
Probabilistic Polynomial-Time Equivalence and

Security Analysis

P. Lincoln? , 1 , J. Mitchell?? , 2 , M. Mitchell? ? ? , 2 , and A. Scedrov† , 3

1 Computer Science Laboratory, SRI International
2 Department of Computer Science, Stanford University

3 Department of Mathematics, University of Pennsylvania

Abstract. We use properties of observational equivalence for a proba-
bilistic process calculus to prove an authentication property of a cryp-
tographic protocol. The process calculus is a form of π -calculus, with
probabilistic scheduling instead of nondeterminism, over a term language
that captures probabilistic polynomial time. The operational semantics
of this calculus gives priority to communication over private channels, so
that the presence of private communication does not affect the observable
probability of visible actions. Our definition of observational equivalence
involves asymptotic comparison of uniform process families, only requir-
ing equivalence to within vanishing error probabilities. This definition
differs from previous notions of probabilistic process equivalence that re-
quire equal probabilities for corresponding actions; asymptotics fit our
intended application and make equivalence transitive, thereby justifying
the use of the term “equivalence.” Our security proof uses a series of lem-
mas about probabilistic observational equivalence that may well prove
useful for establishing correctness of other cryptographic protocols.

1 Introduction

Protocols based on cryptographic primitives are commonly used to protect access
to computer systems and to protect transactions over the internet. Two well-
known examples are the Kerberos authentication scheme [KNT94, KN93], used
to manage encrypted passwords, and the Secure Sockets Layer [FKK96], used
by internet browsers and servers to carry out secure internet transactions. Over
the past decade or two, a variety of methods have been developed for analyzing
and reasoning about such protocols. These approaches include specialized logics
such as BAN logic [BAN89], special-purpose tools designed for cryptographic
protocol analysis [KMM94], as well as theorem proving [Pau97a, Pau97b] and
model-checking methods using general purpose tools [Low96, Mea96, MMS97,
Ros95, Sch96].
? Partially supported by DoD MURI “Semantic Consistency in Information Ex-

change,” ONR Grant N00014-97-1-0505.
?? Additional support from NSF CCR-9629754.

? ? ? Additional support from Stanford University Fellowship.
† Additional support from NSF Grant CCR-9800785.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. I, LNCS 1708, pp. 776–793, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Probabilistic Polynomial-Time Equivalence and Security Analysis 777

In two previous papers [LMMS98, MMS98], we outlined a framework for
protocol analysis employing assumptions different from those used in virtually
all other formal approaches. Specifically, most formal approaches use a basic
model of adversary capabilities which appears to have developed from positions
taken by Needham and Schroeder [NS78] and a model presented by Dolev and
Yao [DY83]. This set of modeling assumptions treats cryptographic operations
as “black-box” primitives, with plaintext and ciphertext treated as atomic data
that cannot be decomposed into sequences of bits. Furthermore, as explained
in [MMS97, Pau97a, Sch96], there are limited ways for an adversary to learn
new information. For example, if a decryption key is sent over the network “in
the clear,” it can be learned by the adversary. However, it is not possible for
the adversary to learn the plaintext of an encrypted message unless the entire
decryption key has already been learned. Generally, the adversary is treated as a
nondeterministic process that may attempt any possible attack, and a protocol is
considered secure if no possible interleaving of actions results in a security breach.
The two basic assumptions of this model, perfect cryptography coupled with
nondeterministic computation on the part of the adversary, provide an idealized
setting in which protocol analysis becomes relatively tractable. However, this
model reduces the power of the adversary relative to real-world conditions. As
a result, it is possible to prove a protocol correct in this standard model, even
when the protocol is vulnerable to simple deterministic attacks.

Our goal is to establish a framework that can be used to analyze proto-
cols (and, potentially, other computer security components) under the stan-
dard assumptions of complexity-based cryptography. In [LMMS98], we outlined
a refinement of spi-calculus [AG97] that requires a calculus of communicating
probabilistic polynomial-time processes and an asymptotic form of observational
equivalence. We proposed basic definitions of the key concepts and discussed the
potential of this framework by examining some extremely simple protocols. The
sequential fragment of our calculus is developed in more detail in [MMS98],
where a precise correspondence is proved between a modal-typed lambda cal-
culus and probabilistic polynomial-time computation. In the present paper, we
test our basic definitions by considering further applications and develop a more
refined probabilistic semantics. Using our improved semantics, we sketch a proof
of correctness for a less trivial protocol. Specifically, we prove correctness of a
mutual authentication protocol proposed by Bellare and Rogaway [BR94]. This
security proof involves some reasoning about a specific form of asymptotic prob-
abilistic observational equivalence for our process calculus. Since, to the best
of our knowledge, there has been no previous work on process equivalence up
to some error tolerance, this argument and the difficulties we have encountered
motivate further investigation into resource-bounded probabilistic semantics and
information hiding.

In addition to relying on the basic relation between observational equivalence
and security properties developed in the spi-calculus [AG97], we have drawn
inspiration from the cryptography-based protocol studies of Bellare and Rogaway
[BR94, BR95]. In these studies, a protocol is represented as a set of oracles, each

778 P. Lincoln et al.

corresponding to one input-output step by one principal. These oracles are each
available to the adversary, which is represented by a probabilistic polynomial-
time oracle Turing machine. There are some similarities to our setting, since
an adversary has access to each input-output step by a principal by sending
and receiving data on the appropriate ports. However, there are some significant
technical and methodological differences. In our setting, the protocol and the
adversary are both expressed in a formal language. The use of a formal language
allows for proof techniques that are based on either the syntactic structure of
the protocol or on the semantic properties of all expressible adversaries. We
have found the specification method we have adopted from spi-calculus to be
relatively natural and more systematic than the specifications used by Bellare
and Rogaway. In particular, it appears that our specification of authentication
is stronger than the one used in [BR94], requiring us to prove more about the
observable properties of a protocol execution. Finally, by structuring our proof
around observational equivalence, we are led to develop general methods for
reasoning about probabilistic observational equivalence that should prove useful
in analyzing other protocols.

