
A Perfecto Verification: Combining Model

Checking with Deductive Analysis to Verify
Real-Life Software?

Yonit Kesten1, Amit Klein2, Amir Pnueli3, and Gil Raanan2

1 Dept. of Communication Systems Engineering, Ben Gurion University, Beer-Sheva,
Israel, ykesten@bgumail.bgu.ac.il

2 Perfecto Technologies Ltd. 103 Medinat Hayehudim St. Herzelia 46733, Israel,
(http://www.PerfectoTech.Com), {Amit.Klein|Gil.Raanan}@PerfectoTech.Com

3 Weizmann Institute of Science

Abstract. The paper presents an approach to the formal verification of
a complete software system intended to support the flagship product of
Perfecto Technologies which enforces application security over an open
communication net.
Based on initial experimentation, it was decided that the verification
method will be based on a combination of model-checking using spin with
deductive verification which handles the more data-intensive elements of
the design. The analysis was that only such a combination can cover by
formal verification all the important aspects of the complete system.
In order to enable model checking of large portions of the design, we have
developed an assume-guarantee approach which supports compositional
verification. We describe how this general approach was implemented in
the spin framework.
Then, we explain the need to split the verification activity into the model-
checking part which deals with the control issues such as concurrency
or deadlocking and a deductive part which handles the data-intensive
elements of the design.

Keyword: models, verification (deductive methods, assume-guarantee, composi-
tional) model checkers (spin, promela), concurrent systems, Security, safety
properties, Telecommunications, Object Oriented, Network protocols

1 Introduction

The electronic commerce market has a growth potential that may bring it to
revolutionize the world economy. The potential is based on the connectivity
enabled by the Internet on one hand, and the willingness of customers and
clients to do business on the net, on the other hand. The issue of willingness to
do business on the Internet is mainly determined by how secure the customers
? This research was supported in part by the Minerva Center for Verification of Reac-

tive Systems

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. I, LNCS 1708, pp. 173–194, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

174 Yonit Kesten et al.

feel when they engage in their business transactions. This is where security
(safety, assurance) comes into play, and it can be plainly seen that as the major
concerns of the clients are security, privacy and assurance, then addressing these
issues in a precise and scientific manner can result in both a robust solution to
the technical problems, and a high assurance and confidence level on the side of
the clients. In our understanding, formal methods are an enabling technology for
security of large scale systems, especially software projects. As a software analysis
and improvement tool, formal methods provide the fullest and most complete
scientific means for safety and assurance. From the customer point of view,
formal verification means high assurance, which is a key feature in the decision
to use e-commerce. The paper describes the application of formal methods for
the verification of a software product, which delivers e-commerce security for the
Internet. The work is an ongoing effort that combines both the company’s staff,
and academic researchers. Results of the research are used as a feedback into the
software development process, as well as improving our understanding of formal
verification of a software project.

The rest of the paper is organized as follows. In section 2 we give a short
description of both the hardware platform, and the software to be verified.

In section 3 we present the verification framework, discussing our choice
of verification tools, system description languages and property specification
languages. We discuss problems encountered with these languages in today’s
existing verification tools, explaining our choice of perform deductive verification
manually.

In section 4 we present a compositional model-checking verification of the
Top Level Design (tld) of our system, using the spin tool. We present our
methodology for using the well known assume-guarantee paradigm, tailored for
the specific characteristics of our system and the spin tool.

In section 5 we discuss the verification of the detailed design of our system,
combining model-checking and deductive proof techniques.

We conclude in section 6 with a summary of the presentation and some advice
to developers of tools for deductive verification.

2 Description of Application

The software to be verified is an e-commerce Internet security server (“the prod-
uct”). The software is usually placed between the e-commerce server (typically
a web-server which provides a web-enabled interface to the e-commerce engine -
database server, application server, etc.) and the Internet, usually on the seller’s
premises (see Fig. 1). The Internet connection of the e-commerce server must pass
through the security server (the product). Clients of the e-commerce applications
access the e-commerce server across the Internet, and through the seller’s Inter-
net gateway (routers, firewalls, etc.), and finally through the security server. The
product, therefore, completely controls all the e-commerce transactions. Moni-
toring is performed at the application level, that is, the product “understands”
the protocol used for the transactions.

A Perfecto Verification 175

Client 1

Client 2

Client 3

Internet
LAN LAN

Security
Server

Routers,
Firewalls

E-commerce
Web Server

Fig. 1. Product Orientation.

The product consists only of software, running on top of an operating system.
The hardware platform may consist of two CPU’s, connected through a dedicated
bus. A typical configuration would be two PC’s connected via an Ethernet cable,
but many other configurations are possible.

The product’s logical architecture (patent pending) consists of a Reducer
module and an Enforcer module, where the Reducer receives requests from the
insecure zone (e.g. Internet) and reduces them into a proprietary simple protocol
which represents the requests in a plain, unambiguous and robust manner; the
Enforcer then enforces security rules on this representation and finally synthe-
sizes the requests and transmits them over to the secure zone (the destination
Web-Server). Coupling the logical architecture with the suggested physical ar-
chitecture, such that the Reducer runs on one CPU, and the Enforcer runs on
the other, enables the total separation of security functions (carried out by the
Enforcer) and non-security functions (carried out by the Reducer), such that the
non-security functions cannot compromise the security of the system. Hence, it
is required to verify only the Enforcer, relieving us from the need to verify the
Reducer.

