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Abstract. We present an experiment in feature interaction detection.
We studied the 12 features defined for the first feature interaction contest
held in association with the 5th international Feature Interaction Work-
shop. We used a synchronous approach for modeling features, and both,
a model-checker and a test generator for revealing interactions. The first
part of the paper describes the feature modeling. The second part deals
with the feature interaction detection carried out with a testing tool, and
the last part addresses the use of a model-checker for the detection.

1 Introduction

Telecommunication software is a variety of safety-critical software. Its require-
ments in terms of dependability are high since a malfunction may result in
environment harm. The disastrous financial consequences of failures impose on
this kind of software strong correctness and quality of service constraints.

This is why modeling, analysis and risk assessment activities take a large
part of its development process. For critical components, the requirements engi-
neering phase usually ends in a formal specification which is provided in some
logics; therefore, validation can be performed in a very rigorous and formal way
using proof tools and/or specification-based testing techniques. Examples of such
critical pieces are protocols and telephone services.

The expansion of new telephone supplementary services (called features) has
reinforced the need for formal, mathematically sound and well equiped specifica-
tion and validation techniques. Indeed, a new supplementary service can change
the behavior of pre-existing ones, alter them, or even crash the system. The
phenomena are known as the “feature interaction problem” in the telecommu-
nication industry [9].

Besides, one can note that a telecommunication system has most of the char-
acteristics of reactive programs [18]. Such programs continuously react with their
environment at their own speed. They must satisfy some strong timing depen-
dencies between external events and their role is to bring about or maintain
desired relationships in the environment.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. I, LNCS 1708, pp. 622–641, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Feature Interaction Detection Using Testing and Model-Checking 623

We applied a reactive synchronous approach to the feature validation prob-
lem, using Lustre [6]. Lustre is an executable specification language which can
be used for programming and formally verifying (using model-checking) [11] as
well as for testing [7] synchronous critical software.

In 1998, Nancy Griffeth et al. organized the first feature interaction detec-
tion tool contest [10]. This contest was held for the 5th International Workshop
on Feature Interactions. We participated in this contest and our tool won the
“Best Tool Award”. Our approach consisted in two major points: a synchronous
technology to express a model of a telecommunication system and using test
techniques to detect feature interactions.

We decided to favor a testing approach for a couple of reasons.
(1) Feature interaction detection can be viewed as finding some errors in a pro-
gram, and testing is the process of executing a program with the intent of finding
errors [15]. Moreover, testing allows to establish the fitness or the worth of a soft-
ware product for its operational mission, and interaction occurrences are strongly
connected to the telecom system operations [3].
(2) It is our experience that model-checking often fails for lack of time or mem-
ory. Besides, model-checking is not appropriate to evaluate the adequacy of a
property. When searching for interaction and no interaction is found, the rel-
evance of the property must be questioned. Deciding on this relevance can be
easily performed using a testing tool.

We have applied a model-checker to confirm the results which have been
obtained with our testing tool, contrary to most situations where testing and
proving (by deduction or model-checking) are jointly used.

In this paper, we first sum up the contest instructions (section 2). Then, we
describe the synchronous approach (section 3). In sections 4 and 5, we detail
three major points of our model: our definition of interaction, our approach
principles and our feature composition operation. Section 6 describes the first
part of our validation experiment using a test generator, and section 7 describes
the second part of the validation experiment using a model-checker on the same
model.

2 Feature Interaction Detection Tool Contest

The goal of this contest was to compare different feature interaction detection
tools according to a single benchmark collection of twelve features. The contest
had two phases. The first one required the contestants to analyze the ten first
features in a five month period. The second phase required the analysis of the
two last features, in sixteen days.

The contest instructions were made of the description of a network model,
given as a collection of black boxes communicating with each other via defined
interfaces, the description of a feature description formalism, the specification of
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the basic call service feature, and an informal description and the specification
of the twelve features to be examined.

OS

Switch

SCP

A

B

C

Fig. 1. The network specification

The network consists of 4 types of elements (fig. 1): some end-user equipments
(telephones), a Switch, a Service Control Point (SCP) processing IN features,
and an Operations System (OS) that does the billing.

