
From Asymmetry to Full Symmetry:

New Techniques for Symmetry Reduction in
Model Checking�

E. Allen Emerson and Richard J. Trefler

Department of Computer Sciences and Computer Engineering Research Center
University of Texas, Austin, TX, 78712, USA

Abstract. It is often the case that systems are “nearly symmetric”; they
exhibit symmetry in a part of their description but are, nevertheless,
globally asymmetric. We formalize several notions of near symmetry and
show how to obtain the benefits of symmetry reduction when applied to
asymmetric systems which are nearly symmetric. We show that for some
nearly symmetric systems it is possible to perform symmetry reduction
and obtain a bisimilar (up to permutation) symmetry reduced system.
Using a more general notion of “sub-symmetry” we show how to generate
a reduced structure that is simulated (up to permutation) by the original
asymmetric program.
In the symbolic model checking paradigm, representing the symmetry
reduced quotient structure entails representing the BDD for the orbit re-
lation. Unfortunately, for many important symmetry groups, including
the full symmetry group, this BDD is provably always intractably large,
of size exponential in the number of bits in the state space. In contrast,
under the assumption of full symmetry, we show that it is possible to
reduce a textual program description of a symmetric system to a textual
program description of the symmetry reduced system. This obviates the
need for building the BDD representation of the orbit relation on the
program states under the symmetry group. We establish that the BDD
representing the reduced program is provably small, essentially polyno-
mial in the number of bits in the state space of the original program.

1 Introduction

Model checking [CE81] (cf. [QS82,LP85] [CES86]) is an algorithmic method for
determining whether a finite state system, M , satisfies a temporal logic for-
mula, f . Lichtenstein and Pnueli [LP85] have argued that in practice the com-
plexity of model checking will be dominated by |M |, the size of M . Unfortu-
nately, |M | may be exponentially larger than the textual description of M . For
example, a system comprised of n identical processes running in parallel, each
of which has 3 local states, may have 3n reachable states.
� The authors’ work was supported in part by NSF grant CCR-980-4736 and SRC

contract 98-DP-388.

L. Pierre and T. Kropf (Eds.): CHARME’99, LNCS 1703, pp. 142–157, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

New Techniques for Symmetry Reduction in Model Checking 143

Symmetry reduction is an abstraction technique which endeavors to substan-
tially ameliorate this state explosion problem by exploiting the fact that many
computer systems are symmetric in their design and implementation
(cf. [JR91,ID96,ES96,CE+96,HI+95,MAV96,ES97,GS97,ET98,AHI98]). Such
symmetry can be seen to be a form of redundancy from the standpoint of model
checking temporal logic formulae. The state graph, M , of many synchronization
and coordination protocols which are the parallel composition of n processes
identical up to renaming, often exhibits considerable symmetry. For example,
the mutual exclusion protocol contains states (C1, T2) and (T1, C2) representing
the states where process 1 is in its critical section and process 2 is attempting
to reach its critical section and vice versa. These two states are related by the
permutation (1 2) which drives process index 1 to 2 and 2 to 1; in general the
permutation (1 2) when applied systematically to the states and transitions of M
results in M again, that is (1 2) is an automorphism of M . Aggregating states
which are equivalent up to permutation factors out the symmetry of a system
and model checking is then performed on the symmetry reduced structure – a
substantial, often exponential, savings can be achieved.

While symmetry reduction methods offer great potential, there are several
obstacles to its more widespread application. Firstly, it is often the case that
protocols are not symmetric; they may contain a high degree of symmetry in
some part of their design but their global behavior is asymmetric. This can
occur, for instance, in systems with processes which are identical up to renaming
and the assignment of priorities. The readers–writers protocol, a refinement of
the mutual exclusion protocol, is one such example. In the mutual exclusion
algorithm the two processes competing for access to their critical sections are
given equal priority; in the readers–writers protocol the writer is given priority.
While the global state graph of the readers–writers protocol is asymmetric, it
is symmetric in every aspect except the transition from the state where both
processes are attempting to access their critical sections.

Secondly, BDD [Br86] based symbolic representation of the symmetry rela-
tion used in forming symmetry reduced quotient structures can be proved to be
of exponential size. From this it has been argued that symmetry and symbolic
representation [Mc92,BC+92] do not combine profitably [CE+96].

We describe solutions to both these problems in this paper. Previous work on
symmetry reduction ([ES96] cf. [CE+96]) defined the symmetry reduced struc-
ture, M , as the quotient structure of M induced by the equivalence relation,
≡G, on states. Two states, s and s′, are equivalent, s ≡G s′, iff there is an auto-
morphism π in G which drives s to s′. We relax this relationship by defining a
permutation π to be a near automorphism iff for every transition s → t in M ei-
ther π(s) → π(t) is in M or s is invariant under the automorphisms of S, the set
of states of M . The equivalence relation on states induced by the group of near
automorphisms defines a quotient structure that is bisimilar, up to permutation,
to M . Therefore, even asymmetric structures can be near symmetry reduced.

Near automorphisms are, however, restrictive in the sense that whenever
π(s) → π(t) is not a transition then s must be a highly symmetric state. By

144 E. Allen Emerson and Richard J. Trefler

weakening the requirements for the preservation of transitions by permutations
we can apply these ideas to a wider class of problems. Specifically, we define a
notion of rough symmetry for multi-process systems whose processes are ‘almost-
symmetric’. Intuitively, a system is roughly symmetric if for every pair of pro-
cesses i and j, the actions of process i from local state P , in global state s, can
be mimicked by process j when j is the highest priority process in local state P ,
in the equivalent global state s′. We then show that the rough symmetry reduced
system is bisimilar to the original system M .