As presented in Fig. 2, the security functions comprise of the following mod-
ules:

CM — This module interfaces with the physical device driver of the bus
which connects the two CPU’s. Data to be transmitted to the
insecure CPU are handed to the CM (by the RM), and data that
arrives from the insecure CPU is handled in the CM, which relays
it to the RM.

176 Yonit Kesten et al.

PM

RM

CMWebProxy

AppProxy

Insecure
CPU

External
World

Web Server

Application
Server

Fig. 2. System structure.

RM — The “nerve center” of the system. It is a data dispatcher, receiv-
ing data from various other modules and dispatching it to the
destination modules.

PM — The security engine of the system. Processes all the transactions
to/from the e-commerce server.

WebProxy — This is a proxy module which communicates with the web (e-
commerce) server. The WebProxy receives data from the RM
and relays it (typically over TCP/IP) to the web (e-commerce)
server.

AppProxy — A proxy module which provides a function similar to that of
WebProxy, for a non web-enabled server.

Incoming data (from the insecure CPU connected to the external, potentially
adversary, world) arrives at the CM, which relays it to the RM, which routes it to
the PM. The PM processes the data, ensures that it is safe, and returns it to the
RM, which moves it to the WebProxy, which delivers it to the final destination,
the e-commerce server. The software is written mostly in C++ (with some GUI
functions in Java), containing tens of thousands lines of code. It is important
to note that not all the code is relevant to the verification effort: there are
some functions, notably the GUI (Graphic User Interface), which have nothing
to do with the (security) properties to be demonstrated, thus are irrelevant to
the whole verification process. These functions are not included in the above
description.

3 The Verification Framework

As claimed in [MP95], a framework for formal verification should consist of the
following components:

– A computational model , providing a common semantic base for the system
and the properties we wish to establish for it.

– A specification language in which we can express the properties that need to
be verified.

A Perfecto Verification 177

– A system description language in which we can describe the system whose
properties need to be verified.

– A family of verification techniques by which such a verification can be suc-
cessfully carried out. These usually include model checking, methods for
deductive verification, and combinations thereof.

For our verification effort, we use the computational model of fair discrete system
(fds) ([KP98, KPR98]) which is slightly modified variant of the fair transition
system (fts), which is presented in [MP95] and underlies the stanford temporal
verifier (step [BBC+95]).

The main specification language we use is (linear) temporal logic (ltl) [MP95].
However, in the context of verification by spin, we often express temporal prop-
erties by the corresponding automaton. In this paper we report only about the
verification of safety properties .

For the set of verification techniques, we use model checking by spin, and
manual deductive verification, using the deductive verification methodology ex-
pounded in [MP95] and implemented in step. Eventually, we intend to switch
to computer-aided deductive verification by the step tool.

Currently, we use two system description languages according to the veri-
fication technique applied. For model checking with spin [Hol91], we use the
spin system description language promela. For deductive verification, the nat-
ural candidate is spl, the system description language of step (and the one
recommended in [MP95]).

A major problem we had to solve is how to provide an adequate and faithful
representation of the concurrency programmed in our product (which is pro-
grammed in C++) within the framework of spl, where the main difficulty was
to represent dynamic creation and annihilation of processes. A solution to this
difficulty is presented in the next Subsection.

While working on this representation and perfecting the deductive methods
to handle our case studies within step, we meanwhile reverted to manual deduc-
tive verification, where we use spl or sometimes even the actual C++ program
as the system description language. As soon as we finalize the deductive methods
to be used, we intend to incorporate computer-aided deduction, using the step
tool into our process.

3.1 Dynamic Process Creation within spl

The spl modeling language was designed to accommodate static concurrency.
That is, the number of processes running in parallel must be fixed at compile
time, or at most, depend on an input parameter. To accommodate dynamic
process creation, we declare in the spl program an infinite array of processes,
all of which await activation from a calling customer. A special allocator process
hands around fresh indices in this array to all requesters. Given a process index,
a requester may now communicate with the indexed server process.

To illustrate the application of this representation, consider the C++ pro-
gram sum-squares, presented in Fig. 3.

178 Yonit Kesten et al.

class Number

{ // Number object, with the obvious interface

public:

Number(int v) // Constructor

{ num=v; }

// arithmetic operators, etc.

int square()

{ return num*num; }

private:

int num;

};

void main()

{ int n,sum=0;

// Sum the first 10 squares

for(n=1;n<=10;n++)

{ Number x(n); //construct a Number object named x, initialized to n

sum+=x.square(); // call the square member function

}

}

Fig. 3. A C++ program sum-squares

In Fig. 4, we present the spl representation of program sum-squares.

Note that the class Number is represented by a parameterized process Number [i]
and the member functions of this C++ object have been implemented by the
(synchronous) channels cNumber and csquare, which are local to Number [i].
While being local, implying that there are individual instances of these channels
for each Number [i], they are also public in the sense that any external agent which
knows the process-id i can send and receive messages through them referring
to Number [i].cNumber and Number [i].csquare. Note that, according to this
representation, processes are not really created but exist from the beginning of
the run of the program.

In addition, there is an allocation process allocate whose role is to keep
supplying new process-id’s. The act of process creation is thus translated to
making a possible client process aware of the name of a new process, by providing
the client process with the index of that process. Most server processes keep
waiting for some client to invoke their methods and until that happens they
take no action.

The C++ invocation Number x(n) by the client (main) of the principal
method Number has been separated into an allocation call providing the server-
id which main saves in the local variable x, followed by a synchronous output of
the value of n to channel cNumber [x]. Similarly, the C++ invocation x.square()
has been translated to a synchronous input from channel csquare[x].