A user can perform 4 actions: go off the hook, go on the hook, dial a number,
a flash-hook. The telephones are assumed to have a flash button.

A service formal specification is represented as a Chisel sequence diagram
[1]. Such a diagram is a directed graph whose vertices are labeled by events or
messages exchanged at the various interfaces. A diagram defines the set of event
sequences of a single call, one for each path through the graph. Event sequences
involving multiple calls can be interleaved to define the global system activity.
Figure 2 represents the Plain Old Telephone Service (POTS) diagram which
stands for two phones and a single call, originated by party A.

3 Synchronous Approach and Lustre Language

To enter the contest, we have used a synchronous framework. In this section, we
describe the synchronous approach.

3.1 The Synchronous Software Technology

Synchronous programs [2] are a sub-class of reactive software programs: every
reaction of a program to its inputs is theoretically instantaneous. Synchronous
programs have cyclic behaviors: at each tick of a global clock (also called instant
of time), all inputs are read and all outputs are emitted.

Synchronous languages rely on the ideal synchrony hypothesis, which says
that synchronous machines have zero-time response delay and synchronous sys-
tems are systems of dynamical equations. Practically, the synchrony hypothesis
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1 Off-hook A

2 DialTone A

Start Ringing B A / Busy B <- true
4 Start AudibleRinging A B |||

16 On-hook A

15 LineBusyTone A

17 On-hook A3 Dial A B

6 Stop Audible Ringing A B |||
   Stop Ringing B A |||
   LogBegin A B A Time

7 On-hook A
     Busy B <- False
10 On-hook B /

12 On-hook A

14 Stop AudibleRinging A B |||
      Stop Ringing B A /
      Busy B <- false

   Busy B <- False

5 Off-hook B 13 On-hook A

      LogEnd A B Time
11 Disconnect A B |||

9 On-hook B /

8 Disconnect B A |||
    LogEnd A B Time

Idle B Busy B

Variables:
Busy A: true between an Off-hook A event and the next On-hook A event; between
a Start Ringing A B event and the next Stop Ringing A B event, if no Off-hook A
intervenes; or between a Start Ringing A B event and the next On-hook A.
Ringing A B: true between a Start Ringing A B event immediately following a Dial
B A event and the next Stop Ringing A B event.
AudibleRinging A B: true between a Start AudibleRinging A B event immediately
following a Dial A B event and the next Stop AudibleRinging A B event. All of the
POTS event sequences start and end with Busy A = False (Idle A = True).

Fig. 2. POTS formal description (Chisel diagram)
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consists in checking that the program always reacts quicker than its environ-
ment. From the software developer’s point of view, the main characteristics of
the synchronous languages are [2]: a precise mathematical semantics, a flexible
concept of hierarchy, precise notions of modularity and encapsulation, and an
automatic generation of executable code.

Synchronous languages are well-adapted to the specification and program-
ming of reactive software [11]. They allow to avoid the combinatorial explosion
problem, which impairs the approaches based on parallel and communicating
processes. Indeed, all parallel components of a synchronous system react simul-
taneously and, thus, their executions are not intertwined. An additional conse-
quence of this characteristic is that all state transitions (which take place at each
reaction) become visible.

Lustre

Our work is more precisely based on Lustre, a synchronous declarative data-
flow language [4]. Lustre is an executable specification language. It corresponds
to a linear past temporal logic [17] which offers usual arithmetic, boolean and
conditional operators and two specific operators: pre, the “previous” operator,
and −> the “followed-by” operator1. Lustre allows the specifier to define its
own logical and/or temporal operators to express invariants or safety-oriented
properties. Those properties are used for the system validation.

3.2 Reactive System Specification

An important feature of a reactive system is that it is developed under assump-
tions about the possible environment behavior. So a complete specification of
a reactive system is a three step process. First, the environment has to be de-
scribed, in order to be able to specify system reactions only in response to valid
environment behaviors. The second step provides a set of properties, which de-
scribes the system requirements. Those properties are commonly safety-oriented.
The last step objective is to provide a functional specification of the reactive soft-
ware. If the functional specification is performed in Lustre, it can be compiled
into an executable code.