By further weakening the restrictions on permutations applied to structures,
we define a notion of sub-symmetry which allows for the creation of an abstract
symmetry reduced structure that is simulated by the original program. A per-
mutation π is a sub-automorphism of M if π drives certain “closed” subgraphs
of M back into M . This notion of sub-automorphism induces a pre-order ≤H on
states such that s ≤H t iff there is a sub-automorphism π which drives a closed
subgraph containing s back into M and π(s) = t. We then use ≤H to define a
sub-symmetry reduced structure, M≤H , which is simulated up to permutation
by M , thereby showing that ∀CTL∗ [CGL94] formulae true of M≤H are true
of M .

Finally, we show how to successfully combine symmetry with BDD-based
symbolic representations of systems. For many symmetry groups, including the
full symmetry group, the BDD for the orbit relation, that is for determining
equivalence of two states under group action, must always be of exponential size.
This orbit BDD is used to permit designation of a specific representative state
for each equivalence class in the quotient structure. The orbit BDD must rec-
ognize as equivalent, say, the states (N1, N2, T3), (N1, T2, N3), and (T1, N2, N3).
A specific, actual state is chosen as a representative. In the case of full sym-
metry, we can instead use generic representatives, for example, (2N, 1T), which
obviates the need for representation of the orbit relation. This is accomplished
by compiling the program text of the fully symmetric program P into the pro-
gram text of the symmetry reduced program P over generic states. P defines a
structure M(P) isomorphic (and bisimilar up to permutation) to the symmetry
reduced structure M and model checking can then be performed on M(P). As-
suming that M is composed of n processes, this compilation process not only
obviates the need for determining the equivalence of states under permutation
but also reduces the number of bits used to represent a state in the symmetry
reduced program from O(n) in the case of M to O(log n) in the case of M(P).
A consequence is that the BDD representing M(P) is always of polynomial size
in the number of processes, in contrast to the exponential size BDD based on
specific representatives.

The remainder of the paper is organized as follows: Section 2 contains some
preliminaries, Section 3 discusses model checking asymmetric systems, compila-
tion of fully symmetric programs into symmetry reduced programs is outlined
in Section 4 and Section 5 contains a brief conclusion.

New Techniques for Symmetry Reduction in Model Checking 145

2 Preliminaries

Our model of computation, presented formally below, can be seen to represent
the interleaved computations of a program composed of n communicating pro-
cesses. States are n-tuples of local states, one for each process. Transitions repre-
sent the movement of one process from one local state to another. Permutations
on the set [1..n] can then be interpreted as permutations of process indices.

We denote the set of natural numbers by N. Let I be a finite index set [1..n]
for some n ∈ N, n > 0. LP is a finite set of local states. Sym I is the set of
permutations on index set I. M = (S,R) is a structure where S ⊆ LPn and
R ⊆ S × S is non-empty and total. We write both (s, t) ∈ R and s → t ∈ R to
mean that there is a transition from state s to state t in R. For l ∈ LP , i ∈ [1..n]
and s ∈ S we write (l, i) ∈ LP × I as li and s(i) = l (li is true at s) iff the ith
element of s is l.

A permutation π ∈ Sym I acts on a state s ∈ S in the following way:
s(i) = l iff the π(i)th element of π(s) is l. π is an automorphism of M = (S,R)
iff S = {π(s) | s ∈ S} and R = {(π(s), π(t)) | (s, t) ∈ R}. Attention is usually
restricted to such permutations because they preserve both the state space and
the transition relation of the structure, M . A state s is said to be fully symmetric
if for all π ∈ Sym I, π(s) = s. The identity permutation is denoted by id . For
any M , Aut(M) the set of automorphisms of M , is a group. Similarly, for state s,
Aut(s) is the set of permutations, π, such that π(s) = s and Aut(S) is the set
of permutations, π, such that π(S) = S.

Any subgroup G of Aut(M), induces the following equivalence relation,
s ≡G t iff there exists a π ∈ G such that π(s) = t. M ’s symmetry reduced struc-
ture, with respect to G, M = M/≡G = (S,R) is defined as follows: S = {s ∈ S | s
is the unique representative of the equivalence class [s]≡G} 1 and (s, t) ∈ R iff
there exists (s, t) ∈ R for some t ≡G t̂ [ES96,CE+96] (cf. [ES96] for more details).

In the sequel we will make use of the expressive branching time temporal
logic CTL∗ [EH86] (cf. [Em90] for more details). Let LP ×I be the set of atomic
propositions. A path formula is formed from boolean combinations (∧,∨,¬) and
nestings of atomic propositions, state formulae and the usual temporal opera-
tors ,G,F,U and V (the dual of U). State formulae are formed from boolean com-
binations of atomic propositions, state formulae and prefixing of path formulae
by path quantifiers A and E. For example, the formula AG¬(writerC ∧ readerC)
says that along all computations it is never the case that both the writer and
the reader are accessing their critical sections. We write M, s |= f to denote that
state s in structure M satisfies formula f and M |= f to denote that there is a
state, s, in M such that M, s |= f . A formula is in positive normal form (PNF) if
the ¬ operator appears only in front of atomic propositions. ECTL∗ is the sub-
logic of CTL∗ in which every formula, when put in PNF, contains only E path
quantifiers. Similarly, ACTL∗ is the sub-logic of CTL∗ in which every formula,
when put in PNF, contains only A path quantifiers [CGL94].
1 s is the distinguished element of S and [s]≡G is the set of s ∈ S such that s ≡G s.

146 E. Allen Emerson and Richard J. Trefler

We define symmetric versions of CTL∗ and its sub-logics simply for ease of
exposition – all our results can be restated to handle full CTL∗2. The syntax
of Symmetric CTL∗ (SCTL∗) is the same as for CTL∗ except that the atomic
formulae are restricted to the following: ∀i : li, ∃i : li, ∀i : ¬li, ∃i : ¬li and
∃i �= j : li ∧ lj . For example, AG¬(∃i �= j : Ci ∧ Cj) is a formula of SACTL∗.