2 Process Calculus for Protocol Analysis

A protocol consists of a set of programs that communicate over some medium in
order to achieve a certain task. Typically, these programs are parameterized by
a security parameter k , with the idea that increasing the value of k makes the
protocol more secure. Often, k is just the length of the keys used in the protocol
since it is expected that longer encryption keys make decryption more difficult.

For simplicity, we will consider only those protocols that require some fixed
number of communications, independent of the security parameter. In other
words, the number of messages sent back and forth before the protocol completes
does not increase, even as the security parameter is “cranked up,” although the
length of the keys used throughout the protocol will increase. This simplifica-
tion is appropriate for most handshake protocols, key-exchange protocols and
authentication protocols. (Many widely-used protocols, including he authentica-
tion phase of SSL, serve as examples of “real-world” protocols where the number
of messages remains fixed, even as the security parameter is increased.) We are
in the process of extending our process calculus to allow looping, which will
allow us to deal with more complex protocols, such as those used to prove zero-
knowledge. In the present paper, however, we present methods for reasoning
about asymptotic observational equivalence that rely on having a fixed bound
on the depth of the concurrent process execution tree, and are therefore inap-
propriate for protocols where the number of messages depends on the security
parameter.

Following the work of Abadi and Gordon [AG97], we express security prop-
erties of a protocol P by writing an idealized protocol Q which is “patently
secure.” (Typically, Q requires magic machinery not available in real compu-
tational environments, such as perfect random number generators or perfectly

Probabilistic Polynomial-Time Equivalence and Security Analysis 779

secure communication channels.) Then, we endeavor to show that, for any ad-
versary, the interactions between the adversary and P have the same observable
behavior as the interactions between the adversary and Q . If this condition
holds, we can replace the ideal protocol Q with the realizable protocol P , with-
out compromising security.

The adversary may then be thought of as a process context, at which point
the task of reasoning about security is reduced to the task of reasoning about
observational equivalence (also called observational congruence). Our framework
is a refinement of the spi-calculus approach in that we replace nondeterministic
computation with probabilistic polynomial-time computation while simultane-
ously shifting from a standard observational equivalence to an asymptotic form
of observational equivalence.

2.1 Syntax

The syntax of our probabilistic polynomial-time calculus consists of terms and
processes. The process portion of the language is a bounded subset of asyn-
chronous π -calculus. However, readers familiar with the traditional π -calculus
will note the absence of scope extrusion, or the ability to pass channel names.
These omissions are purposeful, and necessary, in order that the expressive power
of the calculus correspond to what is commonly believed reasonable in the cryp-
tographic community. It is best to think of the calculus presented here as a no-
tationally familiar means of expressing parallelism and communication, rather
than to compare it directly to more traditional forms of π -calculus.

The term portion of the language is used to express all data dependent com-
putation. All terms have natural number type, so the only values communicated
from process to process are natural numbers. We do not present a formal gram-
mar or semantics for the term calculus (although we did so in [MMS98]). For
the purposes of this paper, the important consideration is that the term lan-
guage be able to express precisely the probabilistic polynomial time functions
from integers to integers. (Therefore, an alternative formalism to that employed
in [MMS98] would be probabilistic Turing machine descriptions, together with
explicit polynomial time limits, and the understanding that a Turing machine
computation that exceeds its time limit outputs zero.) Because the syntax of the
term language is not critical for the level of analysis presented in this paper, we
use pseudo-code to express terms throughout the paper.

In the grammar below, P varies over processes, T over terms, x over term
variables, and c over a countably infinite set C of channel names. The set of
well-formed processes is given by the following grammar:

P : : = 0 (termination)
(νc).P (private channel)
c(x).P (input)
c〈T 〉 (output)
[T = T].P (match)
P | P (parallel composition)

780 P. Lincoln et al.

To simplify the presentation of our probabilistic scheduling conventions, we
partition the set C of channel names into two disjoint subsets: the private chan-
nel names and the public channel names. Any name c bound with (νc) must be
a “private” channel name.

Communication between separate principals of a protocol will normally take
place across public channels. Private channels are used to communicate between
processes that are considered part of a single principal. Typically, these processes
would be running on a single machine, and their communication would therefore
be invisible to other machines on the network. Private channels are also used
to express offline initialization steps in a protocol, such as the exchange of keys
prior to the beginning of some communication.

Private channels are also used in writing specifications; there, they are used
to transfer information between processes in a way that is secure by fiat. Often
this information is transmitted in encrypted form in the actual implementation;
the statement of observational equivalence expresses the fact that encrypted
communication should behave similarly to totally private communication.

We often sweeten our process descriptions with a little syntactic sugar. We
write !nP to mean the n-fold parallel composition of P with itself. We write
LET x = y IN P as shorthand for (νc).(c〈y〉 | c(x).P) where c is some private
channel not occurring in P . As usual, we say P is closed if all variables in P
are bound.

2.2 Probabilistic Scheduling

Traditional process calculi assume nondeterministic scheduling of computations.
In particular, when there are several steps which could be chosen next, the
one actually chosen is selected nondeterministically. One motivation for this
point of view is derived from failure analysis. If one wishes to prove a mission-
critical system to be one hundred percent reliable, it is important to consider all
possible interleavings of computation in order to see whether any of them yield
an unacceptable outcome.