A Perfecto Verification 179

in M : integer where M > 0
local run Number : channel of integer

cNumber , csquare : channel[1..M] of integer

main ::




local n, sum , x, y where n, sum = 0
m0 : for n = 1 to 10 do


m1 : run Number ⇒ x
m2 : cNumber [x] ⇐ n
m3 : csquare [x] ⇒ y
m4 : sum := sum + y







M

i=1

Number [i] ::




local num : integer
loop forever do[

[cNumber [i] ⇒ num]
OR

[csquare [i] ⇐ num ∗ num]

]



allocate ::

[
local next : integer where next = 1
loop forever do

[run Number ⇐ next ; next := next + 1]

]

Fig. 4. The spl representation of program sum-squares

4 Model Checking the tld

Our first formal verification effort concentrated on the verification of the top
level design (tld) of the system. Through this experiment, we hoped to identify
a method powerful enough to handle the verification of the complete system. In
this experiment, we chose to use the model checker spin which was advertised
as being specially designed for the verification of software and communication
protocols, in particular.

Unfortunately, in spite of the high abstraction we applied in deriving the
tld view of the system, it was still too big to be completely verified in one
go. This forced us to revert to compositional model checking based on the
assume-guarantee paradigm. This paradigm is very well known and many vari-
ants have been developed over the years, e.g., [CM81], [Jon83], [BK85], [Pnu85],
[dR85], [Zwi89], [PJ91], [AL93], [Jon94], [KM95], [AL95], [CC95], [CGL96], and
[XdRH97]. Yet, for the use of this paradigm in our context we had to develop
our own variant (heavily inspired by all this previous work).
In this section, we report about our approach to the verification of the top-level
design of our system, using compositional model checking with the spin tool.

180 Yonit Kesten et al.

4.1 Systems and Their Safety Properties

We will illustrate our approach to compositional verification on the simple case
of two processes communicating by synchronous channels, as depicted in Fig. 5.

c2

c1

P2P1

Fig. 5. Two Processes.

We assume that processes in the system are presented as promela programs,
where communication is restricted to synchronous (rendezvous) channels. The
computational model we use for representing the behavior of systems and their
specifications assumes V a finite set of typed state variables . In particular, for
each channel ci with range of messages Ri, the set V includes a corresponding
variable Ci which ranges over Ri ∪⊥, where the special value ⊥ denotes a state
in which there was no communication over channel ci.

A system state is any valuation of the state variables consistent with their
types. For a state s and a state variable x ∈ V , we denote by s[x] the value
assumed by x in state s. A run of a system S is a finite non-empty sequence
of states r : s0, s1, . . . such that s0 satisfies the initial condition, and for every
j, 0 < j < |r|, the state sj can be obtained from sj−1 by executing one of
the statements in the program for the system S which is enabled on sj−1. In
particular, Ci = m 6= ⊥ in state sj iff the statement executed in passing from
sj−1 to sj sent the message m on channel ci, e.g., by a sender executing ci! m
jointly with a receiver executing ci? y.

For a subset of the state variables U ⊆ V and a state s, we denote by s↓U the
projection of the state s on the subset U . That is, s↓U is the U -state obtained by
removing from the state s the valuation of the variables which belong to V −U .
In particular, s↓Ci retains only the value assumed by the variable Ci, namely, the
message sent on channel ci in the step leading to this state (we write s↓Ci as an
abbreviation for s↓{Ci}). For a run r : s0, s1, . . ., we denote by r↓U the projected
run s0 ↓U , s1 ↓U , Finally, for a run r and a channel variable Ci, we denote
by r⇓Ci the compressed projected run obtained by removing from r↓Ci all the
bottom elements. For a run r, r⇓Ci represents the list of messages emitted on
channel ci during the run in the order of their emission. In the csp terminology,
this is called the ci-restricted trace of r [Hoa84].

In this study, we were mainly interested in the study of safety properties
[Lam77]. This is why it is sufficient to consider the semantics of a system as
given by the set of all of its runs, and consider as properties to be verified only
safety properties . The main feature of a safety property ϕ is that if it is violated
by a run r then it cannot be satisfied by any run extending r. A typical example

A Perfecto Verification 181

is the property specifiable by the formula ϕ : 2(x > 0) stating that, at all states
of all runs, the value of x is always positive. It is obvious that if a run r violates
ϕ then one of the states in r must have a non-positive value of x and, therefore,
no extension of r can satisfy the requirement “x is always positive”.

We write r |= ϕ to denote that the run r satisfies the property ϕ, and write
S |= ϕ if ϕ is S-valid , i.e., all runs of S satisfy r.

A safety formula ϕ is said to be a channel property of channel c if

C1. r |= ϕ for every r such that r⇓C is the empty sequence. That is, ϕ holds
over all runs which did not send even a single message on channel c.

C2. If r1 and r2 are runs such that r1⇓C= r2⇓C , then r1 |= ϕ iff r2 |= ϕ. That
is, the truth value of ϕ on a run r is fully determined by r⇓C , the sequence
of messages transmitted by the run r on channel c.

4.2 A Compositional Proof Rule

Normally, there is no chance of being able to verify, using model checking tech-
niques, any of the properties of the system by submitting the entire system to
a model checker such as spin. A frequently used approach, to which we refer
as the compositional approach is to consider modules (processes) of the system
separately and verify every property by considering only the processes which are
responsible for the variables on which the property depends.