2.1 Simulation up to Permutation

Let M = (S,R) and M ′ = (S′, R′) be structures defined over LP
and I. B ⊆ S × S′ is a simulation up to permutation
(cf. [Mi71,Pa81] [HM85] [MAV96,ES96,CE+96]) iff for all (s, s′) ∈ B

– there is a π ∈ Sym I such that π(s) = s′ and
– for all (s, t) ∈ R there is a t′ such that (s′, t′) ∈ R′ and (t, t′) ∈ B.

B ⊆ S × S′ is a bisimulation up to permutation iff for all (s, s′) ∈ B the
above two conditions hold and

– for all (s′, t′) ∈ R′ there is a t such that (s, t) ∈ R and (t, t′) ∈ B.

Proposition 1. ([ES96,CE+96]) Let B be a bisimulation up to permutation.
For all (s, s′) ∈ B and all SCTL∗ formulae f , M, s |= f iff M ′, s′ |= f .

Proposition 2. ([ES96,CE+96]) Let B be a simulation up to permutation. For
all (s, s′) ∈ B and all SACTL∗ formulae f , M ′, s′ |= f implies M, s |= f .

Proposition 3. ([ES96,CE+96]) Let B be a simulation up to permutation. For
all (s, s′) ∈ B and all SECTL∗ formulae f , M, s |= f implies M ′, s′ |= f .

3 Symmetry Reduction and Asymmetric Systems

3.1 Near Automorphism Based Reductions

Let M = (S,R) be a structure. A permutation π is a near automorphism of M
if π(S) = S and for all (s, t) ∈ R either Aut(S) ⊆ Aut(s) or π(s) → π(t) ∈ R.
Let NAutM = {π ∈ Sym I | π is a near automorphism of M}.

Theorem 1. Given M = (S,R) the set NAutM is a group.

Corollary 1. MNAut = M/ ≡NAutM= (S,R) is bisimilar up to permutation
to M = (S,R) and for all (s, s) such that s ≡NAutM s, and for all SCTL∗

formulae f , M, s |= f iff MNAut , s |= f .
2 When model checking formula f over M = M/ ≡G it is required that for every

maximal propositional sub-formula p of f , and every permutation π ∈ G, π(p) ≡ p
[ES96,CE+96]. SCTL∗, SACTL∗, and SECTL∗ all satisfy this requirement.

New Techniques for Symmetry Reduction in Model Checking 147

We can apply these ideas to the readers-writers problem as given in figure 1.
The flip permutation (1 2) which drives index 1 to index 2 and vice versa is a
near automorphism. This implies that the structure in the figure has the full
symmetry group, Sym I, as its group of near automorphisms and therefore the
near symmetry reduced structure given in figure 2 is bisimilar up to permutation
to the structure in figure 1. Model checking for safety formulae like AG¬(∃i �=
j : Ci ∧ Cj) and liveness formulae like AG[(∃i : Ti) ⇒ AF(∃i : Ci)] – which says
that along all computations it is always the case that if some process is trying to
enter its critical section then it is inevitable that some process enters its critical
section – can then be performed on the near symmetry reduced structure MNAut

instead of M .

N1 N2

T1 N2 N1 T2

C1 N2 T1 T2 N1 C2

C1 T2 T1 C2

Reader: Process 1
Writer: Process 2

N -- Non-Trying
T -- Trying
C -- Critical Section

Fig. 1. Asymmetric Readers-Writers

Figure 3 contains the program skeletons which generate the structure M in
figure 1. The near automorphisms for M can be generated directly from the
program skeletons through the following observation. While the skeletons are
not symmetric they are nearly symmetric in the following sense. Ignoring, for
the moment, the transition T2 → C2 that is enabled when T1 is true, the two
skeletons are symmetric – the flip permutations applied to the skeletons results
in the same two skeletons. The asymmetry of the transition T2 → C2 that is
enabled when T1 is true guarantees a near symmetry of the induced Kripke
structure because this symmetry breaking transition is only enabled from the
fully symmetric state (T1, T2). In the full paper we give a more detailed algorithm
for determining near automorphisms from program skeletons.

Finally, we note that the near symmetry reduced quotient structureMNAut =
M/≡NAut can be built directly from the program text without building M in
a manner analogous to that used to build M . Basically, the procedure works as
follows, given a state s ∈ S generate each of the states t such that s → t ∈ R as
described by the program text. For each t if t is equivalent to a state t ∈ S then
add an arc s → t to R otherwise add t to S and the arc s → t to R (see [ES96]
for complete details).

148 E. Allen Emerson and Richard J. Trefler

N1 N2

N1 T2

T1 T2 N1 C2

T1 C2

Fig. 2. Near Symmetry Reduced Asymmetric Readers-Writers

N2 T2 C2
(N1 v T1)?

N1 C1T1
N2?

Reader

Writer

Fig. 3. Readers-Writers Program Skeletons

3.2 Rough Symmetry Based Reduction

The previous section showed how the definition of near automorphism was suffi-
cient to justify applying symmetry reduction techniques to asymmetric systems
such as the reader-writer problem. That technique required a permutation to act
on the structure by preserving transitions: s → t implies π(s) → π(t) or s is a
symmetric state. Requiring s to be symmetric, however, implies that the tech-
nique cannot be used to handle the more general readers-writers problems. We
therefore seek a relationship which will allow extensive reduction and generality.
Below we formulate a notion of equivalence based on roughly symmetric pro-
grams which again leads to a bisimulation between M and the rough symmetry
reduced version of M . Within this framework we can show that a more general
version of the readers-writers problem may be symmetry reduced.