3.3 Reactive System Validation

We focus here on the high level validation phase of reactive systems, which
consists in showing that the functional specification, providing the specification
of the environment, satisfies the properties.

Thus, the reactive system validation is done with respect to environment
constraints. Clearly, when one is not concerned with the system robustness,
1 Let E and F be two expressions of the same type denoting the se-

quences (e0, e1, ..., en...) and (f0, f1, ..., fn, ...); pre(E) denotes the sequence
(nil, e0, e1, ..., en−1...) where nil is an undefined value. E −> F denotes the sequence
(e0, f1, ..., fn...).
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it makes no sense to take into account unrealistic environment behaviors. For
example, in a telecommunication system, it is physically impossible to go on the
hook twice without going off the hook in between. Consider a program which
simulates the network reactions when some users go on the hook, go off the
hook or dial a number. This program should observe for each user a sequence of
actions among which “go off” et “go on” actions alternate.

The validation tool has to produce a verdict which indicates whether the pro-
gram to be validated satisfies the properties under the environment assumptions
(fig. 3).

Properties

Validation
tool

Verdict
Environment assumptions

Executable to be validated

Fig. 3. Reactive system validation method

Lustre has been equipped with various dedicated validation tools: for exam-
ple, a model-checker (Lesar) [11, 12] and a testing environment (Lutess) [7, 16].
Lutess is presented in section 6, and Lesar is presented in section 7.

4 Feature, Feature Composition, and Feature Interaction

Our definition of a feature relies on the feature interaction detection contest in-
structions. A single feature is a modification of the Plain Old Telephone Service
(POTS). Thus, the POTS is successively redefined by the application of features.
A feature (or a service) waits for an input and then reacts to it by producing
outputs.

A general framework has been defined in [5], which inspired our approach.
In this framework, let F1, F2...Fn be a set of feature specifications, and N the
network specification. Let ⊕ denote the composition of the network, and one or
possibly several features (N ⊕ F1 ⊕ ... ⊕ Fn). Let P1, P2... be a set of formulae
expressing the respective feature requirements. Let S |= P denote that the spec-
ification S satisfies (is a model of) the formula P . By definition, we say that
there is an interaction when{

N ⊕ Fi |= Pi, 1 ≤ i ≤ n
N ⊕ F1 ⊕ ...⊕ Fn 2 P1 ∧ ... ∧ Pn

(T)

The basic principle of our approach consists of building an executable de-
scription of the system to be studied. The network in the sense of (T) is only
made of POTS, and the composition operation consists of modifying the POTS.
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The POTS and each feature is represented as an automaton. This automaton
results from the translation of the corresponding Chisel diagram. The automata
are coded in Lustre.

Then, the composition of the POTS and the features is done in a “software
unit” (fig. 4b). This unit is called a logical telephone (LT). There is one logical
telephone for each user.

Logical telephones are gathered into a single program, which is called a sim-
ulation program. For the contest experiment, all the simulation programs have
dealt with 4 users. These programs have been limited to up to two features (each
logical telephone contains at most 2 different features). The simulation program
is then used for feature interaction detection.

To detect occurrences of feature interactions, we expressed feature require-
ments as properties (in Lustre) and we defined interactions as the system’s in-
ability to satisfy these properties.

5 Modeling Choices

Each simulation program has been built applying the reactive system specifica-
tion method (3.2). We had to identify the system environment, the functional
specification of the system and some properties.

5.1 The Simulation Program Environment

The simulation program deals with the Switch and the Service Control Point.
The Operations System is a passive element, which only receives some messages.
Thus, it has been considered as part of the simulation environment. The end-user
equipments (telephones) compose the other part of the environment (fig. 4a).

Switch

OS

LT LTLT

SCP

A

B

C

. . .

. . . SCP

switch

Environment

(a) (b)

Simulation program

Simulation program

Fig. 4. Network executable specification
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5.2 The Network Specification

The network executable specification (in the sense of (T)) relies only on the
POTS specification. This specification is the result of a translation of a Chisel
diagram into automata. The translation is performed in two steps. First, the
different users involved in the feature execution and their respective actions are
identified. Each user represents a “role” in the communication. For instance,
POTS involves two roles: the caller and the callee.