For example, in the system of Fig. 5 we may wish to prove two safety prop-
erties: ϕ1 and ϕ2, where each ϕi depends only on the variables determined by
process Pi, for i = 1, 2. This suggests that property ϕ1 should be model-checked
on a model consisting of process P1 alone. Unfortunately, while the property ϕ1

may depend only on variables manipulated by process P1 the range of behaviors
of P1 when run alone may differ radically from its behaviors when coupled with
P2. In particular, when run in isolation it may produce a behavior which violates
the property ϕ1, while such a behavior is impossible in the real system due to
the interaction with P2. There is a danger that we may erroneously conclude
that property ϕ1 is not valid over the system while, in fact, it is valid.

To overcome this difficulty, we never study any of the processes in complete
isolation. Instead, we identify channel properties, say I1 and I2 which capture
the properties of the communication on channels c1 and c2 which (for our appli-
cation) is the only way the two processes can interact with one another.

As a first step in the application of this idea, it is necessary to confirm that
the proposed channel properties are indeed valid for all computations of the joint
system P1‖P2. This can be done using rule comp presented in Fig. 6.

L1. P1 |= (I2 → I1)
L2. P2 |= (I1 → I2)

P1‖P2 |= I1 ∧ I2

Fig. 6. Rule comp.

182 Yonit Kesten et al.

Such a rule is often described as an assume-guarantee paradigm. Premise
L1 of the rule can be interpreted by saying that, under the assumption that
the environment maintains the property I2 on channel c2, process P1 guarantees
to maintain the property I1 on channel c1. Premise L2 states the symmetric
obligation for process P2. The rule claims that if these two obligations hold then
both I1 and I2 will be maintained in all runs of the combined system P1‖P2.

This rule is not sound for arbitrary properties I1 and I2. In the general case,
the most general conclusion that can be inferred from premises L1 and L2 is
(I1 → I2) ∧ (I2 → I1) which does not necessarily imply I1 ∧ I2. However, in our
case we are guaranteed of the following assumptions:

A1. s0[C1] = s0[C2] = ⊥, for every initial state s0. That is, no message has been
transmitted on entering the initial state.

A2. I1 and I2 are safety channel properties for channels c1 and c2, respectively.
A3. At most one message can be transmitted at any execution step. That is,

either s[C1] = ⊥ or s[C2] = ⊥ for every state s appearing in a run of P1‖P2.

As we will now show, these assumptions guarantee that rule comp is sound.

Claim. Under the assumptions A1–A3, rule comp is sound.

Proof: Assume, to the contrary, that rule comp is unsound. Let r : s0, s1, . . . , sn

be one of the shortest counter examples to the rule. That is, r satisfies premises
L1 and L2 but does not satisfy the conclusion I1 ∧ I2.

For k ≤ n, we denote by r(k) the k-prefix r(k) : s0, . . . , sk of r.
Obviously, n > 0. This is because, due to assumption A1, r(0)⇓C1= r(0)⇓C2 is
the empty sequence, and by clause C1 of the definition of a channel property,
both I1 and I2 should hold over r(0).

Since r is one of the shortest counter-examples, we can assume that r(n−1) |=
I1 ∧ I2. By assumption A3, either sn[C1] = ⊥ or sn[C2] = ⊥, and we assume,
with no loss of generality, that sn[C2] = ⊥. Consequently, r(n)⇓C2= r(n−1)⇓C2

and, due to clause C2 of the definition of a channel property and the fact that
r(n−1) satisfies I2, it follows that also r(n) = r satisfies I2. Applying premise L1
to r, we conclude that I1 holds over r. Thus, both I1 and I2 are satisfied by r,
contradicting our hypothesis that r does not satisfy I1 ∧ I2. ut

Once we establish I1 and I2 as valid channel properties for the system P1‖P2

we can use them for model-checking any local property ϕ1 which only refers to
the variables manipulated by process P1. To do so, we model check the validity
of the implication I2 → ϕ1 over process P1. Note that all necessary verification
tasks apply model checking to a single process rather than to the complete
system. This is the main advantage of the compositional approach.

Obviously, the method described here can be applied to a system consisting
of an arbitrary number of processes, as long as every channel connects a unique
sender to a unique receiver.

A Perfecto Verification 183

4.3 Implementing the Compositional Verification in spin

Since our application involves more than two communicating modules, we de-
compose the tld into clusters of processes, each cluster small enough so that it
can be locally verified by spin. Having defined such a cluster, we identify the
incoming and outgoing channels, connecting the cluster to the rest of the design.

In Fig. 7 we present the general setup of a typical cluster.

Cluster P

Process 1

Process 2

Process 3

Process 4

Channel C1

Channel C2

Channel C3

External
Process Q4

External
Process Q2

External
Process Q1

External
Process Q3

Channel C4

Fig. 7. Decomposition

The general form of the local verification that has to be applied to each of the
clusters is

P |= (I1 ∧ I2 ∧ . . . ∧ In → J), (1)

where I1, . . . , In are the assumptions for the behavior on the incoming channels,
such as C1, . . . , C3 in Fig. 7, and J is the property that the cluster guarantees
on its output channel, such as C4 in Fig. 7. It is assumed that I1, . . . , In, J
are channel safety properties. The composition rule requires that we associate
a unique invariant Ii,j with every channel Ci,j connecting cluster Pi to cluster
Pj . The invariant Ii,j will appear as an assumption (one of the Ik’s) in the
verification task for cluster Pj and as a guarantee (the J) in the verification task
for cluster Pi.