However, from the point of view of realistic security analysis, nondeterminism
gives too much power to the adversary. For example, an adversary allowed to
choose a number nondeterministically may just select the key required to decrypt
the message. Security analysis, however, is founded on the notion that such an
event can happen only with negligible probability, and is therefore of limited
concern.

For the sake of concreteness, and to provide an introduction to our notation
and methodology, we consider a simple protocol in which one party, A , wishes
to send a message securely to another party, B , using public-key encryption. A
will attempt to accomplish this feat by encrypting the message with B ’s k -bit
public key (Kb). In the notation commonly found in the literature, this protocol
would be expressed as:

A → B : {msg}Kb

Probabilistic Polynomial-Time Equivalence and Security Analysis 781

The notation A → B indicates a message from A to B , while {x}y is commonly
used to indicate a message (plaintext) x encrypted under key y . In our system,
we would describe the protocol as

AB〈encrypt(Kb, msg)〉
The channel name AB is used to indicate that the message is being sent from
A to B . Of course, an adversary might intercept or modify the message, so the
channel name serves only as a mnemonic.

We assume that an evil adversary wishes to discover the message msg . If
we allow the adversary to consist of the parallel composition of 3 processes E0 ,
E1 and E , scheduled nondeterministically, then the message can be discovered.
Specifically, we let

E0 = !kE〈0〉
E1 = !kE〈1〉
E = E(b0). . . . E(bk−1). AB(x).

Public〈decrypt(conc(b0, . . . , bk−1), msg)〉
Processes E0 and E1 each send k bits on the same channel. The intruder E
reads the message from A to B , nondeterministically reads the bits from E0 and
E1 in such an order so as to obtain B ’s private key, and decrypts the message.
Although at first one might think that eliminating nondeterminism from the term
calculus would be sufficient, this example demonstrates that nondeterminism
cannot be allowed even at the level of the process calculus.

Our probabilistic operational semantics is in the same spirit as Milner’s re-
action relation approach [Mil92], which was inspired by the Chemical Abstract
Machine of Berry and Boudol [BB90]. Simply put, the reduction step is the “re-
action” between a process ready to output on a channel and a process ready to
receive input on that same channel. Our operational semantics provides a means
of calculating, at any point, which processes are eligible to interact, and then of
choosing probabilistically from among this set.

There are actually two sources of randomness in the execution of a process.
The first, just discussed, is in the choice of which processes will execute next.
The second comes in the computation of terms, which themselves perform prob-
abilistic computations. Specifically, for any closed term T there is a finite set of
possible values T1, . . . , Tk such that the probability of T evaluating to Ti is pi

and
∑

i=1,k pi = 1.
Our goal is to devise an intuitively plausible probabilistic semantics that

refines the standard nondeterministic semantics of π -calculus and allows us to
model faithfully the security phenomena of interest. Subject to these two primary
goals, we would also like to have as many natural equivalences as possible. For
example, all other things being equal, we would like parallel composition to
be associative. The first goal, refining the standard nondeterministic semantics,
means that our operational semantics will induce some probability distribution
on the set of execution sequences allowed by the nondeterministic semantics.
We assign probabilities in a “local” manner, independent of the history of prior
steps leading to any process state.

782 P. Lincoln et al.

That communications on private channels be unobservable is of the utmost
importance in our framework. For example, it is vital that

P ∼= (νc).(c〈0〉 | c(x).P)

when x does not occur free in P . In words, we want any process P to be
equivalent to the process that transmits some value on a private channel, dis-
cards the result of that communication, and then proceeds as P . After all, given
that private channels are considered private, out-of-band communication mech-
anisms, there is no way that an adversary should be able to observe the private
communication.

In order to guarantee unobservability, we must ensure not only that the con-
tents of the transmission are unavailable to the adversary, but also that the
existence of the transmission cannot become known. In particular, the commu-
nication must not skew the probability of other actions in the process as the
adversary might otherwise be able to distinguish the processes by sampling the
behavior of the (supposedly equivalent) processes.

Consider the following concrete example:

A〈0〉 | A〈1〉.
We would like this process to be equivalent to:

((νc).(c〈0〉 | c(x).A〈0〉)) | A〈1〉.
However, if our operational semantics were to select from all possible next steps
with equal probability, then the first process would output a 0 followed by a 1
one half of the time, and the sequence 1, 0 the other half of the time. The intro-
duction of the private channel in the second process would bias the computation
so that the 0, 1 sequence would occur with only twenty-five percent probability
while the 1, 0 sequence would occur with seventy-five percent probability. In
other words, the most obvious probabilistic scheduling rules yield a situation in
which the introduction of a silent action changes the behavior of the process as a
whole. The solution we have chosen is to give priority to silent actions, allowing
them to occur before any reductions involving public channels. We thereby keep
the probability of scheduling silent actions from interfering with the scheduling
of observable actions.

2.3 Operational Semantics

The probabilistic operational semantics of processes is given in three parts. The
first part is essentially a structural equivalence, in the same sprit as Milner’s
structural-equivalence-based semantics for π -calculus [Mil92], presented using
multisets of subprocesses instead of a syntactic transformation of process ex-
pressions. The second part determines the set of eligible process combinations,
each consisting of either a matching output and input, or a single process that
requires evaluation of a conditional test. The third part of the operational se-
mantics is the definition of the execution graph of a process, which consists of

Probabilistic Polynomial-Time Equivalence and Security Analysis 783

edges between sets of schedulable processes, each edge labeled with a probability
and any visible communication that may appear as a result of the computation
step.

The basic computation steps of our process calculus are either a communi-
cation, consisting of an output and matching input, or a guarded process whose
guard is to be evaluated. Therefore, a schedulable process is a process of one of
the following three forms: c(x).Q , called an output process, c〈T 〉 , called an input
process, or [T1 = T2].Q , called a guarded process.