For each role, the Chisel diagram is duplicated and then simplified to keep
only the events with which it is concerned. For the POTS, we thus obtain two
automata (fig. 5). Each automaton is then coded in a Lustre node. The node
inputs are the user-to-switch messages. The outputs are the switch-to-user mes-
sages and the events produced for the billing systems.

Message encoding

There are 4 types of messages (ringing, display, billing messages and user
action). All the messages are represented by boolean vectors. Moreover, for each
message or event type, a specific message is coded. Indeed, at each cycle, a
reactive synchronous program should read all its inputs and produce all its
outputs. The absence of message or event is also a piece of information, and
therefore, it must be “coded”. For this purpose, a specific value (usually named
“no message”) exists for each type of message.

Dialing x

Alerting x

Idle x

Exception x Exception x

Off-hook x
DialTone x

On-hook x

On-hook x
LogEnd x y Time

Start AR. x y

On-hook x
Dial x y and Idle(y)

Dial x y and Busy y
LineBusyTone A

Idle x

Ringing x

Off-hook x
Stop R. x y

Talking x

On-hook x

On-hook y
Disconnect x y

On-hook y
Disconnect x y

LogEnd x y Time

Dial y x Start R. x y

On-hook y
Stop R. x y

On-hook x On-hook x

Talking x

Calling party Callee party

Off-hook y
LogBegin x y Time

Fig. 5. The two automata for POTS
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5.3 Feature Specification Fi

The feature executable specifications Fi were obtained systematically by gener-
alizing the method used for POTS. For instance, Call Forwarding (CF) feature
involves three users, the caller, the callee (the user to whom the CF is provided)
and the forwarded-to user (the user to whom the call is redirected as a result of
forwarding). Three automata were built.

As for POTS, the inputs of a feature executable specification are the user-
to-switch messages. The outputs are also the switch-to-user messages and the
events produced for the billing system. One supplementary output has been
introduced: it is a boolean variable af (active feature) which states whether the
feature is active.

An inactive feature always emits the message “no message”. An active one
can emit a message from the interface defined, or choose to answer “no message”.
For instance, in the 4th vertex of POTS Chisel diagram (fig. 2), there are no
display message and no billing event. So, a “no message” can be emitted in two
cases, and the boolean variable af allows us to make difference between them.

5.4 Feature Composition ⊕
The composition of the features is done at the switch level, in the logical tele-
phones. We tried two different feature composition operations ⊕1 and ⊕2. Both
rely on a multiplexing operation and on the af variables.

00

11

01
10

af2 af1

o0

o1

o2

of

o0 : POTS outputs
o1 : F1 outputs
o2 : F2 outputs
of : final outputs

(b) (c)

00

11

01
10

af2 af1

o0
o1

o2

of

(a)
POTS

F1
o1

o0

F2
af1

af2

o2

operation
composition

ofinput

Fig. 6. Composition operations of POTS and two features

Let us consider two features F1 and F2. When the features are inactive (fig.
6a), the POTS outputs are chosen. When there is only one active feature, its
outputs are chosen. When both features are active, we implemented two ways
of selecting the outputs.
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The first composition operation ⊕1 (fig. 6b) gives priority to one feature over
the other. The underlying hypothesis is: if there is an interaction between F1
and F2, it should be detected by F1 property violation.

The second composition operation ⊕2 (fig. 6c) gives no priority to any of
the features. When both features are active, the final output messages are built
with a simple boolean or operator on each type of message. When both features
produce no message, the final message is “no message” (fig. 7a). When only one
feature produces a message m, the final message is m (fig. 7b). When both fea-
tures produce a message, the final message is the “composition” of both feature
messages. If the messages are equal, the resulting message is unchanged; and if
the messages are different, the resulting message is undefined (fig. 7c). Message
codes were defined so that any composition of two different messages produces
an undefined message. The second composition operation underlying hypothesis
is: if there is an interaction between F1 and F2, it should be detected by F1 or
F2 property violation or when an undefined message appears.

