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Abstract. We propose a methodology for the specification and verifica-
tion of distributed algorithms using Gurevich’s concept of Abstract State
Machines. The methodology relies on a distinction between a higher-
level specification and a lower-level specification of an algorithm. The
algorithm is characterized by an informal problem description. A justi-
fication assures the appropriateness of the higher-level specification for
the problem description. A mathematical verification assures that the
lower-level specification implements the higher-level one and is based
on a refinement-relation. This methodology is demonstrated by a well-
known distributed termination detection algorithm originally invented
by Dijkstra, Feijen, and van Gasteren.

1 Introduction

In this paper we propose a methodology for the specification and verification
of distributed algorithms using Gurevich’s concept of Abstract State Machines
(cf. [Gur95], [Gur97], [Gur99]). The development of distributed algorithms usu-
ally starts with an informal problem description (see figure 2). In order to get
a mathematical model of the problem description at the starting point of con-
struction one has to choose what often is called a ground model (cf. [Bör99])
or a higher-level specification for the problem description. In this paper the
higher-level specification is an Abstract State Machine (ASM) and as such it
constitutes a well-defined mathematical object. An informal justification1 shows
the appropriateness of the higher-level specification for the problem description
(cf. [Bör99]). A so-called lower-level specification represents the algorithm on
a more concrete abstraction level as the higher-level specification. The mathe-
matical verification guarantees that the lower-level specification implements the
higher-level specification and is usually based on refinement relations. In this
paper we focus mainly on the mathematical verification.
We use a well-known distributed algorithm, namely a termination detection al-
gorithm originally invented by Dijkstra, Feijen and van Gasteren in [DFvG83]
as an example to show how such an algorithm can be specified and verified
within this methodology using Abstract State Machines. We give in this paper
1 Since the problem description is informal, a mathematical proof is not possible.
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a correctness proof for a variation2 of the algorithm presented in [DFvG83]. As
in [BGR95] our correctness proof relies on a distinction between a higher-level
view and a lower-level view of the algorithm. The proof itself is given on a de-
tailed mathematical level using thereby standard techniques from mathematics
like case distinction or induction. We introduce for both the higher-level speci-
fication and the lower-level specification a kind of stuttering steps. The concept
of stuttering is well-known from TLA (cf. [Lam94]). Stuttering steps represent
steps in which a machine changes its local state. These changes are invisible. The
stuttering itself leads to a simple and natural refinement relation which eases
the construction of our correctness proof.

justification
informal

problem description higher-level specification

lower-level specification

mathematical
verification

Fig. 1. Underlying Methodology

We specify and verify the termination detection algorithm of Dijkstra, Feijen,
van Gasteren on a detailed mathematical level. The reader who is interested
in a more intuitive explanation and an excellent derivation of this algorithm
is referred to [Dij99] (or [DFvG83] for the original version). We start with a
description of the problem of termination detection [Dij99]:

We consider N machines, each of which is either active or passive. Only
active machines send what are called “messages” to other machines; each
message sent is received some finite period of time later. After having
received a message a machine is active; the receipt of a message is the only
mechanism that triggers for a passive machine its transition to activity.
For each machine, the transition from the active to the passive state may
occur “spontaneously”. From the above it follows that the state in which

2 The variation itself stems from Shmuel Safra. The variation is that message trans-
mission no longer needs to be instantaneous and is described in [Dij99]. In [Dij99]
Safra’s algorithm is derived along the very same lines as in [DFvG83]. Note also
that in [DFvG83] the authors present a [DS80]-algorithm for the detection of the
termination of a distributed computation.
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all machines are passive and no messages are on their way is stable: the
distributed computation with which the messages are associated is said
to have terminated. The purpose of the algorithm to be designed is to
enable one of the machines, machine nr. 0 say, to detect that this stable
state has been reached.

We denote the process by which termination is detected as “the probe”. In addi-
tion to messages, machines can send what are called “signals” to other machines.
We adopt a circular arrangement of the machines, more precisely, we assume that
machine nr. 0 can send a signal to machine nr. N-1 and that machine nr. i+1
can send a signal to machine nr. i. Note that a machine can send a signal irre-
spective of its activity state. Especially this means that a passive machine can
send a signal but cannot send a message.

This paper is organized as follows. In section 2 we construct the higher-level spec-
ification A. This ASM represents the problem of termination detection stated
above. We present domains, functions, modules, runs, and constraints of A. In
section 3 we construct the lower-level specification A′. This ASM represents the
termination detection algorithm presented in [Dij99]. In the lower-level specifi-
cation the probe is implemented by adding new rules and refining old ones of
A, respectively. We present the lower-level specification in the same way as the
higher-level one. Section 4 presents the correctness proof for the termination
detection algorithm. First we define what it means for the lower-level ASM A′
to implement the higher-level ASM A. Then we prove that A′ implements A. In
section 5 we give some concluding remarks.
Throughout this paper we assume the reader to be familiar with Gurevich’s
ASMs, especially with distributed ASMs, cf. [Gur95].