The intuition behind our approach is as follows. We suppose that M = (S,R)
is the structure corresponding to a multi-process system in which the processes
have been assigned priorities. Furthermore, we assume that some portion of M
is highly symmetric. For instance, in the multiple readers-writers protocol, by
ignoring the extra functionality of a writer over a reader, it is possible to see
this protocol as ‘fully symmetric’. We view this highly symmetric M ′ as a ‘sub-
structure’ ofM from which states and actions have either been removed or added
in some systematic way to form M . Taking the group, G, of automorphisms
from this sub-structure we then seek to show that for every pair, (s, s′), of G

New Techniques for Symmetry Reduction in Model Checking 149

equivalent states and every transition s → t of process i in M is preserved by
some permutation π which drives s to s′ and the transition s → t to an equivalent
transition by the highest priority process, π(i). We then say that M is roughly
symmetric with respect to the symmetry group of M ′.

Formally, let M = (S,R) where R = R1 ∪ . . . ∪ Rn, each Ri ⊆ S × S. Ri

is the transition relation for process i. Let G be a sub-group of Sym I. We say
that Ri is covered (with respect to G) by Rj , iff for all transitions s → t ∈ Ri

and all s′ ≡G s, if j = max{j′ | s(i) = s′(j′)} then there is a permutation π ∈ G
such that π(s) = s′, π(i) = j, s′ → π(t) ∈ Rj . Then we say that M is roughly
symmetric with respect to G iff for all i, j ∈ I, Ri is covered by Rj .

Theorem 2. Suppose M = (S,R), R = R1 ∪ . . . , Rn is roughly symmetric with
respect to Then M = M/≡G = (S,R) is bisimilar up to permutation to M .

Proof: Let B = {(s, s) ∈ S × S | s ≡G s}. Let s ≡G s for some s ∈ S, s ∈ S.
Then suppose s → t ∈ Ri. Let j = max{j′ | s(j′) = s(i)}, then there is a π ∈ G
such that π(s) = s, π(i) = j and s → π(t) ∈ Rj . This implies s → t ∈ R for
some t ≡G π(t) which implies that t ≡G t and (t, t) ∈ B. Suppose s → t ∈ R.
Then for some i and t′ ≡G t, s → t′ ∈ Ri. Let jmax{j′ | s(j′) = s(i)}. Then
there is some π ∈ G such that π(s) = s, π(i) = j and s → π(t′) ∈ Rj . But then
π(t′) ≡G t′ which implies π(t′) ≡G t and hence (π(t′), t) ∈ B. ✷

We can apply these ideas to show that a general readers-writers system can
be symmetry reduced by the full symmetry group to a bisimilar rough symmetry
reduced quotient structure. We have m < n identical readers and n−m identical
writers. The writers all have priority over all the readers but no two processes
may access their critical sections at the same time. The generic process skeletons
for these processes are identical to the ones in figure 3 except that for reader i
the arc from state Ti to state Ci is labeled by (N1 ∨ T1) ∧ . . . (Ni−1 ∨ Ti−1) ∧
(Ni+1 ∨ Ti+1) ∧ . . . ∧ (Nm ∨ Tm) ∧ Nm+1 ∧ . . . ∧ Nn and for writer j the arc
from state Tj to state Cj is labeled by (N1 ∨ T1)∧ . . .∧ (Nj−1 ∨ Tj−1)∧ (Nj+1 ∨
Tj+1) ∧ . . . ∧ (Nn ∨ Tn). We now show that M = (S,R) for this readers writers
system is roughly symmetric with respect to Sym I. Consider s → t ∈ Ri and
s ≡Sym I s′. Let j = max{j′ | s′(j′) = s(i)}. Since there is a permutation
mapping s to s′ there is a permutation π such that π(s) = s′ and π(i) = j.
Suppose s → t ∈ Ri follows from Ni → Ti, then π(s) → π(t) ∈ Rj . Similarly if
s → t ∈ Ri is due to Ci → Ni then π(s) → π(t) ∈ Rj . Suppose s → t ∈ Ri follows
from either a writer or a reader entering its critical section. If i is a reader then
(N1∨T1)∧. . . (Ni−1∨Ti−1)∧(Ni+1∨Ti+1)∧. . .∧(Nm−1∨Tm−1)∧Nm∧. . .∧Nn or
if i is a writer then (N1∨T1)∧. . .∧(Nj−1∨Tj−1)∧(Nj+1∨Tj+1)∧. . .∧(Nn∨Tn).
Then consider that j is the largest index such that s′j = T . If j is a writer it
cannot be blocked. If j is a reader it cannot be blocked because no writer is in
its T section. Therefore process j can enter it’s critical section from state s′ and
we have that π(s) → π(t) ∈ Rj . Therefore, the readers-writers system is roughly
symmetric with respect to Sym I and an exponential savings may be achieved
through rough symmetry reduction.

150 E. Allen Emerson and Richard J. Trefler

3.3 Simulation Based Reductions and Asymmetry

Given M = (S,R), let S′ be a subset of S. S′ is closed (with respect to M) iff
for all s ∈ S′ and all (s, t) ∈ R, t ∈ S′. Let π ∈ Sym I and S′ ⊆ S be closed.
π is a sub-automorphism on S′ iff {π(s) | s ∈ S′} ⊆ S and for all s, t ∈ S′ if
s → t ∈ R then π(s) → π(t) ∈ R. Let H be the subset of Sym I × 2S such that
(π, S′) ∈ H iff π is a sub-automorphism on the closed subset of S, S′. s ≤H t iff
there is a (π, S′) ∈ H such that s ∈ S′ and π(s) = t.

Proposition 4. s ≤H t and t ≤H u implies s ≤H u.