0 0 0 0 0 0 01 0 0 01

0 0 0 0 0 0 01 0 0 01

0 0 0 0 0 0 0 0 0 0 0 0

0 0 01 (c)0 0 01 0 01 1V = 
LineBusyTone DialTone undefined

no_message DialTone LineBusyTone

(b)V = 

(a)V =
no_message no_message no_message

DialToneDialToneno_message

Fig. 7. Message composition for ⊕2

5.5 Feature Properties

Two sets of properties are to be stated. The first one is intended to ensure the
consistency of the services (POTS and feature) implementation in Lustre. For
instance, the messages between the Switch and the telephones should be well-
formed. The second one collects the POTS and the feature expected behavior
properties. As the former set is implementation-dependent, we focus only on
the latter. Those properties correspond to the feature informal requirements
expressed in English.

For example, let us considered the Calling Number Delivery feature. The
informal requirements are:

[CND1] CND feature enables the subscriber’s telephone to receive and dis-
play the number of the originating party on an incoming call.
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[CND2] For the purpose of the contest, we assume the capability of delivering
the number of the calling party whenever an idle called party receives the
Ringing event.

and the corresponding properties, written in Lustre, are:



{ CNDsubs(x) ⇔ x is a subscriber of CND feature. }

(1) . CNDsub(x) and ConnectRequest(z,x) and pre Idle(x) ⇒ Display(x,z)
(2) . CNDsub(x) ⇒ Display(x,z) ⇔ StartRinging(x,z)

6 Detection of Interactions Using Lutess

6.1 Lutess Testing Tool

Testing reactive systems can not easily be based on manually generated data. The
software input data depend on the software outputs produced at the previous
step of the software cyclic behavior. Such a process is facilitated by an automatic
and dynamic generation of input data sequences.

Lutess [7, 16] is the testing tool we have developped to validate reactive
synchronous software. It requires three elements: an environment description
written in Lustre (A), a system under test (Π) and an oracle (B) (fig. 8). Lut-
ess builds a random generator from the environment description and constructs
automatically a test harness which links the generator, the system under test
and the oracle. Lutess coordinates their executions and records the sequences of
input-output relations and the associated oracle verdicts (trace collector mod-
ule). Components are just connected to one another and not linked into a single
executable code.

test

verdict
LUTESS

oracle

dynamically produced input data

program output

system underdescription
Environment

input data
generator

Communication link Object  provided by the user

collector
trace 

A

P

B

Fig. 8. Lutess

The system under test and the oracle are both synchronous and reactive
executable programs, with boolean inputs and outputs. Optionally, they can be
supplied as Lustre programs.
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The test is operated on a single action-reaction cycle, driven by the gen-
erator. The generator simulates the environment behavior. At each cycle, the
generator randomly selects an input vector which is valid with respect to the
environment description (A). The chosen input vector is then sent to the system
under test. This latter then reacts with an output vector and feeds back the
generator with it. The generator proceeds by producing a new input vector and
the cycle is repeated. The oracle observes the program inputs and outputs, and
determines whether the software specification is violated. The testing process is
stopped when the user-defined length of the test sequence is reached.

Basically, the Lutess generator selection algorithm chooses a valid input vec-
tor in an equally probable way. In each environment state, each valid input vector
has the same probability to be selected as the others. This selection method is
easy to use and requires no supplementary work for the tester. However, this
selection method is not always efficient. For instance, in a 4-user simulation pro-
gram, each user can dial his own number 1 time out of 4.

Lutess allows the tester to guide the generator [7]. Three methods are pro-
posed:

– the user can define some safety properties; the selection algorithm will select
inputs which potentially drive the system under test toward those properties
violation;

– the user can define some scenarios (behavioral patterns); the selection algo-
rithm will select inputs which follow the scenario;

– the user can also define input statistical (partial) distribution; the selection
algorithm will produce the inputs following the given distribution.

6.2 Use of Lutess for Feature Validation

The environment constraints were mainly constraints on sequences of opera-
tions that the user can perform (e.g. a user cannot go off the hook twice in a
row without going on the hook in between). These constraints may be enriched
with probability distributions or specific behavioral patterns corresponding to
typical sequences of users’ operations.