If P is any process, then the multiset S(P) of schedulable subprocesses of P
is defined inductively as follows:

S(P) =




∅ if P = 0
S(Q) if P = (νc).Q
{P} if P is schdulable
S(P1) ∪ S(P2) if P = P1|P2

Since the semantics of a process P is determined by S(P), we can think of P
and Q as structurally equivalent if S(P) and S(Q) are identical multisets.

The execution of a process consists of selecting one computation step from
the set of schedulable subprocesses. To simplify a later definition, we say a single-
ton [T1 = T2].Q is an eligible computation, and a pair (c〈T 〉, c(x).Q) is an eligible
computation. Due to priority of internal actions over external ones, communica-
tion will only occur if there are no eligible guarded processes, and communication
on public channels will occur only if there are no eligible computations on a pri-
vate channel.

The execution graph G(P) of process P has nodes that are multisets of
schedulable processes and arcs labeled with probabilities. In addition to the
probability that a transition will occur, an arc may also be labeled with a
channel name and value, if the transition involves communication on a pub-
lic channel. The probabilities will depend on both the probabilistic scheduling of
subprocesses, and the probabilistic evaluation of terms (explained in [MMS98]).
Intuitively, if S(P) = {P1, . . . , Pn} , we select uniformly at random from among
the eligible computations of the highest priority. More specifically, the root of
G(P) is the multiset S(P) of schedulable processes of P . The arcs of G(P) are
determined as follows:

– There is an arc from multiset R = R′ ∪ {[T1 = T2].Q} to R ∪ S(Q) with
probability p if there are k eligible guarded processes in R , the probability
that T1 and T2 evaluate to the same value is r , and p = r/k .

– There is an arc from multiset R = R′ ∪ {c〈T 〉, c(x).Q} to R ∪ S([v/x]Q)
with probability p if there are no guarded processes in R , there are k el-
igible communications along private channels in R , the probability that T
evaluates to v is r , and p = r/k .

– There is an arc from multiset R = R′ ∪ {c〈T 〉, c(x).Q} to R ∪ S([v/x]Q),
labeled with probability p and pair 〈c, v〉 if there are no guarded processes
in R , there are no eligible communications along private channels, there are

784 P. Lincoln et al.

k eligible communications along public channels in R , the probability that
T evaluates to v is r , and p = r/k .

The nodes of G(P) are all sets of schedulable processes that lie along a path
from the root of G(P).

Intuitively, we assume that public communications are externally observable,
while the evaluation of guards and private communication are not. Formally, an
observation is a sequence of pairs 〈c, v〉 , each consisting of a public channel
name and a value. We say an observation o occurs in the execution of P if o is
a subsequence of the labels along a path in G(P). For example, the observation
〈c, 1〉, 〈d, 2〉 occurs in the execution of c〈1〉|c〈2〉|d〈2〉 . The probability of a path in
G(P) is the product of all the probabilities along the path, and the probability
of observation o in the execution of P is the sum of the probabilities of all paths
in G(P) on which o occurs.

3 Process Equivalence

Two processes P and Q are observationally equivalent, written P ' Q , if any
program C[P] containing P has the same observable behavior as the program
C[Q] with Q replacing P . To make this more precise for a specific programming
language L , we assume the language definition gives rise to some set of program
contexts, each context C[] consisting of a program with a “hole” (indicated by
empty square brackets []) in which to insert a phrase of the language, and some
set Obs of concrete observable actions, such as integer or string outputs. We
also assume that there is some semantic evaluation relation eval

; , with M
eval
; v

meaning that evaluation or execution of the program M produces the observable
action v .

We perform an experiment on a process P by placing it in a context C[] ,
running the resulting process, and seeing whether or not a particular observable
v occurs.The main idea underlying the concept of observational equivalence is
that the properties of a program that matter are precisely the properties that
can be observed by experiment. Although we presented the basic form of obser-
vational equivalence below in [LMMS98], we repeat the basic motivation here
for completeness. We now commit ourselves to uniform families of processes and
contexts (in which all members of a family represented by the same expression,
but parameterized by some natural number), mirroring the usual assumptions
regarding protocols and security parameters mentioned earlier.

3.1 Definition of Equivalence

For the process language considered in this paper, we are interested in contexts
that distinguish between processes. (We will not need to consider observational
equivalence of terms.) Therefore, the contexts of interest are process expressions
with a “hole”, given by the following grammar

C[] : : = [] | n(x).C[] | P |C[] | C[]|Q |
(νc).C[] | c〈T 〉 | [M = N]C[]

Probabilistic Polynomial-Time Equivalence and Security Analysis 785

A process observation will be a communication event on a public channel. More
specifically, we let Obs be the set of all possible observations, i.e., the set of
pairs 〈n, m〉 , where n is a public channel name and m is an integer. We write
P

eval
; o if evaluation of process expression P results in the observation o ∈ Obs .
Intuitively, given program phrases P and Q , context C[] and observation o ,

it seems reasonable to compare the probability that C[P] eval
; o to the probability

that C[Q] eval
; o . However, since a probability distribution is an infinite entity, it

is not clear how to “observe” a distribution. We might run C[P] some number of
times, count how many times o occurs, and then repeat the series of experiments
for C[Q] . If the probabilities are very different, then we might be able to observe
this difference (with high confidence) by a few runs of each program. However,
if the probabilities are very close, then it might take many more runs of both
programs to distinguish them.