Proof: s ≤H t implies there is some closed S′ ⊆ S and π such that
(π,S′) ∈ H and π(s) = t. Furthermore, there is some closed S′′ ⊆ S and φ
such that (φ, S′′) ∈ H and φ(t) = u. Consider T ⊆ S′ such that T contains s
and all the states reachable from s in S′. S′ closed implies such a T exists and
is a closed subset of S′. π(T) ⊆ S′′ is straight forward. This implies that for all
s, t ∈ T , (φ · π)(s) ∈ S and if (s, t) ∈ R, (φ · π)(s) → (φ · π)(t) ∈ R which implies
that ((φ · π), T) ∈ H . Since (φ · π)(s) = u it is the case that s ≤H u. ✷

For, s ∈ S, define [s]≤H = {s ∈ S|s ≤H s}. Then a sub-symmetry reduced
version of M is M≤H = M/≤H= (S,R) where

– S ⊆ S and
– for all s ∈ S there is an s ∈ S such that s ∈ [s]≤H and
– (s, t) ∈ R iff there is some t ≤H t such that (s, t) ∈ R.

Let M = (S,R) and M≤H = (S,R) be structures as described above. Then
let B = {(s, s) ∈ S × S | s ∈ [s]≤H}.

Theorem 3. B is a simulation up to permutation.

Proof: Suppose (s, s) ∈ B then s ∈ [s] and there is a (π, S′) ∈ H , such that
π(s) = s. Suppose (s, t) ∈ R. This implies that (π(s), π(t)) ∈ R. By the structure
of M≤H this implies that there is some t such that (s, t) ∈ R and π(t) ≤H t. But
this implies that t ≤H t hence (t, t) ∈ B. ✷

Corollary 2. For all SACTL∗ formulae, f , and for all (s, s) ∈ B, M≤H , s |= f
implies M, s |= f .

In fact, this type of reduction is possible for any H ′ ⊆ H . ≤H′ is defined
as above and ≤∗

H′ is the reflexive, transitive closure of ≤H′ . The sub-symmetry
reduced system, M≤∗

H′ = M/≤∗
H′= (S,R) is then defined analogously.

Proposition 5. If ≤H is symmetric then ≤H is an equivalence relation.

Theorem 4. Let M = (S,R) and M≤H = (S,R) be as above and let ≤H be
symmetric, then B = {(s, s) ∈ S × S|s ∈ [s]H} is a bisimulation up to permuta-
tion.

New Techniques for Symmetry Reduction in Model Checking 151

Proof: Let (s, s) ∈ B. Suppose s → t ∈ R, then there is some t such that
s → t ∈ R and t ≤H t. s ≤H s implies s ≤H s which implies there is some
(φ, T ′) ∈ H such that s ∈ T ′ and φ(s) = s. Hence s → φ(t) which implies t ≤H

φ(t) and therefore φ(t) ≤H t. This implies φ(t) ≤H t and therefore (φ(t), t) ∈ B.
✷

Corollary 3. For all SCTL∗ formulae, f , and all (s, s) ∈ B, M, s |= f iff
M≤H , s |= f

When ≤H (or ≤H′) can be determined from the program text or is given
a priori then it is possible to build the sub-symmetry reduced structure M≤H

directly from the program text without first constructing M . The procedure is
analogous to building M = M/ ≡Aut(M), however, it may require some back-
tracking as it is possible that a state s is generated in M≤H which can then be
replaced by a state s such that s ≤H s.

4 Symmetry Reduction on Fully Symmetric Programs

Representing symmetry reduced structures with BDD’s is, typically, computa-
tionally intractable. The BDD representing the orbit relation of many groups,
including the full symmetry group, is of size exponential in the number of pro-
cesses or the number of bits in a state. In the sequel, we show that under the
assumption of full symmetry, symmetry reduction can be done efficiently in the
symbolic model checking paradigm without representation of the orbit relation.
Let k = |LP |, be the number of local states of an individual process Pi. Given a
program P = //i∈[1..n]Pi, the parallel composition of n processes identical up to
renaming, which defines a fully symmetric Kripke structure M(P), we compile P
into a program P , in time linear in the size of P . P defines a symmetry reduced
quotient structure M(P) which is isomorphic to M(P). However, each specific
representative in M(P) is replaced by its corresponding generic representative
in M(P). M(P) can then be used to model check M(P) without having to rep-
resent the orbit relation for the symmetry group on the states of M(P). We have
then reduced a problem of worst case size kn which is exponential in n, to one
of worst case size nk which is polynomial for any fixed number k of local states.
Furthermore, the number of bits required to symbolically represent a state has
been decreased from O(n log k) in M(P), the standard quotient, to O(k logn)
in M(P) the generic quotient. We then show that in many cases the transitions
in P can be represented by BDD’s polynomial in the size of the text of P .

The key idea is that a generic representative can be chosen for each of the
equivalences classes of states under the assumption of full
symmetry [ES96,CE+96]. Equivalence under full symmetry means that two
states s, t ∈ LPn are equivalent iff they have exactly the same number of pro-
cesses in local state l for each state l ∈ LP . Hence the generic representative
needs only track the number of processes in each local state and not any infor-
mation regarding which processes are in a particular local state.

152 E. Allen Emerson and Richard J. Trefler

Let a program P = //i∈[1..n]Pi be the parallel composition of processes
P1, . . . , Pn which are identical up to renaming. Each process is specified by a
program skeleton similar to the ones in figure 3. The skeletons give rise to generic
transitions of the processes which are specified by l : g → l′ where l, l′ ∈ LP
are local states and g is a guard. Guards are positive boolean combinations of
the following elements: ∀j : lj , ∀j : ¬lj , ∃j : lj , ∃j : ¬lj and ∃j �= j′ : lj ∧ lj′ .
Since the processes are identical up to renaming this syntax gives rise to fully
symmetric structures.