The detection procedure consists in running Lutess over a user-defined num-
ber of exchanges between the feature executable specifications and the environ-
ment simulator. During these exchanges, the interactions are detected by the
oracle which signals them by setting the verdict to false. The exchange trace
and the verdict trace are compiled by Lutess in a readable format which can be
subsequently analyzed to find out the reason of the interaction.

6.3 Experiment Description

78 configurations were to be tested, each including one or two features [8]. In
each case, 5 to 10 feature properties were available. The test process for each
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configuration involved 10 to 20 sequences of 1000 to 10000 steps each. On the
whole, each configuration has been evaluated on around 1 million test cases.

Building the generator corresponding to a given environment is the most
expensive part of the testing process. In our experimentations, environments
included from 32 to 45 constraints, plus up to 20 testing guides.

It was always possible to perform this computation and to run the test
on a Sparc Ultra-1 station with 128 MB of memory. Maximum virtual mem-
ory required amounts to 100 MB. As the number of constraints describing the
environment increases, the environment generation lasts longer. For the less-
constrained environments that we produced, 6 seconds on CPU were necessary,
while the most-constrained environments required 2000 seconds to be generated.
As a comparison, a 1000 test run lasts 120 seconds once the generator has been
built2. One can notice that here a trade-off has to be found: the more the envi-
ronment is constrained, the more relevant is the test (since the whole test case
is more realistic), but the longer is the generation.

6.4 Experiment Lessons

Test Automation

From the tester’s perspective, the tool allows a significant relief by automat-
ing the test. Building the oracle appeared to be the most difficult part of the
testing process. One has first to master the temporal logic paradigm, then to
find out the better terms to express a given property. This requires an adequate
training and experience.

From the specifier’s point of view, Lutess has shown to be very helpful to de-
bug specifications. First, Lutess has been used to validate the oracles: the oracle
specifications are put in place of the unit under test and a human observation is
substituted for the Lutess oracle. Second, prior to the search for interactions, the
service specifications to be tested have been validated using oracle properties.
For instance, in the specifications, some possible transitions were missing in a
diagram, or an expected output message was never sent in a given situation.
These problems were automatically exhibited as oracle violations.

Composition operation and feature interaction detection

We tried the two composition operations presented in section 5.2 (fig. 6b
and 6c). It appears that the second one is more efficient in terms of “quantity
of feature interaction detected”. Let us consider the Calling Number Delivery
(CND) and Call Forward (CF) features. CND properties are given in 5.5.

As it can be noticed in figure 9, CND feature displays the number of the
subscriber calling party as soon as his number is dialed. Let A be a user who
is both a CND and CF subscriber, let B the forwarded-to number of A. B is
also a CND subscriber. Whenever A’s number is dialed when B is idle, CF

2 This second phase of the testing process is proportional to the sequence length.
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3 Dial A B

Idle B

4 Start AudibleRinging A B |||

||| Display B A
Start Ringing B A / Busy B <- true

POTS A<-A  B<-B   2

POTS A<-A  B<-B   5 POTS A<-A  B<-B   13

Fig. 9. CND formal description (Chisel diagram)

feature diverts the call. Moreover CND feature displays the caller’s number on
A’s phone, but not on B’s phone (because of the dialing action). Thus there are
two interactions between CF and CND:

– After a call forwarding due to CF feature, the number of the calling party
is not displayed even if the forwarded-to user is a CND subscriber.

– After a call forwarding due to CF feature, the number of the calling party
is displayed on the callee’s phone even if the forwarded-to user is idle.

When the first composition operation is used and CF feature is given the
higest priority, (i.e. POTS⊕1CND⊕1CF ) the second interaction does not occur.
Indeed, when A’s Call Forward feature is invoked, CND outputs are hidden by
the CF’s ones: CF is active and produce a “no message” for the callee’s display.

With the second composition operation, a feature can not completely mask
another feature reaction. In this case, the second interaction appears and is
detected by Lutess.

Feature subscription list configuration

An interaction may depends on the feature subscription configuration. If the
subscription configuration is not adequate, some ineractions could be missed.

To use Lutess, the configurations of the feature subscription list were defined
manually. Several possible configurations were chosen for each pair of features
in order to decrease the probability to miss an interaction.