Let us consider how to represent the verification task (1) for a representative
cluster P to the spin tool. Obviously, we can represent the cluster of processes
P as a set of concurrent promela processes. The remaining question is how to
represent the assumptions I1, . . . , In and the guarantee J where, up to now, we
considered these specifications as temporal formulas.

In theory, spin provides a special mechanism for representing non-trivial
temporal properties. This is the never claim which identifies a single automa-

184 Yonit Kesten et al.

ton (represented as a promela process) which runs in synchronous parallelism
to the application and monitors its behavior. Unfortunately, this mechanism is
too restricted for us since we need to attach to the cluster a set of automata
corresponding to the assumptions and the guarantee.

Consequently, we decided to construct our own processes which represent au-
tomata and monitor for the satisfaction of their corresponding temporal proper-
ties. Unlike the single never automaton, these automata processes run in asyn-
chronous parallelism (interleaving) to the rest of the system, but communicate
with the cluster via synchronous channels.

For the guarantee property J , we construct an acceptor process A, which is
an automaton accepting precisely the set of sequences satisfying J .

For each assumption property Ii we construct a generator process Gi, which
is an automaton generating precisely the set of all sequences satisfying Ii.

We refer to the set of processes P , Gi and A as the promela model for
the verification task (1). The verification is performed by running the promela
model within spin. Each generator and acceptor is connected to the cluster by
a single channel. In Fig. 8, we present such a promela model.

Cluster P

Process 1

Process 2

Process 3

Process 4

Generator
G1 for

Property I1

Generator
G2 for

Property I2

Generator
G3 for

Property I3

Acceptor
A for

Property J

Channel C4

Channel C1

Channel C2

Channel C3

Fig. 8. A promela model for a cluster.

4.4 Construction of Acceptors and Generators

Since each channel Ci,j is associated with a single channel safety property Ii,j ,
we have to construct for such a channel first an acceptor Ai,j which accepts all
the behaviors satisfying Ii,j , and then a generator Gi,j which generates precisely
the set of all sequences satisfying Ii,j .

A Perfecto Verification 185

Acceptors: Construction of acceptors is fairly easy. Assume the channel name
is “c”, and it should comply with a channel safety property J . We assume that we
know how to construct for the property J a finite state deterministic automaton
over the finite alphabet of c, with a single error state E (where all other states are
accepting), which accepts precisely the sequences satisfying J . The translation
of this automaton to promela is straightforward. Every non-error node of the
automaton is represented by the input statement c?y, followed by a case selection
statement branching to different locations according to the value of the input
y. The error state is represented by the statement assert(0) which aborts the
computation, announcing an error.

For the simplest cases, this explicit state representation of the automaton for
J and its promela translation is adequate. However, in many cases, the alphabet
is structured, such as the integers in the range 0..255 and the conditions are
often expressed succinctly by predicates over the alphabet, such as y < 128. In
these cases, the promela acceptor is represented more compactly using auxiliary
variables to represent part of the state.

For example, in Fig. 9, we present a promela acceptor that accepts all
sequences of permutations of {1, 2, 3}.

active proctype accept_c()

{ byte x,y,z;

atomic {

do

:: c?x -> assert((1<=x) && (x<=3));

c?y -> assert((1<=y) && (y<=3) && (y!=x));

c?z -> assert((1<=z) && (z<=3) && (z!=x) && (z!=y));

od; }

unless end_ver;

}

Fig. 9. An acceptor for all permutations over {1, 2, 3}.

Note that this automaton may reject the input at three locations. It rejects
after the first input iff this input is not in the range [1..3]. It rejects after the
second input iff this input is not in the range [1..3] or it is equal to the first
input. Finally, the last input is rejected iff it is not in the range or it equals one
of the previous input. Note that the explicit state automaton corresponding to
this promela process will have at least 8 states and 21 edges.

Generators Construction of Generators is less straightforward. An important
element in the construction of generators is that we should have a systematic
way of translating an acceptor to a generator, automatically if possible. This is
important because, as we have already mentioned, for each channel Ci,j we need
an acceptor Ai,j and a generator Gi,j . The soundness of the composition rule

186 Yonit Kesten et al.

hinges on the assumption that the set of sequences generated by Gi,j is equal to
the set of sequences accepted by Ai,j , i.e. that they refer to the same property.

For the case that the acceptor is derived from an explicit-state automaton, the
conversion from acceptor to generator is straightforward. Every edge connecting
automaton state qi to qj 6= E and labeled by the letter A, should be translated to
the promela statement c!A connecting the locations corresponding to qi to qj .
In the case that qj equals E, the error state, we omit the corresponding output
statement. Such a generator will never generate a wrong output.

The situation is more involved in the case the acceptor process uses auxiliary
variables, such as the acceptor of Fig. 9. Due to space limitations, we will only
present in Fig. 10 the generator obtained by applying our systematic conversion
to this acceptor.

active proctype generate_c()

{ byte x,y,z;

atomic {

do

:: x = random(1,3); c!x;

y = random(1,3); end_var = (y==x); c!y;

z = random(1,3); end_var = ((z==x) || (z==y)); c!z;

od; }

unless end_ver;

}

Fig. 10. A generator for all permutations over {1, 2, 3}.

The way this generator operates is that it first draws a random number in
the range 1..3 and outputs it. Next it draws a second random number y in the
same range. After drawing it, the generator applies the same test to y relative
to x. If y should be rejected, the automaton does not cause an error abortion
of the complete system by asserting false . Instead, it raises a special boolean
flag end var which causes the complete system to terminate immediately but in
a non-error state. Technically, immediate termination is ensured by enclosing
all processes in the system by the unless end var clause which interrupts and
terminates all processes as soon as the flag end var is raised.