The intended meaning of li : g → l′i is that if P is in state s, where process i
is in local state li and guard g is true of s then P may transit to the state t,
everywhere the same as s, except that process i is in state l′i. P executes the
enabled transitions – there may be multiple enabled transitions for a single
process – non-deterministically. We further stipulate that P defines an initial
state s0 of the form ln = (l1, . . . , ln) for some l ∈ LP .

Given P = //i∈[1..n]Pi with initial state ln, as above, P defines a Kripke
structure M(P) = (S,R, s0) as follows: s0 = ln is the initial state, S = LPn and
s → t ∈ R iff there exists a generic transition statement l : g → l′ such that
s(i) = l, t(i) = l′, g is true at s and for all i′ �= i, s(i′) = t(i′). For a Kripke
structure M with an initial state s0, we say that M |= f iff M, s0 |= f . M(P) =
M(P)/≡Sym I = (S,R, s0) is the symmetry reduced quotient structure.

Theorem 5. [ES96] For any SCTL∗ formula f , M(P), s0 |= f iff M(P),
s0 |= f .

We define the symmetry reduced program P as follows: P has variables
x1, . . . , xk each of type [0..n] and we assume the existence of a bijective func-
tion ι : LP → [1..k]. Suppose each process Pi has c different transitions of the
form li : g → l′i each generated by the generic transition l : g → l′. Then P
has c transitions of the form xι(l) > 0∧T (g) → xι(l), xι(l′) := xι(l) − 1, xι(l′) +1.
The intended meaning being that if P is in a state s ∈ [0..n]k where the vari-
able xι(l) ≥ 0 and the guard T (g) is true, then P may non-deterministically
transit to a state t ∈ [0..n]k such that xι(l) has decreased by 1, xι(l′) has in-
creased by 1 and all other variables are unchanged.

The symmetry reduced guard T (g) is derived from g as follows: T (∀j :
lj) =‘xι(l) = n’, T (∀j : ¬lj) = ‘xι(l) = 0’, T (∃j : lj) =‘xι(l) > 0’, T (∃j : ¬lj) =
‘xι(l) < n’, T (∃j �= j′ : lj ∧ lj′) =‘xι(l) ≥ 2’, T (g1 ∨ g2) = T (g1) ∨ T (g2) and
T (g1 ∧ g2) = T (g1)∧T (g2). Finally, if the initial state of P is ln then the initial
state of P is xι(l) = n and xι(l′) = 0 for all l′ �= l.

P defines a Kripke structure M(P) = (S′, R′, s′0) as follows: if xi = n and for
all i′ �= i, xi′ = 0 is the initial state of P then s′0(i) = n and for all i′ �= i, s′0(i

′) =
0, S′ = [0..n]k and R′ ⊆ S′ × S′ where s → t ∈ R′ iff there is a transition in P ,
of the form xι(l) ≥ 0 ∧ T (g) → xι(l), xι(l′) := xι(l) − 1, xι(l′) + 1 where the ι(l)th
element of s is greater than 0, T (g) is true at s and for all j ∈ [1..k], j = ι(l)
implies t(j) = s(j)−1, j = ι(l′) implies t(j) = s(j)+1 and otherwise s(j) = t(j).

Theorem 6. M(P) is isomorphic to M(P).

New Techniques for Symmetry Reduction in Model Checking 153

We can also show that M(P) is bisimilar to M(P) by translating the labels
of the states in M(P) into the generic state format, that is by representing only
the number of processes in a particular local state. Similarly, by translating the
formulae of SCTL∗ into this generic format we have the following result.

Corollary 4. For all SCTL∗ formulae f , M(P), s′0 |= f iff M(P), s0 |= f

In the sequel we describe how S′ and R′ can be succinctly represented by
BDD’s. States in S′ are represented by tuples in [0..n]k. Such a state space can be
represented by k·(log(n)+1) boolean variables (for ease of explanation we assume
that n is a power of two). Bits b0 . . . blog n represent x1, bits blog(n)+1 . . . b2 log n

represent the variable x2, etc. Assuming that k is fixed, then generic states
of S′ can be represented in O(logn) bits. It follows that, for any type of tran-
sition relation R′ over S′, the BDD representing R′ is of size at most poly(n).
This should be contrasted with the size of the BDD representing the orbit re-
lation in the conventional symmetry reduced quotient which has a lower bound
exp(min(n, k)) [CE+96]. But for this model of computation we can obtain better
bounds as described below.

We now show that transitions of the form xι(l) ≥ 0 ∧ T (g) → xι(l), xι(l′) :=
xι(l)−1, xι(l′)+1 can be represented succinctly when T (g) is of a particular form.
Firstly, xι(l) ≥ 0 can be checked with a BDD of size O(log(n)+1) since the BDD
need only check that the bits (ι(l)−1)·logn . . . [ι(l)·logn]−1 are not all 0 (false).
Consider the set of atomic boolean guards {xj = n, xj = 0, xj > 0, xj < n,
xj ≥ 2}, for j ∈ [1..k] and assume that T (g) is either a conjunction of atomic
boolean guards or a disjunction of atomic boolean guards. For the case
where T (g) is conjunctive, extend the set of atomic boolean guards to in-
clude xj > 0 ∧ xj < n and xj < n ∧ xj ≥ 2.