Importance of the properties

The Contest Committee defined a set of valid interactions. Those are the
feature interactions that the Committee believes exist between the features as
defined for the contest.
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We found 83 interactions using Lutess. 3/4 of them were valid features. We
found 14 invalid interactions and we also missed 19 interactions.

The invalid interactions we found result mainly from our interpretation of
the informal requirements: we produced properties which were not considered to
be “requirements” of a feature for the contest.

For instance, let us consider the Teen Line (TL) informal description: “TL
restricts outgoing calls based on the time of the day, (i.e. hours when homework
should be the primary activity). The restriction can be overridden on a per-call
basis by anyone with the proper identity code.” We deduced from this informal
specification that no call should be charged to the TL subscriber during the re-
striction hours, unless the correct identity code has been dialed. Let us consider
a user who is both a Call Forward and a Teen Line feature subscriber. When a
call is forwarded during the restriction hours, the extra charges are “charged”
and the TL property is thus violated. This is one of the invalid interaction we
found.

Concurrently, the valid interactions we didn’t find are also due to our proper-
ties, which were inadequate to reveal them. For instance, for most of the features,
an on-hook action ends a phone call. This is not the case of Call Waiting (CW)
feature. Thus there are some interactions between CW and some other features
when a on-hook action is both interpreted as a step of the communication by
CF and as the end of communication by the other features. The notion of “com-
munication ending” was never taken into account since it was always implicit in
the informal feature description.

When to stop testing ?

One of the major problem we had during this experiment phase was to decide
when the test should be stopped. Since testing does not provide a definite verdict
on the absence of the interaction, if no problem is found, one may wonder whether
the test was significant enough to detect all interactions. Thus, to evaluate how
significant were various test sequences, and increase confidence in testing, we
have worked along two directions:

– since very often, a feature interaction appears during features invocation, we
have produced some specific observers (i.e. properties which are included in
the oracle) to measure how often a feature is invoked; thus we have checked
whether interesting situations were explored during the test and so, if rele-
vant data were produced;

– we have applied a model-checker, since we expected to evaluate the ability
of such methods to detect feature interactions.
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7 Detection of Interaction Using a Model-Checker
(Lesar)

7.1 Lesar

Lesar [11, 12] has been designed to prove the correctness of a Lustre program
with respect to some critical safety properties. A safety property usually states
that a given situation will never occur or that a given statement should always
hold.

– Safety properties can be checked on program abstractions. Let P a program
and S a safety property to be proven. Let P’ an abstraction of P . Intuitively,
P ′ has more “behaviors” than P . Therefore, if S holds for P ′, it holds for P .

– Safety properties can be checked on program states rather than on execution
paths.

’P

P

Assert A

B
verdict

Fig. 10. Verification program structure

Lesar operates on a verification program. A verification program is a specific
Lustre program Π ′ built out of three elements (fig. 10) [11]:

– a program Π to be verified,
– a property P expressed by a boolean expression B which should be invariably

true,
– some assumptions on the environment (environment constraints); those as-

sumptions are boolean expressions (A) which can be assumed to be always
true.

These three elements are also those required by Lutess (fig. 8)
The verification is performed on a finite boolean state abstraction Π ′′ of the

program Π ′. Any numerical abstraction is ignored. Boolean expressions depend-
ing on numerical variables (such as comparisons) are considered nondeterminis-
tic. The verification principle is the following: proving that Π ′′ holds is equivalent
to enumerating its finite set of states, checking that in each state (belonging to
a path starting from initial state and on which the assertions are always true)
and for each input vector, Π ′′ output evaluates to true.
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7.2 Experiment Description

Lesar was used on the same computer configuration as Lutess. We had to modify
the original simulation programs (Π) to use Lesar, since Lesar cannot prove
properties involving numerical variables. The major modification was to translate
integer variables into boolean vectors.

We also split up the feature properties (B). Most of our oracle properties
were built as a conjunction of sub-properties. To make Lesar proofs shorter, we
proved separately the sub-properties. Proving property p∧q, p and q being both
safety-like properties, is equivalent to proving p and proving q.

The environment constraints (A) had not to be changed.