As a first step toward developing a workable notion of observable equivalence,
we define computational indistinguishability within factor ε by saying that P 'ε

Q if

∀C[]. ∀v ∈ Obs. |Prob[C[P] eval
; v]− Prob[C[Q] eval

; v]| ≤ ε

An immediate difficulty with 'ε is that it is not a transitive relation. Moreover,
it is not clear how to differentiate large ε from small ε . Specifically, we would like
to draw a distinction between sets of processes that are “close” in behavior from
those that are “far apart.” Intuitively, the distinction should have something to
do with running time, since it takes more trials to distinguish random variables
that differ by a small amount than to distinguish random variables that differ
by a large amount.

We can bring concepts from asymptotic complexity theory to bear on the
situation if the processes P and Q under consideration are actually families
of processes indexed by natural numbers. This point of view fits our intended
application, since, as mentioned earlier, cryptographic primitives and security
protocols are generally defined with some security parameter that may be in-
creased if greater resistance to tampering is required.

A process family P is a process of the form n(n).P ′ . If P is a process family,
we write Pn for (νn).(n〈n〉 | P). A context family is the analogous construction,
but with a single hole permitted in the body of P . Let us assume that P =
{Pn}n≥0 and Q = {Qn}n≥0 are process families and C[] = {Cn[]}n≥0 a family
of contexts. We assume that the running times of Pn , Qn and Cn[] are bounded
by polynomials in n . Then for function f , we define asymptotic equivalence
within f for two process families P and Q by writing P 'f Q if

∀C[]. ∀o ∈ Obs. ∃n0. ∀n ≥ n0.

|Prob[Cn[Pn] eval
; o]− Prob[Cn[Qn] eval

; o]| ≤ f(n)

In words, P and Q are asymptotically equivalent within f if, for every com-
putational experiment given by a context family and an observable value, the

786 P. Lincoln et al.

difference between experimental observation of Pn and experimental observation
of Qn is bounded by f(n), for all sufficiently large n .

Since we consider polynomial factors “small”, we define observational equiv-
alence of probabilistic processes by

P ' Q if P '1/p Q for every polynomial p.

We sketch below the proof that this relation is an equivalence relation. Moreover,
we believe that this formal definition reasonably models the ability to distinguish
two processes by feasible intervention and observation.

If P and Q are two process families which are not observationally equivalent
because the probability that Cn[Pn] eval

; o occurs with a noticeably different
probability than Cn[Qn] eval

; o , then we call C the distinguishing context and
call o the distinguishing observation.

3.2 Properties of Observational Equivalence

We note first that observational equivalence is indeed an equivalence relation.

Lemma 1. Observational equivalence is reflexive, symmetric, transitive, and is
an equivalence.

Proof. Reflexivity and symmetry are immediate from the definition. Suppose
now that P '1/p Q and Q '1/q R . Let o be an arbitrary element of Obs . Let
nP

0 be the least value such that the observational equivalence condition holds for
P and Q . Define nQ

0 similarly, but for Q and R . Then, for all n ≥ max(nP
0 , nQ

0)

|Prob[Cn[Pn] eval
; o]− Prob[Cn[Rn] eval

; o]| ≤ 1/p(n) + 1/q(n).

Assuming, without loss of generality, that p(n) ≤ q(n), we may bound this value
by 1/(p(n)/2). Since o was chosen arbitrarily, we may conclude that P ' R , as
required. Equivalence follows by similar reasoning.

In order to analyze changes in the probability of observable actions, we in-
ductively define a mapping from processes to directed graphs. For any process
P , the vertices of the graph G(P) are all processes to which P reduces in zero
or more steps. The edges of the graph are labeled with probabilities, with an
edge with label p from node Q to R if and only if Q;p R . Note that for any
process family P , the number of nodes and edges in G(Pn) is independent of n ,
since there are no constructs in the process calculus that depend on the values
of term variables. An execution σ of P is a path through G(P). The probability
pσ is the product of the weights of the edges that make up σ . It is clear that∑

σ pσ = 1.

Lemma 2. For any process P , G(P) is acyclic, and the only node with no
incoming edges is that corresponding to P .

Probabilistic Polynomial-Time Equivalence and Security Analysis 787

Proof. All processes have finite representations, and that reduction always short-
ens that representation.

If C [P] ;p R we say that this computation step does not touch P if there
exists a context D such that R = D [P] and such that for all processes Q we
have C [Q];p D [Q] . In other words, the computation step does not touch P if
the step does not in any way depend on P . We say that a path σ touches P if
any reduction along σ touches P .

Lemma 3. Suppose P 6∼= Q . Let C be a distinguishing context and o the corre-
sponding distinguishing observation. Then, there exists a path σ through either
G(C [Pn]) or G(C [Qn]) such that o = oσ and such σ touches Pn or Qn . Fur-
thermore, pσ must be at least 1/p(n) for some polynomial p .

Proof. Assume, without loss of generality, that o occurs more often in C [Pn]
than in C [Qn] . Then, there must exist a path σ through G(C [Pn]) such that
oσ = o . Choose σ so that pσ is maximal, from the set of paths such that oσ = o .
Denote the total number of possible paths through G(C [Pn]) by c . Note that c
is independent of n , by the comments above. Therefore, pσ ≥ 1/cf(n) where f
is the distinguishing polynomial for P and Q .

Lemma 4. For any process family P , and any context family C ,

C [[x = y].P] ∼= C [P]

if

C [[x = y].c〈1〉] ∼= C [c〈1〉] .
Proof. Suppose that C [[x = y].P] ∼= C [P] . Let D be the distinguishing context.
Then, by the previous lemma, there must exist a path through D [C [[x = y].P]]
or through D [C [P]] touching one of the two processes with probability at least
1/p(n) for some polynomial p . But, by the hypothesis, this path also exists
through the other process with probability at least 1/2p(n)

Lemma 5. Let C be an arbitrary context family with two holes, and let c be
a private channel name unused in C . Then, (νc).C [c〈T 〉] [c()] ∼= C [0] [[1 = 1]]
whenever the structure of C ensures that the second hole is in S(C) only when
the first hole is as well.