In a manner similar to the above it is possible to show that each of the
extended atomic boolean guards is representable by a BDD polynomial in the
number of bits used to represent the value of the variable which the guard
restricts. Conjunctive guard T (g) can be rewritten so that it first mentions
only those atomic boolean guards which mention variable x1 then x2 and so on.
Consider the conjunctive portion of T (g) in which xj occurs, j ∈ [1..k]. Under the
assumption that n ≥ 1, it is not hard to prove that any conjunctive combination
of boolean atomic guards reduces to the constant 0 or a single instance of one of
the extended set of conjunctive boolean guards. Since the BDD’s for the separate
variables in T (g) are independent, they can be put together to form the BDD
for T (g) which is of size additive in the sizes of the BDD’s for each of the separate
variables and hence polynomial in the length of T (g).

A similar argument can be made for the case when T (g) is disjunctive. How-
ever, in that instance the set of atomic boolean guards is extended by xj =
n∨xj = 0 and xj = 0∨xj ≥ 2. Furthermore, arbitrary disjunctions of the atomic
boolean guards never result in the constant 0 (false) but they do result either in
a single instance of the extended set of atomic boolean guards or the constant 1
(true). Finally, it is not hard to see that a BDD can be built to check whether two
states are related by the assignments of the form xι(l), xι(l′) := xι(l) −1, xι(l′)+1

154 E. Allen Emerson and Richard J. Trefler

which is of size polynomial in k · (log(n) + 1). The bits representing the vari-
able xι(l) (xι(l′)) increase (decrease) by 1 and all other variables remain un-
changed. Finally, by combining all three sections of the BDD representing a
transition we see that the BDD is at most cubic in O(k · (log(n)+ 1)) and hence
polynomial in the size of the transition. These BDD’s for individual program
statements can be combined to get a BDD for R′ of size poly(n). However, they
combine disjunctively which can be advantageous in terms of possible disjunctive
partitioning.

When P = ||i∈[1..n]Pi is the synchronous composition of processes P1, . . . , Pn

a similar but slightly more complex translation is required. P ||, the symmetry
reduced program, contains two variables xι(l) and x′

ι(l) for each local state l.
The generic transitions of the synchronous program P are translated in the
same manner as the generic transitions in the asynchronous case except for the
following: guards refer to unprimed variables while the assignments are made
to the primed variables. Computation then proceeds in rounds. For each local
state l, if the unprimed variable xι(l) has value b then up to b enabled transitions
from place l – compiled transitions with xι(l) > 0 in their guard – are executed.
At the end of the round, each unprimed variable xj is set to the value of the
primed variable x′

j .

5 Conclusion

Many researchers have investigated the exploitation of symmetry in order to
expedite verification but ‘almost’ symmetric designs have received little atten-
tion. A different type of partial symmetry has been explored in [HI+95], without
precise formalization and only in relation to preservation of reachability prop-
erties of petri nets. Our formalizations of near and rough symmetry are new
and our use of near and rough symmetries of M in the reduction of M to an
abstract quotient structure is new. The term partial symmetry has been used
for quite some time (cf. [Ko78]) in switching theory. There, however, a system is
partially symmetric if its group of symmetries over index set I is isomorphic to
the full symmetry group of an index set I ′ ⊆ I. This type of partial symmetry
has been handled explicitly by [ES96] and [CE+96]. [AHI98] considers partial
symmetry in a manner more analogous to our definition of sub-symmetry. How-
ever, they deal only with partial symmetries of the formula (or its automaton
representation) to be model checked, rather than reduction of the structure it-
self. Abstraction of M , on the other hand, has the potential to be of greater
benefit in ameliorating the state explosion problem [LP85]. We have shown that
near automorphisms are sufficient for the preservation of temporal properties,
a generalization of the results of [ES96,CE+96], we have extended these ideas
to rough symmetries, and we have shown how to obtain simulated symmetry
reduced quotient structures from asymmetric systems via sub-symmetries.

With respect to full symmetry, we have shown how to exploit the sym-
metry of program text without the need to represent the symmetry reduced
Kripke structure or the orbit relation induced by the symmetry group. [ID96]

New Techniques for Symmetry Reduction in Model Checking 155

deals with similar symmetry groups but they do so explicitly. That is, the state
spaces are not represented by BDD’s and they therefore a priori do not have to
cope with the problem of representing the symmetry induced equivalence classes
by a BDD. [CE+96] shows BDD’s representing the orbit relation of the full
symmetry group are of exponential size. They suggested a heuristic to miti-
gate this problem using multiple representatives, but did not prove it to yield
a tractable representation in general. Our technique consists in compiling the
symmetric program P with Kripke structure M(P) to a symmetry reduced pro-
gram P over generic states whose structure M(P) is bisimilar up to permutation
to M(P)/≡Sym I . This can be seen to be an example of the utility of compiling
programs into Petri Nets to achieve an exponential reduction. We believe we are
the first to show that it is just such a reduction strategy which can usefully com-
bine symmetry reduction with BDD based state representation. Previous work
on Petri Nets, BDD’s and symmetry reduction has not dealt explicitly with the
fact that BDD representation of the symmetry induced equivalence classes is a
self-defeating proposition for many symmetry groups.

For the future, we are implementing a preprocessor front end to a symbolic
model checking tool to take advantage of our results on full symmetry. We are
also investigating extending our technique to a larger class of groups [CE+98]
for which symmetry reduction can be applied directly to program text. With
respect to near symmetry and full symmetry we are interested in exploring the
applicability of our work here to symmetry reduction techniques which use the
annotated symmetry reduced structure which preserves the truth of all CTL∗

(and µ-calculus) properties [ES96,ES97,ET98].

Acknowledgment

The authors would like to thank Bob Kurshan for many stimulating comments
and discussions.

