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Abstract. In practice due to entailed memory limitations the most im-
portant problem in model checking is state space explosion. Therefore, to
prove the correctness of a given design binary decision diagrams (BDDs)
are widely used as a concise and symbolic state space representation.
Nevertheless, BDDs are not able to avoid an exponential blow-up in gen-
eral. If we restrict ourselves to find an error of a design which violates a
safety property, in many cases a complete state space exploration is not
necessary and the introduction of a heuristic to guide the search can help
to keep both the explored part and the associated BDD representation
smaller than with the classical approach.

In this paper we will show that this idea can be extended with an au-
tomatically generated heuristic and that it is applicable to a large class
of designs. Since the proposed algorithm can be expressed in terms of
BDDs it is even possible to use an existent model checker without any
internal changes.

1 Introduction

To formulate the specification properties of a given design many different tem-
poral logics are available, each of them with a different expressive power: (Fair-)
CTL [6] is a branching time logic, LTL [18] is a linear time logic and CTL* [13]
is a superset containing both of them. CTL* itself is a subset of the u-calculus
[[7] which in addition allows to verify bisimulation and other more complex
properties.

In practice, however, the characteristics people mainly try to verify are sim-
ple safety properties that are expressible in all of the logics mentioned above.
They can be checked through a simple calculation of all reachable states. Un-
fortunately, this computation can become intractable for systems consisting of
several asynchronously interacting modules.

Although BDDs [5] allow a succinct representation of a system they cannot
always avoid an increase in BDD-sizes caused by the typical exponential blow-up
of states. However, model checking is not only used to show the correctness of
a complete system, but also as a very efficient method to find errors during the
construction phase in order to avoid cost intensive correction phases later on.
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In early design phases a system typically contains many errors such that
nobody would expect a successful verification. We should try to detect these
errors as soon as possible to avoid the calculation of the entire state space.
Local model checking methods [14] attempt to exploit only a small part of the
state space while global model checking techniques usually calculate all reachable
states. Moreover, their fix-point calculation requires a backward traversal and a
lot of work is spent in treating unreachable states. Hence, in order just to detect
an error local model checking methods [24] can be more efficient. So a suitable
application of model checking can replace parts of the classical debugging and
testing work because it allows the detection of more errors in less time.

The method proposed in this paper focuses on safety properties. Starting
with the set of initial states it performs a forward traversal of the system and
exploits only that part of the set of reachable states that is most likely to lead to
an error state. This is sufficient to construct a counter example of the violated
property helping the designer to understand and fix the failure of the system. To
guide the search a heuristic estimates the number of transition steps necessary
to reach the error state. If the heuristic fulfills a certain property it guarantees
the detection of a minimal counter example.

Our algorithm detects errors in systems unable to be verified by traditional
symbolic model checking since the BDDs exhaust the available memory re-
sources. Even if we assume pure forward traversal, after several iterations not
containing an error state the large amount of states that has to be stored by an
unguided search becomes too big; while heuristic search finds the error within
an acceptable amount of time without suffering from memory problems.

Since all states have to be visited, our method fails to entirely validate a
correct system, but this should be postponed until the end of the construction
phase when most of the errors have been removed and the correctness of the
system is more probable. The successful verification of large systems can be
a very time consuming work which requires elaborated methods and a lot of
experience. This results in a manually driven process with a lot of expertise
demanding a specialist. We recommend a distinction of a verification to prove
the correctness of a system and the use of a model checker as debugging tool,
since the ultimate goal is to tediously prove the system only once and not after
every detection and correction of an error.

The paper is structured as follows. In Section 2, we introduce some basics
about BDDs. Section 3 addresses traditional symbolic model checking and Sec-
tion 4 its proposed enhancement with a heuristic. The automatic inference of
the heuristic is the topic of Section 5. Finally, Section 6 presents our results in
verifying a buggy design of the tree-arbiter and the DME.