In other words, private channels may be freely introduced, provided the data
sent on them is never used, and provided that the output is always available by
the time the input is requested.

Proof. By Lemma 3, it is sufficient to show simply that for any process family
P , P ∼= (νc).(c〈T〉 | c().P) and to consider only contexts of the form Q | [] .
Now, suppose that E(Q) contains no private channel communications. Then,
the only one-step reduction from Q | (νc).(c〈T〉 | c().P) is to Q | P , so the result
is clear. In general, any computation path which touches the hole will result in
the reduction on c . Because private communications are given priority by the
scheduling model, any observable action of Q will be delayed until that reduction
has occurred.

788 P. Lincoln et al.

4 Analysis of the Bellare-Rogaway Authentication
Protocol

We now turn our attention to an authentication protocol proposed by Bellare
and Rogaway [BR94]. This protocol does not provide secrecy, but provides au-
thentication based on a shared secret between the two parties. The secret is
the index of one function from a pseudo-random family of functions. A pseudo-
random family of functions is a set of functions, indexed by a natural number.
Each function should behave unpredictably on successive inputs: there should be
no polynomial time tests which reliably distinguish between a random function
and these pseudo-random functions. Based only on this shared secret, the two
parties can recognize computations that are performed by each other, but the
same ability is not afforded to any observer or adversary who does not know the
secret function.

Let f be a pseudo-random function family. Suppose that A and B share a
secret natural number t , and thereby a secret pseudorandom function ft . The
protocol consists of three steps, here expressed in the notation usually found in
the literature:

1. A → B {Na}
2. B → A {Kb, Ka, Na, Nb, ft(〈Kb, Ka, Na, Nb〉)}
3. A → B {Ka, Nb, ft(〈Ka, Nb〉)}

Here, Na and Nb are randomly chosen “nonces,” and Ka and Kb are numbers
associated with known principles A and B (informally, one might consider these
to be the public keys associated with those identities.) New nonces are chosen
each time the protocol is executed. At the conclusion of the protocol, A knows
Nb , B knows Na , and both can be assured that these values came from the
other. Intuitively, they have this assurance because nobody else can compute
the values ft(〈Kb, Ka, Na, Nb〉) and ft(〈Ka, Nb〉).

4.1 Expression in Process Calculus

We can express the protocol more formally in our calculus. Our calculus requires
more precision than the informal notation above. In particular, the behavior of
participants who receive ill-formatted messages is made explicit; they immedi-
ately halt.

We construct the expression for this protocol in a modular fashion. First, we
give a formal description of a random number server which will play the role of
the pseudo-random function. We use the following expression, parameterized by
a number N , for the N th random number server. In particular, let R(N) be
the fragment given by:

RSN(x).(LET r = ft(k) IN
RNDN〈r〉
| RCHKN(y, z).[y = x AND z = r].ROKN〈1〉)

Probabilistic Polynomial-Time Equivalence and Security Analysis 789

Here, it is understood that R(1), say, will be the fragment given above, but
with the N in the channel names replaced with 1, so that, for example, the first
read will occur on RS1 . The so-called random number server is a code fragment
that will associate a random number (r) with a value (x), and remember the
association so that it may be queried later. In this case, of course, there is no real
randomness, since ft is deterministic. However, the specification of the protocol
will involve replacing the pseudo-random function with real randomness, and
this change will make necessary keeping track of what random numbers were
assigned to what values. This construction is a specific example of a more general
construct; namely, it is a means of sharing a function between multiple processes
in the same way that LET shares a value between multiple processes.

Next we describe the actions of the actual parties themselves. The fragment
for A is given by:

LET Na = rand(k) IN
AB1〈Na〉
| BA(w, x, y, Nb, z).[w = Kb AND x = Ka AND y = Na].

(RCHK1〈{Kb, Ka, Na, Nb} , z〉
| ROK1().(RS2〈{Ka, Nb}〉

| RND2(r).AB2〈Ka, Nb, r〉
| AOK〈1〉))

Here rand(k) is a function that returns a truly random k -bit number. The
third line checks that the message from B in the third step of the protocol is
reasonable. In particular, we check that B sends back the nonce sent by A , and
that the hash value ft({Kb, Ka, Na, Nb}) is correct. The last step is the one that
is supposed to be authenticating B , since presumably (with high probability)
only A and B can compute ft({Kb, Ka, Na, Nb}).

Finally, the fragment for B is given by:

LET Nb = rand(k) IN
AB1(Na). (RS1〈{Kb, Ka, Na, Nb}〉

| RND1(r).BA〈Kb, Ka, Na, Nb, r〉
| AB2(x, y, z).[x = Ka AND y = Nb].RCHK2〈{Ka, Nb} , z〉
| ROK2().BOK〈1〉)

The process family P , then, is given by:

k(k). LET t = rand(k) IN
(νRS1,RND1,RCHK1,ROK1,RS2,RND2,RCHK2,ROK2).
(RS(1) | RS(2) | A | B)

Note that all communication to and from the random number servers is done
via private channels, representing the fact that ft is a shared secret between A
and B . Thus, the only messages sent on publicly available channels correspond
precisely to those present in the original informal description of the protocol.

790 P. Lincoln et al.

4.2 Specification

The specification of the protocol is similar to the original protocol. However, we
wish to express the fact that the two parties have authenticated each other. To
this end, each process transmits the value it believes to be the other’s nonce back
to the originating party on a private channel. The recipient of this message then
compares the nonce it sent to this value, thereby ensuring that no messages have
been altered by the adversary in transit.