References

AHI98. Ajami, K., Haddad, S. and Ilie, J.-M., Exploiting Symmetry in Linear Time
Temporal Logic Model Checking: One Step Beyond. In Tools and Algorithms for the
Construction and Analysis of Systems, 4th Interntational Conference, ETAPS98
LNCS 1384, Springer Verlag, 1998. 143, 154

BC+92. Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L. and Hwang, L. J.,
Symbolic Model Checking: 1020 states and beyond. In Information and Computa-
tion, 98(2):142-170, June, 1992. 143

Br86. Bryant, R. E., Graph-Based Algorithms for Boolean Function Manipulation. In
IEEE Transactions on Computers, Vol. C-35, No. 8, Aug. 86, pp. 677-691. 143

CE81. Clarke, E. M., and Emerson, E. A., Design and Verification of Synchronization
Skeletons using Branching Time Temporal Logic. In Logics of Programs Workshop,
Springer, LNCS no. 131., pp. 52-71, May 1981. 142

156 E. Allen Emerson and Richard J. Trefler

CE+98. Clarke, E. M., Emerson, E. A., Jha, S. and Sistla A. P., Symmetry Reductions
in Model Checking. In Computer Aided Verification, 10th International Conference
LNCS 1427, Springer- Verlag, 1998. 155

CES86. Clarke, E. M., Emerson, E. A., and Sistla, A. P., Automatic Verification of
Finite State Concurrent System Using Temporal Logic. In ACM Trans. on Prog.
Lang. and Sys., vol. 8, no. 2, pp. 244-263, April 1986. 142

CE+96. Clarke, E. M., Enders, R., Filkorn, T., and Jha, S., Exploiting Symmetry in
Temporal Logic Model Checking. In Formal Methods in System Design, Kluwer,
vol. 9, no. 1/2, August 1996. 143, 145, 146, 151, 153, 154, 155

CGL94. Clarke, E. M., Grumberg, O. and Long, D. E., Model Checking and Abstrac-
tion. In Transactions on Programming Languages and Systems ACM, vol 16, no.
5, 1994. 144, 145

Em90. E. Allen Emerson, Temporal and Modal Logic. In J. van Leeuwen editor Hand-
book of Theoretical Computer Science vol. B, Elsevier Science Publishing, 1990.
145

EH86. Emerson, E. A., and Halpern, J. Y., ‘Sometimes’ and ‘Not Never’ Revisited: On
Branching versus Linear Time Temporal Logic, JACM, vol. 33, no. 1, pp. 151-178,
Jan. 86. 145

ES96. Emerson, E. A. and Sistla, A. P., Symmetry and Model Checking. In Formal
Methods in System Design, Kluwer, vol. 9, no. 1/2, August 1996. 143, 145, 146,
147, 151, 152, 154, 155

ES97. Emerson, E. A. and Sistla, A. P., Utilizing Symmetry when Model Checking
under Fairness Assumptions. In TOPLAS 19(4): 617-638 (1997). 143, 155

ET98. Emerson, E. A. and Trefler, R. J., Model Checking Real-Time Properties of
Symmetric Systems. In Mathematical Foundations of Computer Science, 23rd In-
ternational Symposium LNCS 1450, Springer-Verlag, 1998. 143, 155

GS97. Gyuris, V. and Sistla, A. P., On-the-Fly Model checking under Fairness that Ex-
ploits Symmetry. In Proceedings of the 9th International Conference on Computer
Aided Verification, Haifa, Israel, 1997. 143

HI+95. Haddad, S., Ilie, J. M., Taghelit, M. and Zouari, B., Symbolic Reachability
Graph and Partial Symmetries. In Application and Theory of Petri Nets 1995,
Springer-Verlag, LNCS 935, 1995. 143, 154

HM85. Hennessy, M., Milner, R., Algebraic Laws for Nondeterminism and Concur-
rency. In Journal of the ACM, Vol 32, no. 1, January, 1985, pp 137-161. 146

ID96. Ip, C-W. N., Dill, D. L., Better Verification through Symmetry. In Formal Meth-
ods in System Design, Kluwer, vol. 9, no. 1/2, August 1996. 143, 154

JR91. Jensen, K. and Rozenberg, G. (eds.), High-Level Petri Nets: Theory and Appli-
cation, Springer- Verlag, 1991. 143

Ko78. Kohavi, Zvi, Switching and Finite Automata Theory, second edition, McGraw-
Hill Book Company, New York, 1978. 154

LP85. Lichtenstein, O., and Pnueli, A., Checking That Finite State Concurrent Pro-
grams Satisfy Their Linear Specifications, POPL85, pp. 97-107, Jan. 85. 142,
154

MAV96. Michel, F., Azema, P. and Vernadat, F., Permutable Agents in Process Al-
gebra. In Tools and Algorithms for the Construction and Analysis of Systems, 96,
Springer Verlag, LNCS 1055, 1996. 143, 146

Mi71. Milner, R., An Algebraic Definition of Simulations Between Programs. In Pro-
ceedings of the Second International Joint Conference on Artificial Intelligence,
British Computer Society, 1971, pp 481-489. 146

New Techniques for Symmetry Reduction in Model Checking 157

Mc92. McMillan, K. L., Symbolic Model Checking: An Approach to the State Explosion
Problem, Ph.D. Thesis, Carnegie Mellon University, 1992. 143

Pa81. Park, D., Concurrency and Automata on Infinite Sequences. In Theoretical Com-
puter Science: 5th GI-Conference, Karlsruhe, Springer-Verlag, LNCS 104, pp 167-
183, 1981. 146

QS82. Queille, J. P., and Sifakis, J., Specification and verification of concurrent pro-
grams in CESAR, Proc. 5th Int. Symp. Prog., Springer LNCS no. 137, pp. 195-220,
1982. 142

	Introduction
	Preliminaries
	Simulation up to Permutation

	Symmetry Reduction and Asymmetric Systems
	Near Automorphism Based Reductions
	Rough Symmetry Based Reduction
	Simulation Based Reductions and Asymmetry

	Symmetry Reduction on Fully Symmetric Programs
	Conclusion