4.5 Results of the tld Verification

The case study described below served to demonstrate the strength of the method
together with its limitations. Eventually, it was decided to discontinue the ap-
plication of this method, although the techniques developed may be of some use
in further developments.

The case study included the 5 modules presented in Fig. 2 : WebProxy,
PM, CM, RM, and AppProxy, plus an additional trivial module that has been
added for technical reasons. The data transmitted over the channels connecting

A Perfecto Verification 187

these modules contains 3 or 4 fields (depending on the channel): a “destination”
field, a “session” field, and a “data” field, with sometimes a “from” field. In
the table below, we summarize for each module the number of incoming and
outgoing channels, and the number of overall processes (including acceptors and
generators) which were involved in its modular verification:

Module Incoming Outgoing Overall
Name Channels Channels Processes
CM 2 2 7
RM 1 4 7
PM 1 1 4
WebProxy 2 2 7
AppProxy 2 2 7

The results from the verification, carried out by spin, were all positive. However,
the execution (on a Pentium-II/333MHz, 100MHz bus, 512KB L2 cache, 256MB
SDRAM, spin-3.2.3/Linux-2.0.29, -DSAFETY, -DMA=117 used) took too long
(6 hours and 46 minutes for the most complex module - RM). The experiment is
considered, therefore, to be unsuccessful in that it appears to reveal a scalability
problem inherent to the implementation of the Acceptors/Generators scheme.
While we gained a lot of expertise and insight by developing and applying this
technique, and managed to verify a certain portion of the tld, we decided not
to use this method for the verification of the detailed design.

5 Detailed Design Verification: Combining Model
Checking with Deductive Methods

The results reported in the last section demonstrated that spin alone cannot
meet the challenge posed by a complex software system. At the beginning we
thought that the problem was inherent to an explicit-state model checker such as
spin, and that switching to a symbolic model checking, such as smv [BCM+92],
may solve the scalability problem. Indeed, we tried smv on a subset of the case
studies and observed a speedup factor of about 1000:1. However we soon realized
that no matter how fast they are, no model checking tool is able to handle the
complete problem, in particular, it cannot handle data intensive problems.

5.1 Why Combine the Methods?

It appears that the most versatile and powerful method of handling data-intensive
problems is by using a deductive method. The main candidate tools for sup-
porting deductive verification are step [BBC+95] and pvs [OSR93]. After some
preliminary attempts we ran into the problem that none of these tools provided
us with a system description language that fits our needs, namely analyzing
multi-threaded programs written in C++.

188 Yonit Kesten et al.

The pvs tool requires translating the program into formulas of high-order
logic, and if we wish to perform verification of temporal properties, it is also
necessary to include the theory of temporal logic.

At first glance it seems that step is more user friendly since it has its own
system description language spl. When we tried to use step, it became clear very
quickly that, while spl is quite adequate for dealing with distributed systems,
the representation of dynamic object creation, as explained in Section 3, requires
a special translation which hinders its application for verifying C++ programs.

Obviously, the problems we complain about are purely technical, and all
that is needed to solve them is a translator from C++ to either high-order
logic or to spl. Given enough time, we probably would have constructed such a
translator and then continued to use these powerful tools. Being under intense
time pressure, our final decision was to use the temporal deductive methodology
proposed in [MP95] but conduct the proofs manually .

The strategy we have formulated and applied so far consists of a combination
of model checking with deductive verification , where

• Model checking is used for handling control-related issues of deadlocks, mu-
tual exclusion, and non-interference. It is applied to a simplified model of
the system in which almost all data has been abstracted away.

• Deductive verification is used for analyzing the data-intensive parts of the
system.

Besides separation of concerns, the main interaction between the two methods
is that a thorough analysis of non-interference can lead to a significant simplifi-
cation of the deductive verification task. In particular, when a certain segment
in a given object’s member function is known to be “isolated” from outside in-
terference, we can verify its data transformations as though it were a sequential
program.

5.2 Augmenting Deductive Verification by Model Checking

The chief purpose of employing Model Checking in our scheme is to resolve
concurrency issues automatically. The immediate candidates are the following:

– Mutual Exclusiveness (Non-Interference)
– Deadlocks

For the purpose of verifying the security of our system, we are not interested in
deadlock freedom properties, since if the system enters a deadlock state, security
is not breached (although performance drops to zero). However, in order to verify
that while the software is running, it does only what it is supposed to do, we
lean heavily on non-interfernce properties. Non-Interference is crucial for the
deductive phase: then, it is very helpful to know that some variables can change
only by the thread being analyzed (and not by any concurrent thread). To some
extent, non-interference can be thought of as “serializing” threads, and making
them independent of each other (in limited code segments), with the obvious
benefits for the deductive analysis.

A Perfecto Verification 189

The basic temporal formula that represents non-interference is:

2(at−`i ∧ at′−`i → x = x′) (2)

This can be proven using spin in the following way: the system to be analyzed is
represented as a set of promela processes. Then, for each variable x for which
the above formula should hold (at label l of process P with process identity i)
an analysis is carried out, and each transition that writes on x is marked by a
label. The spin equivalent of the above formula then takes the following form
(for each label a in process Q with process identity j):

[](P[i]@l -> !Q[j]@a)

This formula can be checked as a never claim by spin , for each (Q,j,a) tuple.
Note that we abstract away all the data manipulations.