2 BDD Basics

Ordered binary decision diagrams (OBDDs) introduced by Bryant [5] are a
graphical representation for boolean functions. A BDD G(f,w) with respect
to the function f and the variable ordering 7 is an acyclic graph with one source
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and two sinks labelled with true and false. All other (internal) nodes are labelled
with a boolean variable x; of f and have two outgoing edges left and right. For
all edges from an z; labelled node to an z; labelled node we have (i) < 7(j),
such that on every path in G the variables are tested in the same order and
at most once. Reduced BDDs with respect to a fixed variable ordering are a
canonical representation for boolean functions. A BDD is reduced if isomorphic
sub-BDDs are merged and nodes whose outgoing edges lead to the same suc-
cessor are omitted. Reduced BDDs are build directly, integrating the reduction
rules into the construction algorithm. The variable ordering m can be choosen
freely, but it has a great influence on the size of the BDDs, e.g. there are func-
tions which have BDDs of linear size for a “good” and of exponential size for a
“bad” ordering. The determination of an optimal ordering is an NP-hard prob-
lem but, for most applications, there exist several heuristics for non-optimal but
“good” orderings [2]. Another method to improve the ordering is dynamic vari-
able reordering [23] which is applied during the verification in case the BDDs
become too large. In the following we will only speak of BDDs, however, we
always mean reduced ordered BDDs.

In model checking BDDs help to overcome the memory limitations of explicit
state representation methods [19]. They represent both the sets of states and
the transition relation. Model checking temporal logic properties can be reduced
to the calculation of fix-points. This calculation can be performed efficiently
treating lots of states in each iteration step.

An important task is to determine the set of reachable states. Starting with
the set of initial states the fix-point iteration corresponds to a breadth-first-
search until no more new states are found. This is sufficient to check safety and
simple reachability properties. To verify more complicated properties typically
a backward state traversal is applied to calculate the necessary fix-points. As a
drawback many unreachable states have to be represented because the reacha-
bility status of a given state is not known at the beginning of the verification.

3 Model Checking

First we expose the structure of the transition relation and examine the cal-
culations that have to be performed to check safety properties with a classical
symbolic model checker. Thereafter, we discuss alternative methods that try to
overcome the weaknesses of the breadth-first-search approach.

3.1 Traditional Symbolic Model Checking

In order to apply a model checker we need a description of the system and the
safety property to be verified. The p-calculus is an example of a logic in which
both descriptions can be expressed. The two predicates Start and Goal describe
the set of initial states and the set of error states, respectively. In addition
a predicate Trans is required that evaluates to true if and only if there is a
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transistion between two successive states. For an interleaving model the predicate
Trans is defined by the following equation:

Trans(State s, State t) = \/ Trans;(s,t;) A CoStab;(s,t).

i=1

Systems typically consist of several interacting modules. The interaction can
be synchronous, asynchronous or interleaving. Here the verification of an inter-
leaving model is described while for the verification of the other two models only
small changes in the transition relation have to be made.

The predicate CoStab; describes that all modules except module ¢ preserve
their state and the predicate Trans; describes the transition relation of the single
module ¢ that might depend on the states of up to all other (n) modules but
that only changes its own state s; into ;. The state of a single module consists of
several (m) variables of type: bool, enumerated or integer (with limited values)
or a combination of them. They are all translated into boolean variables such
that for all modules we end up with an expression of the form:

Trans;(State s, ModuleState t;) = /\ T;.i(s,ti5),
j=1

where ¢; ; describes the state of variable j in module . The transition 7 ;
of a single variable s; ; describes the possibility to change its value according to
its input variables or to persist in its state. A backward traversal of the system
then calculates the following fix-point:

t Foq1(State s).Goal(s) V (3State suce. Trans(s, succ) A Foq1(suce)).

After determining the set of states satisfying this fix-point we check if it
contains the initial state. As said above, the disadvantage of this approach is
that many unreachable states have to be stored. The alternative is to start with
the set of initial states and to make a forward traversal calculating the transitive
closure Reach of the transition relation:

1 Reach(State s).Start(s) V (3State prev. Trans(prev, s) A Reach(prev)).

The efficiency can be improved: After each fix-point iteration we check if
the set contains an error state in which case the verification can be aborted.
Based on an interleaving (asynchronous) combination of modules, however, each
order of transitions of the single modules has to be taken into account leading to
state space explosion. Therefore, the sole calculation of reachable states might
be impossible.

3.2 Other Approaches

An attempt to overcome the disadvantage of the unreachable states to be stored
in a backward traversal is local model checking [7,24]. It applies a depth-first
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search allowing an intelligent choice of the next state to be expanded. It signif-
icantly reduces the verification time in case properties are checked that do not
necessarily require the traversal of the whole state space. In general, local model
checking uses an explicit state representation such that it cannot take profit from
the elegant and space efficient representation based on BDDs.

