9

Since P has constructed N , he can compute the order of what he receives. Based on
the outcome he determines b and sends it to V.
Y checks that the correct value of b was returned.

aT2k-' i f b = 0.

iii>

iv)
Steps i through iv are repeated n times.

It is easy to see that if P is not cheating, he can always give the correct answer in step %)
Consider the situation where P is trying to cheat, i.e. the maximum 2-power dividing
order(a1) is 2c, where c < I . Let G be the maximal sub-group of (a]) of odd order.
Clearly, G = (afk > =), which means that both a!'' and af2k-' will Iook to P
like randomly chosen elements of G. Since V does not know the order of G, he cannot
make the distribution completely uniform over G, but he can make as close an approxi-
mation as he likes by choosing the R from step i) large enough. Assuming that P Cannot
distinguish the distribution of aTZk and af2"-', he can do no better than gueshg at ran-
dom in step &) whence he will be caught with probability 1 -2-".

From V's point of view the protocol is not zero knowledge as it stands. V could use it to
get some - probably useless - information about other elements in 2; than a1 . The

164

protocol can be modified such that it is zero-knowledge. This involves ensuring that V
knows the discrete log with respect to a1 of the numbers he send to P. This could be
accomplished using for example the general discrete log protocol described in [CEGP86].
We also have other methods which will work well in this special case, but we omit the
details here for simplicity.

P transfers the problem from 2; to Z i . Remember P‘s secret is the solution z of
t? =
INTERVAL in the cross-product of (a) and (a1), P can prove that he knows a
~ ~ [l , p - l] , ~ h i ~ h ~ ~ l v ~ b o t h d = p a n d a 1 = 81.
step 5
To release a single bit (the least sipticant bit of z), P proceeds as follows:

step 4

in 2;. Now P computes j31 = at in 2; and makes 81 public. Using RELEASE

if z = h’, he makes public a square root of 81.
i f t = h’+1, hemakespublicasquarerootof/31ar1.

Replace z by z’, and 81 by the square root released.

This step works because of the following two easily verified facts:

1. The I least sigmlicant bits of z are uniquely determined by the equation af = 81.
2. If a1 is a non square mod N and af = /31, then z is even if and only if 81 is a

square mod N.
By fact 1, the pair (a1 $1) determines exactly one secret of size 1 bits, and by fact 2, any-
one can check on P by squaring the numbers released.

Regarding the security of this protocol, notice first that steps 2 and 3 can be executed in
zero knowledge. Moreover, the release of a1 cannot endanger the factorization of N ,
Since anyone can select at random a number of Jacobi symbol 1 mod N , which with pro-
bability 41 will have the same properties as “1. It is clear that breaking this scheme can
be no harder than factoring numbers of the required special form: N = qr, where 2’
divides at least one of q - 1 and r - 1. It is not known, however, whether these numbers
are easier to factor than randomly chosen RSA-moduli. But with respect to the factoring
algorithms known at praent, the factorization of N should be safe, if q - 1 and r - 1 con-
tain large prime factors, in addition to the 2-powers. Finally, it is also conceivable that
someone could try to attack the equations a’ = /3 and a1 = /31 hectly, without factor-
ing N . But this involves solving a discrete log problem, and we know of no argument
indicating that discrete log should be easier in this special case than in the general situa-
tion.

165

6. Releasing a factorization.

This final application allows a prover to release the factorization of a public modulus N .
It is wellknown that knowledge of a multiple of H N) suEices to factor N easily. Using
this fact, the protocol proceeds as follows: The verifier chooses an integer T and a set of
elements a 1, . . . , a, in &*. The prover then computes t = T mod H N) , and sends
bi = ,it to the verifier, who can check these numbers by raising the a‘s to the Tth power.
The prover then uses the RELEASE INTERVAL protocol to convince the verifier that he
knows a simultaneous solution to all s discrete log instances which belongs to an interval
NOT including T. When the prover uses RELEASE INTERVAL more times to release bits
of t , the verifier can be convinced, that he will get at least a multiple of
LCM(order (a 1),..,order (us)). The probability that this number equals the exponent of
the group 2,’ (i.e. the smallest integer e such that ge= 1 for all elements in the group) is
exponentially large in s, and it is not hard to see that exponent(ZN*) will serve as well in
factoring N as H N) .

Acknowledgement.

The first author would like to thank O d d Goldreich for dtscussions related to this work.

References

[B181]

[B183]

[BCC87]

[BrCr861

[Chi361

[CDG87]

[CEGPM]

Blum: “Three applications of the oblivious transfer”, Dept. of EECS, Univ.
of California, Berkely, 198 1.

Blum: “How to exchange (secret) keys”, ACM Transactions on Computer
Sysrems, vol. 1, 1983, pp. 175-193.

Brassard, Chaum and Crttpeau:“Minimum disclosure proofs of knowledge”,
to appear.

G. Brassard, and C . Crirpeau, “Zero-Knowledge Simulation of Boolean Cir-
cuits,” Presented at Cqypto 86, (August 1986).

D. Chaum, “Demonstrating that a Public Predtcate can be Satisfied
Without Revealing Any Information About How,” Presented at Cypto 86,
(August 1986).

C h a w DamgArd and van de Graaf: “Multiparty computations ensuring
privacy of each party’s input and correctness of the result”, Proc. of Crypt0
87.

D. Chaum, J.-H. Evertse, J. van de Graaf, and R. Peralta, “Demonstrating

166

[CG87]

[FFS87]

[GHY87]

[GMR85]

[GMW86]

[Go841

[Hash851

[LMR83]

[Ra8 I]

waVa831

w 3 1

[Te84]

possession of a discrete logarithm without revealing it,” To appear in the
Proceedings of Crypto 86, (August 1986).

Chaum, van de Graaf: “An improved protocol for demonstrating possession
of a discrete log and some generalisations”, Proc. of Eurocrypt 87.

Fiege, Fiat m d Shamir: “Zero knowledge proof of identity”, Proc. of STOC
87.

Galil, Haber and Yung: “Cryptographic Computation: Secure Fault-
tolerant Protocols in the Public Key Model”, Roc. of Crypto 87.

S. Goldwasser, S.Micali, and C. Rackoff, “The Knowledge CompleXity of
Interactive Roof Systems,” 17th STOC (1985).

0. Goldreich, S. Micali, and A. Wigderson, “How to Prove all NP-
statements in Zero-Knowledge, and a Methodology of Cryptographic Proto-
col Design,” Presented at Crypto 86, (August 1986).

J. Gordon, “Strong primes are easy to find’’, Proceedings of Eurocrypt 84.

‘The cryptographic security of truncated linearly related variables,” Proc. of
17th STOC, 1985, pp. 356-362.

Luby, M i d and Rackoff: “How to simultaneously exchange a secret bit by
JXpping a symmetrically biased coin“, Proc. 24th FOCS, 1983, pp.11-21.

Rabin: “HOW to exchange secrets using oblivious transfer”, Technical
memo, TR-81, Aiken Computation Lab., Harward Univ., 1981.

Vazirani and Vazirani: “Trapdoor pseudo random number generators with
applications to protocol design”, Proc. 24th. FOCS, 1983, pp.23-30.

Tedrick: “How to exchange half a bit”, Roc. of Crypto 83, pp.147-151.

Tedrick: “Fair exchange of secrets”, Proc. of Crypto 84, pp.434-438.