The analysis can be extended naturally to cases in which even access to a
variable should not occur while a certain thread is in a certain state.

Below, we illustrate the use of model-checking for establishing non-interfer-
ence. The example is a system of threads accessing a shared data object, using
locking mechanism to synchronize the access to the object. Threads can read,
write or destroy the data object. An object can be read concurrently by several
threads. However, when a data object is written or destroyed by one thread, it
must not be read by other threads. A “group” is a special object, containing
validity information for the data object. Due to implementation restrictions, the
data object’s validity must be ensured via a lookup in the group object before
the data object is accessed. The group object itself is accessible directly, and can
be both read and written.

There are K “user” threads in the system, which write the data object, and
a “garbage collection” thread, which destroys inaccessible objects. These are, of
course, simplified versions (for the sake of the example) of the actual threads,
that may read and write nondeterministically to several objects, repeatedly.

Model checking provides the necessary non-interference assurance, stating
that the data object cannot be written (or destroyed) while it is read, nor can
it be destroyed and written at the same time.

The promela code is as follows:
The “user” threads:

active [K] proctype user()
{

ReadLock(group);
/* pointer to object */
if
:: object_exists ->

WriteLock(object);
ReadUnlock(group);
do
:: skip -> /* may choose this branch */

190 Yonit Kesten et al.

write: skip; /* perform writing */
WriteUnlock(object);
/* give up control */
/* resume control */
WriteLock(object);

:: skip -> /* may choose this branch */
WriteUnlock(object);
break;

od;
:: else ReadUnlock(group);
fi;

}

The “garbage collection” thread:

active proctype remove()
{

WriteLock(group);
WriteLock(object);
object_exists=false;
WriteUnlock(group);
WriteUnlock(object);
/* perform removal */

destroy: skip;
}

This code uses the four following macros for semaphore simulations:

#define ReadLock(var) atomic {!var.WRITE -> var.READ++ }
#define ReadUnlock(var) {var.READ--}
#define WriteLock(var) atomic {!var.WRITE && !var.READ -> \

var.WRITE=true}
#define WriteUnlock(var) {var.WRITE=false}

Note that the “user” threads release and re-acquire their lock on the object as
necessary. This is an optimization applied to the original locking design, wherein
the threads held their lock on the object throughout the writing phase. The
outcome of this optimization is revealed once spin is used to re-assess the safety
properties (assume K=2):

[] !(user[1]@write && user[2]@write)
[] !(user[1]@write && remove[0]@destroy)
[] !(user[2]@write && remove[0]@destroy)

Contrary to the original design, spin reports a never claim violation for
this system. Examining the error trail uncovers the following flaw: the basic
assumption of the design is that a “user” thread accesses an object only after
checking that its existence bit (in the group object) is up. This no longer holds

A Perfecto Verification 191

for the modified system: the remove thread may engage in deletion operation
(once a “user thread” gives up his lock on the object), with a “user” thread
re-acquiring the lock and writing data on the object, a scenario which violates
the second or the third ltl formula of the above.

This resulted in a complete redesign of the whole locking scheme.

5.3 Deductive Verification of Data Transformations

Having verified non-interference between threads (equation 2), we can now ver-
ify heavy data transformations in single threads, as though they are sequential
programs. We give two examples using the deductive verification rules presented
in [MP95].
Example 1: Using the wait rule to ensure a proper implementation of a pro-
cedure. Assume a procedure of the following structure:

E : (entry point)
B : · · ·
X :




We write 2((at−E∧precondition) → (at−E∨at−B)W (at−X∧postcondition))
to state the fact that once control is in the routine then control remains within
the procedure body B until it gets to the exit point X , with the postconditions
satisfied, thus guaranteeing the proper (precondition → postcondition) action
of the procedure.

For instance, this rule can be used to verify a sort algorithm, provided the
array it sorts does not change (while program counter is inside the sort code)
by other threads. The precondition may be identically t in this case, and the
postcondition would require a sorted array which is a permutation of the original
array.
Example 2: Using the back-to rule to ensure that if a procedure terminates
successfully, then some expected action has been previously executed. Assume a
procedure of the following structure:



· · ·
if (· · ·) then


G1 : an action, in case of true
G2 : · · ·
G3 : return code := GOOD ;
G4 : go to X ;




else
B1 : · · ·

B2 : return code := BAD ;
B3 : go to X;




X :




We write:

2((at−X ∧ return code = GOOD) → ((at−G3 ∨ at−G4) B at−G2))),

192 Yonit Kesten et al.

Then we write:

2 (at−G2 → postcondition)
2 (at−G2 ∧ postcondition) → (postconditionW at−X ∧ postcondition)

Combining them into the desired property:

2((at−X ∧ return code = GOOD) → postcondition)

If postcondition involves global (shared) variables, then for the third prop-
erty to hold, it is necessary to establish that these variables are protected from
interference by other threads.

We used the above rules, in the manner described in the examples, to ver-
ify non-trivial data transformations, some as complex to analyze as the sort
algorithm. The verification relied heavily on the non-interference ltl formulae
verified by spin . The combination of the two methods resulted in a core module
of the product being successfully verified.

6 Conclusions and Further Research

In this paper, we have reported about the experience of Perfecto Technologies in
the application of formal verification to their security server software product,
and the lessons we learned from this experience.

Starting with model checking by spin, we succeeded to verify a certain por-
tion of the tld of the system. To do so, we have developed a compositional
approach, specially geared to verification by spin. One of the conclusions we
reached was that model checking alone cannot scale up to verify the detailed
design, but may suffice for the verification of the top-level design, provided one
uses compositionality and abstraction.