An attempt to combine Partial order reduction with BDDs was made in [I].
Nevertheless, it was not yet as successful as global BDD-model checking.

Bounded model checking performs symbolic model checking without BDDs
using SAT decision procedures [4]. The transition relation is unrolled k steps
for a bounded k. The bound is increased until an error is found or the bound
is large enough to guarantee the correctness of a successful verification. The
major disadvantage of bounded model checking is the fact that it is difficult
to guarantee a successful verification, since the necessary bound will be rather
large and difficult to determine. Therefore, similar to our approach the most
important profit of this method is a fast detection of errors.

Validation with guided search [25)] is the only other approach known to the
authors which tries to profit from a heuristic to improve model checking. The
measure is the Hamming distance, i.e. the minimum number of necessary bit-flips
to transfer a given bit-vector of a state to an erroneous one. For our purposes this
heuristic is too weak. The lower bound presented in Section[H] has a larger range
of values leading to a better selection of states to be expanded. Furthermore,
the pure effect of the heuristic is not clearly evaluated. The authors compare the
number of visited and explored states with a breadth-first-search, but unfortu-
nately the BDD-sizes for the state representation, the key performance measure,
are not mentioned. It does not become clear which parts of the verification are
performed with BDDs and which parts are dealt otherwise. The proposed ap-
proach is combined with two other methods: target enlargements and tracks.
The former corresponds to a certain kind of bidirectional search, which is not
a heuristic but a search strategy close to perimeter search [10] and the latter
seems to be highly manually driven and not suitable for automatisation, one of
our principal aims. The combination of their methods to find an error leads to
good results, but in our opinion, it seems that the heuristic only contributes a
small part to this advancement.

In contrast our algorithm entirely utilizes the BDD data structure such that
the only interesting point are the sizes of the BDDs and not the number of states
represented by it. In the examples of Section [B] the overall time and memory
efficiency of our approach is shown to outperform traditional BDD breadth-
first-search.

4 Directed Model Checking

In BDD based breadth-first-search all states on the search horizon are expanded
in one iteration step. In contrast our approach is directed by a heuristic that
determines a subset of the states on the horizon to be expanded which most
promisingly leads to an error state. Non-symbolic heuristic search strategies are
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well studied. A* [15] is an advancement of Dijkstra’s algorithm [8] for determining
the shortest paths between two designated states within a graph.

The additional heuristic search information helps to avoid a blind breadth-
first-search traversal but still suffers from the problem that a huge amount of
states has to be stored. In this section an algorithm similar to A* is proposed to
improve symbolic model checking.

4.1 BDDA*

Edelkamp and Reffel have shown how BDDs help to solve heuristic single-agent
search problems intractable for explicit state enumeration based methods [L1].
The proposed algorithm BDDA* was evaluated in the Fifteen-Puzzle and within
Sokoban.

The approach exhibits a new trade-off between time and space requirements
and tackles the most important problem in heuristic search, the overcoming of
space limitations while avoiding a strong penalty in time. The experimental data
suggests that BDDA* challenges both breadth-first-search using BDDs and tra-
ditional A*. Sokoban is intractable to be solved with explicit state enumeration
techniques (unless very elaborated heuristics, problem graph compressions and
pruning strategies are applied) and the Fifteen-Puzzle cannot be solved with
traditional symbolic search methods. It is worthwhile to note that especially
in the Sokoban domain only very little problem specific knowledge has been
incorporated to regain tractability.

The approach was successfully applied in Al-planning [T2]. The authors pro-
pose a planner that uses BDDs to compactly encode sets of propositionally
represented states. Using this representation, accurate reachability analysis and
backward chaining are apparently be carried out without necessarily encounter-
ing exponential representation explosion. The main objectives are the interest
in optimal solutions, the generality and the conciseness of the approach. The
algorithm is tested against a benchmark of planning problems and lead to sub-
stantial improvements to existing solutions. The most difficult problems in the
benchmark set were only solvable when additional heuristic information in form
of a (fairly easy) lower bound was given.