Only twelve pairs of features3 have been studied with Lesar: cnd+(cnd,
tcs, cfbl, cf, cell), tcs+(tcs, cfbl, cf, cell), cell+cell, cfbl+cfbl,
cf+cf. The pairs were chosen in order to progressively increase the simulation
program size. The size of a feature executable specification in Lustre is estimated
by the number of Chisel diagram states (and/or transition) of the feature (CND
has 2 states and 4 transitions, TCS has 3 states and 6 transitions, CF 16 states
and 20 transitions, CELL has 21 states and 27 transitions, CFBL has 14 states
and 19 transitions).

Lesar managed to build the boolean abstraction (Π ′′), for 8 pairs out of 12
and failed because of lack of memory or lack of time for 4 pairs: cf+cf, cf+cnd,
tcs+cfbl, tcs+cf. No other pair of features were therefore considered.

For the 12 listed pairs, Lutess found 12 interactions. Lesar exibited only 6
of these interactions. The 6 other interactions affect the 4 pairs of services for
which Lesar was unable to build the boolean abstraction. Each time Lesar was
able to produce a scenario counter-example, it revealed the same interactions as
those produced by Lutess.

The simplest pairs of features (cnd+cnd and cnd+tcs) required more than
2000 states and 17000 transitions to be explored. Lesar managed to prove each
property without requiring the feature subscription list to be fixed. In this case,
Lesar has proved to be more powerful than Lutess, since the subscription list
has to be fixed for Lutess, and since the test only gives a partial result.

For the two pairs of features (cfbl+cfbl) and (cf+cnd), Lesar found an
interaction, but was not able to terminate the model-checking. In each case,
several properties had to be considered, and Lutess exhibited a counter-example
for one of these properties. Lesar was able to build the boolean abstraction,
and exhibited the same counter-example as Lutess; it found the interaction after
exploring less than 100 states of the verification program. However, Lesar was
not able to explore the whole model (due to a lack of memory), to prove the
properties for which Lutess exhibited no counter-example.

3 Call Number Delivery (cnd), Terminating Call Screening (tcs), Call Forwarding
Busy Line (cfbl), Call Forwarding (cf), Cellular (cell).
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7.3 Experiment Lessons

Since some simulation programs were too big to be handled by Lesar, we sim-
plified them. The first simplification we carried out was to fix the subscription
list. Thus, several subscription situations had to be proved. For example, when
proving cell+tcs, one has to check the following cases:

– a user is both a Cellular and a Terminating Call Screening subscriber,
– a user is only a Cellular or a Terminating Call Screening subscriber,
– a user has no feature subscription...

The second simplification we carried out was to produce simulation programs
using only 3 users. This simplification was useless since Lesar still fails to prove
(cf+cf, cf+cnd, tcs+cfbl, tcs+cf). Some other simplifications were not
studied, since we wanted to keep the simulation program unchanged as most as
possible.

In section 6.4, we showed that Lutess was helpful and convenient to debug
feature properties, feature specifications or the environment specification. Lesar
is less convenient: there was no way to check whether the system or the environ-
ment behavior was realistic, since feature properties do not describe the complete
behavior of the simulation program. For instance, Lesar can not discover a miss-
ing transition (in the Lustre automata) if the properties do not explicitly concern
these transitions. Also, we managed to prove a property under an over-specified
environment. Actually, this property was false with respect to the correct envi-
ronment description. This means that one can not consider Lesar verdict without
simulating the environment description and/or the properties to be proved.

8 Conclusion

We have shown that within a unified validation framework (fig. 3), testing and
model-checking are applicable to the feature interaction detection problem.

First, thanks to this framework, both methods can be used with few ad-
ditional efforts. Testing can be used for environment and simulation program
behavior validation. Proofs can be used to obtain a definitive verdict as far as
it is possible. And when model-checking fails for lack of time and/or memory,
testing can be used to get a partial verdict.

Second, this experiment has confirmed the fact that the feature detection
problem is better tackled using testing than model-checking.

It appears that very few attempts to put in practice the synchronous ap-
proach to telephony systems have been carried out [14, 13]. The one reported in
this paper is more thorough. Applying synchronous modeling with Lustre and
testing with Lutess has revealed itself to be the most efficient approach in the
first feature interaction detection tools contest.
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