For verification of the detailed design, we finally settled on a combination of
model checking for the control-intensive part and manual deductive verification
for the data-intensive part. The two methods interact by the deductive verifica-
tion benefiting from proofs of non-interference established by model checking.

The preference for manual verification was forced on us because none of the
existing support tools for deductive verification provides a system description
language fully adequate for modeling multi-threaded C++ programs. We indi-
cate in Section 3 how such a system description language may be developed with
minimal extensions. We call upon developers of tools for deductive verification
to pay more attention to providing a convenient interface language if they wish
to attract users from the C++ community.

Acknowledgements

The authors would like to thank Eran Reshef (Perfecto Technologies Ltd.) and
Eilon Solan (Northwestern University, IL., USA) for their continuous help and
advice, and Elad Shahar (The Weizmann Institute of Science) for his help with
the smv system.

A Perfecto Verification 193

References

[AL93] M. Abadi and L. Lamport. Composing specifications. ACM Trans. Prog.
Lang. Sys., 15:73–132, 1993.

[AL95] M. Abadi and L. Lamport. Conjoining specifications. ACM Trans. Prog.
Lang. Sys., 17(3):507–534, 1995.

[BBC+95] N. Bjørner, I.A. Browne, E. Chang, M. Colón, A. Kapur, Z. Manna, H.B.
Sipma, and T.E. Uribe. STeP: The Stanford Temporal Prover, User’s
Manual. Technical Report, Stanford University, 1995.

[BCM+92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and J. Hwang. Sym-
bolic model checking: 1020 states and beyond. Information and Computa-
tion, 98(2):142–170, 1992.

[BK85] H. Barringer and R. Kuiper. Hierarchical development of concurrent sys-
tems in a temporal logic framework. In Proc. of Seminar on Concurrency,
LNCS 197, 1985.

[CC95] P. Collete and A. Cau. Parallel composition of assumption-commitment
specifications: A unifying approach for shared variables and distributed
message passing concurrency. Acta Informatica, 1995.

[CGL96] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking. In Model
Checking, Abstraction and Composition, volume 152 of Nato ASI Series
F, pages 477–498. Springer-Verlag, 1996.

[CM81] K.M. Chandy and J. Misra. Proofs of networks of processes. IEEE Trans.
Software Engin., 7(4):417–426, 1981.

[dR85] W.-P. de Roever. The quest for compositionality — a survey of assertion-
based proof systems for concurrent programs, part i: Concurrency based
on shared variables. In The Role of Abstract Models in Computer Science,
pages 181–206. IFIP, North Holland, 1985.

[Hoa84] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1984.
[Hol91] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice

Hall, Engelwood Cliffs, NJ, 1991.
[Jon83] C.B. Jones. Tentative steps towards a development method for interfering

programs. ACM Trans. Prog. Lang. Sys., 5(4):596–619, 1983.
[Jon94] B. Jonsson. Compositional specification and verification of distributed

systems. ACM Trans. Prog. Lang. Sys., 16(2):259–303, 1994.
[KM95] R.P. Kurshan and K.L. McMillan. A structural induction theorem for

processes. Information and Computation, 117:1–11, 1995.
[KP98] Y. Kesten and A. Pnueli. Deductive verification of fair discrete systems.

Technical report, Weizmann Institute, 1998.
[KPR98] Y. Kesten, A. Pnueli, and L. Raviv. Algorithmic verification of linear

temporal logic specifications. In ICALP’98 pages 1–16.
[Lam77] L. Lamport. Proving the correctness of multiprocess programs. IEEE

Trans. Software Engin., 3:125–143, 1977.
[MP90] Z. Manna and A. Pnueli. A hierarchy of temporal properties. In Proc. 9th

ACM Symp. Princ. of Dist. Comp., pages 377–408, 1990.
[MP95] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems:

Safety. Springer-Verlag, New York, 1995.
[OSR93] S. Owre, N. Shankar, and J.M. Rushby. User guide for the PVS specifica-

tion and verification system. SRI International, Menlo Park, CA, 1993.
[PJ91] P.K. Pandya and M. Joseph. P-A logic – a compositional proof system for

distributed programs. Dist. Comp., 5:37–54, 1991.

194 Yonit Kesten et al.

[Pnu85] A. Pnueli. In transition from global to modular temporal reasoning about
programs. In Logics and Models of Concurrent Systems, sub-series F:
Computer and System Science, pages 123–144. Springer-Verlag, 1985.

[XdRH97] Q.W. Xu, W.-P. de Roever, and J.-F. He. The rely-guarantee method for
verifying shared variable concurrent programs. Formal Aspects of Com-
puting, 9(2):149–174, 1997.

[Zwi89] J. Zwiers. Compositionality Concurrency and Partial Correctness, volume
321 of Lect. Notes in Comp. Sci. Springer-Verlag, 1989.

	Introduction
	Description of Application
	The Verification Framework
	Dynamic Process Creation within {sc spl}

	Model Checking the {sc tld}
	Systems and Their Safety Properties
	A Compositional Proof Rule
	Implementing the Compositional Verification in {sc spin}
	Construction of Acceptors and Generators
	Results of the {sc tld} Verification

	Detailed Design Verification: Combining Model Checking with Deductive Methods
	Why Combine the Methods?
	Augmenting Deductive Verification by Model Checking
	Deductive Verification of Data Transformations

	Conclusions and Further Research