4.2 Heuristics and A*

Let h*(s) be the length of the shortest path from s to a goal state and h(s) its
estimate. A heuristic is called optimistic if it is always a lower bound for the
shortest path, i.e., for all states s we have h(s) < h*(s). It is called consistent if
we have h(u) < h(v) + 1, with v being the successor of u on any solution path.
Consistent heuristics are optimistic by definition and optimistic heuristics are
also called lower bounds.

Heuristics correspond to a reweighting of the underlying problem graph. In
the uniformly weighted graph we assign the following assignment to the edges
w(u,v) = 1 — h(u) + h(v). Fortunately, up to an additional offset the shortest
paths values remain the same and no negative weighted loops are introduced.
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Consistent heuristics correspond to a positively weighted graph, while optimistic
heuristics may lead to negative weighted edges.

In A* there are three sets. The set Visited of states already expanded, the
set Open containing the states next to be expanded and the states which have
not yet been encountered. During the calculation every state always belongs to
exactly one of these sets. When a state is expanded it is moved from Open to
Visited and all its successors are moved to Open unless they do not already
belong to Visited. In this case they are inserted back to Open only if the current
path is shorter than the one found before. This is done until the goal state
is encountered or the set Open is empty. In the later case there exists no path
between an initial state and a goal state. The correctness result of A* states that
given an optimistic estimate the algorithm terminates with the optimal solution
length.

4.3 Tailoring BDDA* for Model Checking

In the BDD version of A* the set Visited is omitted. To preserve correctness the
successors of the expanded states are always inserted into Open. This relates to
the expansion of the entire search tree corresponding to the reweighted graph.
The closely related explicit state enumeration technique is iterative deepening
A*, IDA* for short [I6]. With an increasing bound on the solution length the
search tree is traversed in depth-first manner. Note, IDA* was the first algorithm
that solved the Fifteen Puzzle. The admissibility of BDDA* is inherited by the
fact that Korf has shown that given an optimistic heuristic IDA* finds an optimal
solution.

For model checking omitting the set Visited turns out not to be a good choice
in general such that the option to update the set of visited states in each iteration
has been reincarnated. In difference to A*, however, the length of the minimal
path to each state is not stored. The closest corresponding single-state space al-
gorithm is IDA* with transposition tables [22]. Transposition tables store already
encountered states to determine that a given state has already been visited. This
pruning strategy avoids so-called duplicates in the search. However it is neces-
sary to memorize the corresponding path length to guarantee admissibility for
optimistic heuristics. Fortunately one can omit this additional information when
only consistent heuristics are considered. In this case the resulting cost-function
obtained by the sum of path length g and heuristic value h is monotone.

The set Open is a priority queue sorted according to the costs of the states.
The costs of a state s is the sum of the heuristic and the number of steps necessary
to reach s. The priority queue Open can be symbolically represented as a BDD
Open(costs, state) in which the variables for the binary representation of the
costs have smaller indices than those for the representation of states. In Figure [T
the algorithm is represented in pseudo code. The BDD Open corresponds to a
partitioning of the states according to their costs.

Due to the variable ordering a new BDD operation (not included in stan-
dard BDD libraries) might efficiently combine three steps in the algorithm: the
determination of the set of states with minimal costs contained in the queue,
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its costs finin, and the new queue without these states. The function follows
the path from the root node by always choosing the left successor — provided
it does not directly lead to false — until the first state variable is encountered.
This node is the root of Min, the persecuted path corresponds to the minimal
costs fmin.- The set Open excluding the just expanded states is obtained when
Min is replaced by false probably followed by some necessary applications of the
BDD-reduction rules.

Note, that the range of the costs has to be chosen adequately to avoid an
overflow. To determine the set Succ the costs of the new states have to be
calculated. As in Open only the costs of a state are stored and not the path-
length the new costs are the result of the formula f' — A’ + 1+ h with f’ and b’/
being the costs and the heuristic value of the predecessor. The value 1 is added
for the effected transition and h is the estimate for the new state. Afterwards it
remains to update the set Visited which is merged with Min. Furthermore the
new states Succ are added to Open which should contain no states comprised in
Visited.

Input BDD Start of the initial, BDD Goal of the erroneous states, BDD Trans repre-
senting the transition relation, and BDD Heuristic for the estimate of the entire search
space.

Output “Error state found!” if the algorithm succeeds in finding the erroneous state,
“Complete Exploration!”, otherwise.