Note that in this particular protocol there is no attempt to ensure the se-
crecy of any data. Instead, the goal is authenticity. Therefore, the only way an
adversary can “win” is to alter some of the messages passing back in forth, and
thereby cause both A and B to send messages on the AOK and BOK channels
when they should not. If the adversary were able to accomplish such a feat, it
would indicate that that A and B could not distinguish a conversation with
one-another from a conversation with a malicious adversary. In other words,
they could not be assured of the authenticity of the messages they received.

We modify the above protocol fragment for A to become Aspec as follows:

LET Na = rand(k) IN
AB1〈Na〉
| BA(w, x, y, Nb, z).[w = Kb AND x = Ka AND y = Na].

(RCHK1〈{Kb, Ka, Na, Nb} , z〉
| ROK1().(RS2〈{Ka, Nb}〉

| RND2(r).AB2〈Ka, Nb, r〉
| BAP(u).[u = {Kb, Ka, Na}].AOK〈1〉
| ABP〈{Ka, Nb}〉))

Similarly, Bspec is:

LET Nb = rand(k) IN
AB1(Na). (RS1〈{Kb, Ka, Na, Nb}〉

| RND1(r).BA〈Kb, Ka, Na, Nb, r〉
| BAP〈{Kb, Ka, Na}〉
| AB2(x, y, z).[x = Ka AND y = Nb].RCHK2〈{Ka, Nb} , z〉
| ROK2().ABP(u).[u = {Ka, Nb}].BOK〈1〉)

The full process family Pspec is then:

k(k). LET t = rand(k) IN
(νRS1,RND1,RCHK1,ROK1,RS2,RND2,RCHK2,ROK2,ABP,BAP).
(RS(1) | RS(2) | Aspec | Bspec)

The key idea in the specification process is that Aspec and Bspec send the
values they receive on public channels back to each other on private channels.
In this way, the recipient of the private message can verify that the message
she sent earlier was accurately received. Thus, the specification ensures that
any tampering on the part of the adversary will cause the protocol to fail. This
technique is our standard approach for writing specifications for authentication
protocols. For other protocols, one can specify secrecy alone, or specify secrecy
and authenticity together [LMMS98].

Probabilistic Polynomial-Time Equivalence and Security Analysis 791

4.3 Equivalence

The observational equivalence of the implementation P is to its specification
Pspec may be shown in two stages. On the one hand, it may be shown that
Pspec is observationally equivalent to P′spec , which is just like Pspec , but without
the checks introduced on the private channels. On the other hand, it may be
shown that P′spec is observationally equivalent to P . We briefly illustrate both
arguments.

Suppose Pspec is not observationally equivalent to P′spec . Let C be a distin-
guishing context. Consider, for instance, an observation AOK〈1〉 . Suppose that
u 6= {Kb, Ka, Na} in the check introduced in Aspec . Then, since BAP is private, it
must be the case that the value received on AB1 by Bspec was some value α 6= Na
or that at least one of the first two components of u is not a correct public key.
We consider only the former case; the latter case is similar. Since Aspec checks
that w = Kb and x = Ka and y = Na , and since Bspec faithfully relays α on
BA , it must be the case that the context has intercepted this message from Bspec ,
and replaced it with a new message. It may be shown that this contradicts the
main hypothesis on ft , since the chance that the context is able to find δ, δ′, β, γ
such that γ = ft(δ, δ′, α, β) is at most 1/2k . A similar argument applies to the
check present in Bspec .

An important step in obtaining the equivalence between P′spec and P is that,
up to exponentially small probability of guessing the keys provided by the servers,
the writes on private channels ABP and BAP are ready whenever the reads are.
This fact is derivable from examination of the data flow in Pspec .

5 Conclusion and Future Directions

The work presented here sits between the existing disciplines of protocol analy-
sis, where cryptography is presumed perfect and is treated as a black box, and
cryptography, where exact requirements coming from specific protocols are not
addressed. Our work bridges this gap, providing a structure within which proto-
col security can be reduced directly to well-known cryptographic assumptions.
Our work, building on the spi-calculus and Dolev-Yao adversary model, expands
the modeled capabilities of the attacker to include operations such as guessing a
secret key. In order to restrain such attackers from naive but impractical guessing
attacks on exponentially large keyspaces, we must restrict them to polynomial
time. Furthermore, since there is a chance the attacker may guess correctly, we
must reason about the probability of successful attack.

Our framework uses a process calculus for defining probabilistic polynomial-
time processes communicating over a network in such a way as to allow an
adversarial process access to read and manipulate the various communications.
Security properties of a given protocol may be formulated in our framework by
writing another, idealized protocol and showing that the environment behaviors,
which represent definable adversaries, have the same observable interactions with
either protocol. For this purpose we propose a definition of observational equiv-
alence for probabilistic programs that is based on the view that large differences

792 P. Lincoln et al.

in probability are easier to observe than small differences. When we distinguish
between “large” and “small” using asymptotic behavior, we arrive at a defini-
tion of observational equivalence that coincides with a standard concept from
cryptography, namely, indistinguishability by polynomial-time statistical tests
[Yao82], and which enjoys certain important properties such as transitivity.

The steps taken in this paper and those before form the basis for a larger
program that we hope to see carried out over the next few years. In part fol-
lowing the program established in the study of spi-calculus [AG97], we hope
to develop methods for reasoning about observational equivalence (or some ap-
proximation to observational equivalence such as probabilistic trace equivalence
or bisimulation) and use these methods to establish security properties of var-
ious protocols. We hope that an effective set of principles and proof rules are
developed in this vein. We also hope that certain foundational questions about
probabilistic process calculus can be addressed in the near term. Work like that
of Volpano and Smith [VS98] and Kozen [Koz81] may be of direct relevance here.
We also hope to generalize our main results to include contexts with multiple
holes and contexts with bounded replication. These generalizations would pro-
vide more coverage of feasible attack scenarios. Finally, we have begun to use our
framework to provide rigorous, uniform definitions of traditional cryptographic
concepts, like chosen plaintext attacks, chosen ciphertext preprocessing attacks,
and chosen ciphertext postprocessing attacks.