Visited (State s) := false
Open(Costs f, State s) := Start(s) A Heuristic(f,s)
while (3 s1,f1. Open(fi,s1))
if (3¢,f'. Open(f';s’) A Goal(s")) return “Error state found!”
Min(fs) := Open(f,;s) A =
Succ(f,s) := 3 f',s' h)h'. Heuristic(h,s) A Heuristic(h',s") A
Min(f',s") A Trans(s',s) A f=f—h’ 4+ 1+h
Visited(s) := Visited(s) vV 3 f. Min(f,s)
Open(f,s) := (Open(f,s) V Succ(f,s)) A = Visited(s)
return “Complete Exploration!”

Fig. 1. Heuristic based algorithm in Model Checking.

5 Inferring the Heuristic

The heuristic estimates the distance (measured in the number of transition steps)
from a state to an error state. According to the type of the system such a step
can have different meanings. For a synchronous system one step corresponds to
one step in each module. In an asynchronous system a subset of all modules
can perform a step and finally for an interleaving model exactly one module
executes a transition. The challenging question is how to find a lower bound
estimate (optimistic heuristic) for typical systems.
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First of all, h = 0 would be a valid choice, but in this case A* exactly
corresponds to breadth-first-search. Therefore, the values of the heuristic have
to be positive to serve as an effective guidance in the search: The more diverse
the heuristic values the better the classification of states. In this case we select
most promising states for failure detection and distinguish them from the rest.
As an effect in each iteration only a few states have to be expanded.

The next intuitive heuristic is the Hamming distance mentioned above. The
measure is optimistic if in one transition only one z; can change. Unfortunately,
this is not true in general. The main drawback of this heuristic, however, is that
in general the number of variables necessary to define an error state are few
in comparison to the number of state variables. Hence, the Hamming distance
typically has a small range of values and the number of different partitions of
states are too less to significantly reduce the number of states to be expanded.

In the sequel we propose an automatic construction of a heuristic only based
on the safety property and the structure of the transition function. We assume
that the formula f describing the error states is a boolean formula using A and V
while negation is only applied directly to variables. In CTL the safety property
with respect to the property f is denoted by AG(—f).

5.1 Definition

Table [ describes the transformation of the formula f into a heuristic Heuy.
In the first two cases the sub-formulas f; must not contain another V-operator
(respectively A) at the top level.

ming=1,....n, Heuys, (s), if f=fiV--Vfa
maxg=1,...n Heug, (s), if f=fin-Afn
Heusi,j (S)v if f = Si,5
Heus—(s), if f=5i;

Table 1. Property-dependent determination of heuristic values.

Heuy(s) =

With this construction the heuristic value depends only on Heus, ,(s) and
Heuz—(s) which rely on the structure of the transition relation. As explained in
Section Bl the transition of variable j in module 7 is described by T; ;(s, ti ;).
The devices T; ; are typically some standard electronic elements such as the
logical operators or, and, zor, etc. In a general setting, however, they can be
arbitrary formulas.

Table R| exemplarily depicts the values for the function Heus, ; for every
binary boolean formula. For a general boolean function s; ; = g : B™ — B with
n arguments the sub-function Heu, ;(s) has the following value:

min  { max {number of transitions necessary until s; = x;}}
z€B"|g(x)=1 i€{l..n}



204 Frank Reffel and Stefan Edelkamp

g(z1,22) |Heus, ;(s) =if (s;;) then 0 else:
0 0

1 A T2 1+ max {Heug, (s), Heuz, (s)}
—(x1 — 22)|1 + max { Heuz1(s), Heuzz(s)}

1 14+ H€u$1 (5)
(22 — 21)|1 + max { Heuzr(s), Heua, (s)}
X9 1+ Heuzg (S)

x1 ¢ 22 |14 (if (21) min {Heuzr(s), Heuzz(s)}
else min{Heug, (s), Heuz,(s)})
1V T2 1+ min { Heug, (s), Heuz,(s)}

Table 2. Transition-dependent determination of heuristic values for ¢;; =
9(Siy j1» Sis.j»)- The remaining 8 binary functions are obtained by duality.

Note, that Table Pl is valid for both an asynchronous and a synchronous
model. In the case of an interleaving model the heuristic can be improved: if
Heu,, and Heu,, appear only once in the whole formula and x; and x5 belong
to different modules then max can be replaced by plus.

5.2 Refinement-Depth

Actually, the rules can be applied to Heuy infinitely often such that we have to
limit the number of its applications and to define a base case.

Definition 1. In a first step all possible rules of Table [1] are applied to Heuy.
The refinement-depth of the heuristic formula is the number of times all possible
replacements given in Table [A are applied.

The rules are applied appropriately to reach the desired depth. Afterwards
each remaining Heus, ,(s) is replaced by

if (s;,;) then 0 else 1

A higher refinement-depth corresponds to an improvement of the estimate,
but on the other hand the BDD representing the heuristic becomes bigger and
from a certain depth on the benefit from further refinements becomes very small
or even disappears. So the aim is to find a trade-off between the BDD-size and the
refinement-depth. In many cases already simple heuristics lead to a noticeable
effect. Therefore, a feasible strategy can be to start with a simple heuristic and
to refine it more and more until an error state is found.

5.3 Example

A part of an electronic circuit is given in Figure[2l Let f = s1,0 A 52,0 be the de-
scription of the error state. Table[3 demonstrates the construction of the heuristic
for a refinement depth of 1 and 2.
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4.3

Fig. 2. Part of an electronic circuit

To show that our heuristic yields to a better partitioning of the state space
by a wider range of heuristic values look at the following state s = {s1, so} with
s1=(1,1,1,1,1,0) and s2 = (0,0,1,0)

As sy, is true and so is false the Hamming distance is 1. Our construc-
tion of the heuristic takes into account that it is not possible to reach a state
where s2 0 = true with one transition. Using a refinement depth of 2 leads to
Hg, gass0(8) = 3. The variable s 5 has to become false before the nor-element
can change the value of s5 1 and in the third transition s2 ¢ can switch to true.

|z |Heux(s) for & =true in s|Heu,(s) for x =false in s
For refinement depth 1:

51,0 0| 1+ max{Hs, ,,Hs ,}
52,0 0] 1+max{H, ,,Hs,}
For refinement depth 2:

81,1 0 1+ min {Hsr, Her}
$1,2 0 14 min {H,, ;,Hs,,}
82,1 0 1 + max {Hs;5, Hez5}
Base cases:

51,5,51,3,51,4 0 1
$2,2,52,2,52,3 0 1

Table 3. Example of the heuristic estimate.

5.4 Properties

As indicated the heuristic can be improved to allow a better partitioning of the
set of states to be expanded. A non-optimistic heuristic can lead to a faster
detection of an erroneous state but on the other hand it can increase the length
of the counter example. The construction of the heuristic however always leads
to an optimistic heuristic. To prove this we will use the following lemma:
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Lemma 1. Heu,, ;(s) is a lower bound for the number of transitions which are
necessary to reach a state from s where s; ; = true.

Proof. The property will be shown by induction on the refinement depth:

Refinement depth 0: In this case we have Heus, ; = if (s;;) then 0 else 1.
(The argumentation for negated variables 5;; is similar.) If s, ; is true no
transition step is necessary. Hence, Heus, ;(s) = 0. In case s;; is false at
least one transition step has to be made to change its value. Therefore,
Heus, ;(s) =1 is a lower bound.

Refinement depth k: We will suppose that for a refinement depth less than k
the functions Heus, ; fulfill the desired property. After the first application of
a rule from Table 2 for the introduced formulae Heu,, we have a refinement
depth of k — 1. This implies that it takes at least Heu,, steps to change the
values of the involved variables. It depends on the formula g(x1,22) which
changes the value of s; ; that it is necessary for both variables z; and x3 to
have a certain value, or that it is sufficient that one of them has a certain
value. This determines if the minimum or the maximum of the involved
functions Heu,, is used. In both cases after the variables x; and xy have
been assigned to a value, which allows g to change the value of s;; from
false to true, at least one additional step is necessary. Therefore, 1 can be
added and Heus, ; still remains a lower bound. -

Using Lemma [ it it quite easy to prove that Heu; according to the con-
struction introduced above is a lower bound estimate.

Theorem 1. The function Heuy is optimistic.

Proof. It remains to show that the rules of Table[Mlead to an optimistic heuristic
since the sub-functions Heus, ; underestimate the number of transitions neces-
sary to achieve the desired value for s; ;. This can be shown easily by induction
on the number of applications of the rules of Table [[lso we will only explain the
main idea for the proof.