In sum, this paper provides a framework for reasoning about more detailed
properties of protocols than previous analysis tools and methods have allowed.
We have shown how this framework can be applied to a recent authentication
protocol of Bellare-Rogaway. This paper also presents a detailed model of obser-
vational equivalence which refines earlier research on spi-calculus, and presents
several key properties of our framework which we employ in the analysis of the
Bellare-Rogaway example.

Acknowledgements: Thanks to M. Abadi, D. Boneh, C. Dwork, S. Kannan,
C. Meadows, and M. Naor for helpful discussions.

References

[AG97] M. Abadi and A. Gordon. A calculus for cryptographic protocols: the spi
calculus. In Proc. 4th ACM Conference on Computer and Communications
Security, pages 36–47, 1997. Revised and expanded versions to appear in
Information and Computation and as SRC Research Report 149 (January
1998).

[BAN89] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Pro-
ceedings of the Royal Society, Series A, 426(1871):233–271, 1989. Also
appeared as SRC Research Report 39 and, in a shortened form, in ACM
Transactions on Computer Systems 8, 1 (February 1990), 18-36.

[BB90] G. Berry and G. Boudol. The chemical abstract machine. In Proc. 17th
ACM Symp. Principles of Programming Languages, pages 81–94, 1990.

[BR94] M. Bellare and P. Rogaway. Entity authentication and key distribution.
In Advances in Cryptology - CRYPTO ’93, Lecture Notes in Computer
Science, Vol. 773, 1994.

Probabilistic Polynomial-Time Equivalence and Security Analysis 793

[BR95] M. Bellare and P. Rogaway. Provably secure session key distribution -
the three party case. In Proc. 27th ACM Symposium on the Theory of
Computing, 1995.

[DY83] D. Dolev and A. Yao. On the security of public-key protocols. IEEE
Transactions on Information Theory, 2(29), 1983.

[FKK96] A. Freier, P. Karlton, and P. Kocher. The SSL protocol version 3.0.
draft-ietf-tls-ssl-version3-00.txt, November 18 1996.

[KMM94] R. Kemmerer, C. Meadows, and J. Millen. Three systems for cryptographic
protocol analysis. J. Cryptology, 7(2):79–130, 1994.

[KN93] J.T. Kohl and B.C. Neuman. The Kerberos network authentication service
(version 5). Internet Request For Comment RFC-1510, September 1993.

[KNT94] J.T. Kohl, B.C. Neuman, and T.Y. Ts’o. The evolution of the Kerberos
authentication service, pages 78–94. IEEE Computer Society Press, 1994.

[Koz81] D. Kozen. Semantics of probabilistic programs. Journal of Computer and
System Sciences, 22:328–350, 1981.

[LMMS98] P.D. Lincoln, J.C. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic
poly-time framework for protocol analysis. In ACM Conf. Computer and
Communication Security, 1998.

[Low96] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using CSP and FDR. In 2nd International Workshop on Tools and Al-
gorithms for the Construction and Analysis of Systems. Springer-Verlag,
1996.

[Mea96] C. Meadows. Analyzing the Needham-Schroeder public-key protocol: a
comparison of two approaches. In Proc. European Symposium On Research
In Computer Security. Springer Verlag, 1996.

[Mil92] R. Milner. Functions as processes. Math. Structures in Computer Science,
2(2):119–141, 1992.

[MMS97] J.C. Mitchell, M. Mitchell, and U. Stern. Automated analysis of crypto-
graphic protocols using Murϕ . In Proc. IEEE Symp. Security and Privacy,
pages 141–151, 1997.

[MMS98] J. Mitchell, M. Mitchell, and A. Scedrov. A linguistic characterization of
bounded oracle computation and probabilistic polynomial time. In IEEE
Symp. Foundations of Computer Science, 1998.

[NS78] R.M. Needham and M.D. Schroeder. Using encryption for authentication
in large networks of computers. Communications of the ACM, 21(12):993–
999, 1978.

[Pau97a] L.C. Paulson. Mechanized proofs for a recursive authentication protocol.
In 10th IEEE Computer Security Foundations Workshop, pages 84–95,
1997.

[Pau97b] L.C. Paulson. Proving properties of security protocols by induction. In
10th IEEE Computer Security Foundations Workshop, pages 70–83, 1997.

[Ros95] A. W. Roscoe. Modelling and verifying key-exchange protocols using CSP
and FDR. In 8th IEEE Computer Security Foundations Workshop, pages
98–107. IEEE Computer Soc Press, 1995.

[Sch96] S. Schneider. Security properties and CSP. In IEEE Symp. Security and
Privacy, 1996.

[VS98] D. Volpano and G. Smith. Probabilistic noninterference in a concurrent
language. In 11th IEEE Computer Security Foundations Workshop, pages
34–43. IEEE Computer Soc Press, 1998.

[Yao82] A. Yao. Theory and applications of trapdoor functions. In IEEE Founda-
tions of Computer Science, pages 80–91, 1982.

	Introduction
	Process Calculus for Protocol Analysis
	Syntax
	Probabilistic Scheduling
	Operational Semantics

	Process Equivalence
	Definition of Equivalence
	Properties of Observational Equivalence

	Analysis of the Bellare-Rogaway Authentication Protocol
	Expression in Process Calculus
	Specification
	Equivalence

	Conclusion and Future Directions