It is based on the fact that for an V-formula it is sufficient that one of the
fi becomes true, so the minimum of the Heuy, is chosen and for an A-formula
all f; have to be fulfilled so the maximum of the Heuy, can be chosen for the
heuristic value. -

Note, that for an asynchronous or a synchronous system in one transition
step the values of various variables can change, therefore it is not possible to
summarize over the Heuy, for example in case of an A-formula. In contrast,
for an interleaving model the sum could be used if the f; depend on variables
in different modules because only one module can change its state in a single
transition.

As already indicated to guarantee the computation of the minimal counter-
example in the proposed extension to BDDA* it is not sufficient to use an
optimistic heuristic. Fortunately, it is possible to show the consistency of our
automatically constructed heuristic:
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Theorem 2. The function Heuy is consistent.

Proof. We have to show that

VState s,t. Trans(s,t) = Heuy(s) <1+ Heuy(t).

This property follows directly from the fact that for all variables z we have

VState s,t.Trans(s,t) = Heu,(s) < 1+ Heuy(t).

We will prove this by induction on the refinement depth similar to Lemma
For a refinement depth of 0 there is nothing to prove because Heu,(s) < 1. For
refinement depth k& we will show the property for the operator A (cf. Table ).
In this case Heu,(s) is defined as 1+ max { Heuy, (s), Heu,,(s)}. For Heu,, and
Heu,, we have a refinement depth of £ — 1 so the property holds for these
formulas:

Heuy(s) <1+ max {1+ Heuy, (t),1+ Heu,,(t)}
<1+ (14 max{Heuy, (t), Heu,,(t)})
<1+ Heu,(t)

The proof for the other operators of Table[2 is analogue expect for the op-
erator . The interesting case is a transition where in state s the variables x
and o are assigned to true and in state ¢ both variables are assigned to false.
In this case the structure of the formula changes: For state s we have

Heuy(s) = 1+ min { Heuzr(s), Heuzz(s)}
and in state ¢ we establish
Heu,(t) = 1+ min { Heu,, (t), Heu,, (t)}.

The circumstance that there is a transition from s to ¢ which changes the
values of z1 and x5 from true to false implies that Heuz(s) = Heuzz(s) = 1 and
Heu,(s) = 2 while for state ¢t we have Heu,, (t), Heu,,(t) > 1. Therefore, the
following equation completes the proof:

Heu,(t) = 1+ min { Heu,, (t), Heuy, (8)} > 1+ min{1,1} = 2 = Heu(s)

Note, that breadth-first-search finds the error state in the minimal number
of iterations. In contrast in the heuristic search approach several states remain
unexpanded in each iteration such that the number of necessary iteration steps
increases. In the worst case we have a quadratic growth in the number of it-
erations [I1]. On the other hand, especially for large systems, a transition step
expanding only a small subset of the states is much faster than a transition based
on all states. Therefore, this apparent disadvantage even turns out to be very
time-efficient surplus as the examples in the next section will show.
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6 Experimental Results

In our experiments we used the p-calculus model checker ucke [3] which accepts
the full y-calculus for its input language [20]. The while-loop has to be converted
into a least fix-point. As it is not possible to change two sets (Open, Visited) in
the body of one fix-point the Visited set is simulated by one slot in the BDD for
Open. The next problem is that the function for Open is not monotone because
states are deleted from it after they have been expanded. Monotony is a sufficient
criterion to guarantee the existence of fix-points. The function for Open is not
a syntactic correct p-calculus formula but as the termination of the algorithm
is guaranteed by the monotony of the set Visited we can apply the standard
algorithm for the calculation of u-calculus fix-points.

Unfortunately, we cannot take advantage of the special BDD operation deter-
mining the set of states with minimal costs in this case. These calculations have
to be simulated by standard operations leading to some unnecessary overhead
that in the visible future has to be avoided in a customized implementation.

For the evaluation of our approach we use the example of the tree-arbiter [9]
a mechanism for distributed mutual exclusion: 2n user want to use a resource
which is available only once and the tree-arbiter manages the requests and ac-
knowledges avoiding a simultaneous access of two different users. The tree-arbiter
consists of 2n — 1 modules of the same structure such that it is very easy to scale
the example. Since we focus on error detection we experiment with an earlier
incorrect version — also published in [9] — using an interleaving model.

The heuristic was devised according to the description in Section [ with a
refinement-depth of 6. We also experimented with larger depths which implied
a reduction neither in time nor in size. Since the algorithm for the automatic
construction of the heuristic has not yet been implemented and since the number
of different errors increases very fast with the size of the tree-arbiter we searched
for the detection of a special error case. Table[d shows the results in comparison
with a classical forward breadth-first-search. To guarantee the fairness of the
comparison we terminated the search at the time the error state has first been
encountered.

For the tree-arbiter with 15 modules or less the traditional approach is faster
and less memory consuming, but for larger systems its time and memory ef-
ficiency decreases very fast. On the other hand, the heuristic approach found
the error even in large systems, since its memory and time requirements in-
creases slowly. For the tree-arbiter with 23 modules the error could not be found
with breadth-first-search and already for the version with 21 modules 9 garbage
collections were necessary not to exceed the memory limitations, whereas the
first garbage collection with the heuristic method was invoked at a system of
27 modules. For the tree-arbiter with 27 modules we also experimented with
the heuristic. When we double its values the heuristic fails to be optimistic, but
the error detection becomes available without any garbage collection. Moreover,
although more than three times more iterations were necessary only about 8%
more time was consumed. This illustrates that there is much room for further
research in refinements of the heuristic.
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BFS Heuristic
# Mod|| #it|max nodes time||depth|#it|max nodes time
15 30 991374 46s 4|104| 10472785 483s
6|127| 5715484 288s
17 42| 18937458 3912s 6|157| 7954251 476s
19 44| 22461024 6047s 6/157| 8789341 540s
21 44| 26843514|24626s(9) 6/157| 9097823 530s
23 |[>40 -| >17000s 6/157| 9548269 516s
25 - - - 6/169| 21561058| 1370s
27 - - - 6169 25165795[1818s(1)
6(x2)[593| 23798202| 1970s

Table 4. Results for the tree-arbiter. In parenthesis the number of garbage
collections is given.

The second example we used for the evaluation of our approach is the asyn-
chronous DME [9]. Like the tree-arbiter it consists of n identical modules and it
is also a mechanism for distributed mutual exclusion. The modules are arranged
in a ring structure whereas the modules of the tree-arbiter form a pyramid. In
this case we also experimented with the set Visited and it turns out that it was
more efficient to omit it like proposed in [II]. For this variation only a small
change in the calculation of Open is necessary. Like in the previous example the
results in Table Bl show that the heuristic approach is more memory efficient
and less time-consuming. The first experiment in the Table uses the set Visited
that was omitted in the other experiments. This led to a greater iteration depth
because several states are visited more than once. Nevertheless this turned out
to be more time and memory efficient. The increase of the refinement-depth
to 7 allows to reduce the verification time and no garbage collection remains
necessary.

BFS Heuristic

# Mod||#it|max nodes time||depth|#it|max nodes time
6 23| 26843514|5864s(5) 6v| 35| 29036025|2207s(4)

6| 53| 25165795[1009s(1)

7| 53| 25159862| 813s(0)

Table 5. Results for the asynchronous DME. In parenthesis the number of
garbage collections is given.
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7 Conclusion and Discussion

We presented how a heuristic can successfully be integrated into symbolic model
checking. It is recommended to distinguish between the use of a model checker
in order to prove a property and the use as a debugging tool. For debugging
exhaustive search of the reachable state space can be avoided and the heuristic
can decrease both the number of expanded states and the BDD-sizes which
allows the treatment of bigger systems. It was shown how a heuristic can be
automatically designed for a large class of systems allowing the application of
this method also for non-experts.

The experiments demonstrated the effectiveness of the approach and we plan
to test the algorithm with more example data and to evaluate further refinements
of the heuristic and its construction.

There are lots of choices for an experienced user to modify and improve the
estimate or even to use non-optimistic heuristics allowing a better partitioning
of the state space. This can be more important than the determination of the
minimal counter-example. Pearl [2T] discusses limits and possibilities of over-
estimations in corresponding explicit search algorithms. One proposed search
scheme, called WIDA*, considers costs of the form f = ag+(1—a)h. lf a € [.5,1]
the algorithm is admissible. In case « € [0,.5) the algorithm searches according
to overestimations of the heuristic value compared to the path length g. The
literature clearly lacks theoretical and practical results for symbolic searches
according to non-optimistic heuristics.
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