2 Higher-Level Specification

This section presents a higher-level specification for the problem description
given in the introduction. The higher-level specification is given as a distributed
ASM. In the following we describe a distributed ASM by its

1. domains,
2. functions,
3. modules,
4. runs,
5. constraints.

Domains (i.e., sets) can be classified into static and dynamic domains, i.e., do-
mains which are changeable during a run or not changeable, respectively. Func-
tions can be classified into internal, shared, and external functions. Our classifi-
cation is based on a broad distinction between ASM agents and the environment.
A more detailed classification can be found in [Bör99]. Internal functions can be
changed by ASM agents only. A shared function can be affected by both ASM
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agents and the environment. External functions can be changed by the envi-
ronment only. Furthermore functions can be classified into static or dynamic
functions, i.e., functions which are changeable during a run or not changeable,
respectively. Modules are ASM rules (programs) which are associated with ASM
agents. In a run an agent executes its associated module. In this paper a run
is essentially an infinite sequence of states Sk and an infinite sequence of ASM
agents Ak such that Sk can be transformed by agent Ak and the environment
into state Sk+1. Constraints can be used to impose conditions upon functions,
e.g. external functions.

2.1 Domains of A
We define Machine to be the static universe of machine identifiers {0, . . . , N−1}.
We assume each machine identifier to be associated with an agent in the dis-
tributed ASM A. In the following instead of agents we simply speak of machines
of A. Bool denotes the domain {true, false} of boolean values, Nat the universe
of natural numbers, and Int the universe of integers. The set {SM, RM, P, S}
represents the set of so-called execution-modes.

2.2 Functions of A
Let τ be the vocabulary of A. Besides some standard functions on Bool, Nat,
and Int the vocabulary τ is defined by the following functions. Messages are
realized by an internal, dynamic function

messages : Machine -> Nat.

We assume that initially messages has value 0 for all machines. A machine can
send a message (SM), receive a message (RM), execute the probe (P), or execute
a skip (S). For this purpose we introduce an external, dynamic function

mode : Machine -> {SM,RM,P,S},

which determines the execution mode for each machine. A machine can either
be active or be passive. The shared, dynamic function

active: Machine -> Bool,

determines the activity state for each machine. Active machines can send mes-
sages to other machines. The external, dynamic function

receivingMachine: -> Machine

determines the destination of a message transmission. In order to detect termi-
nation we introduce the external, dynamic function

terminationDetected : -> Bool.

We assume terminationDetected initially to be false.
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2.3 Modules of A
Each machine executes a module consisting of the rules SendMessage, Receive-
Message, and Skip.
Sending a message to machine j is realized by incrementing messages(j), re-
ceiving a message by machine i by decrementing messages(i). Note that only
active machines can send messages.

SendMessage

if mode(me) = SM and active(me) = true then
messages(receivingMachine) := messages(receivingMachine) + 1

On receipt of a message, the receiving machine becomes active. Note that ma-
chines can receive messages irrespective of their activity state.

ReceiveMessage

if mode(me) = RM and messages(me) > 0 then
messages(me) := messages(me) - 1, active(me) := true

The rule Skip realizes stuttering steps, i.e., steps in which machines invisibly
change their local states. In A the probe is specified by execution-mode P, rule
Skip, and the external, dynamic function terminationDetected constrained by
properties given in section 2.5. An executing machine in mode P performs a
stuttering step. Stuttering steps in a run can be replaced by concrete transi-
tions in the lower-level specification. In this way we obtain a simple and natural
refinement relation.

Skip

if mode(me) = S or mode(me) = P then skip

2.4 Runs of A
We rely on the notion of partially ordered runs of [Gur95] generalized to external
and shared functions and specialized to the linear ordered set of moves (Nat, <).
We consider only infinite runs. Since the only agents in A are machines, the
function A which determines for each k ∈ Nat an agent performing move k, is a
mapping from the natural numbers to machine identifiers. The state function S
is a mapping from the natural numbers to the states of A. We define a possible
run of A to be a tuple (A, S) with A : Nat → Machine and S : Nat → State
such that

1. S(0) is an initial state of A, i.e., S(0) fulfills the initial conditions given in
section 2.2, and
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2. state S(k+1) is obtained from S(k) by executing the module of machine A(k)
at S(k) and then executing an action of the environment, i.e. by changing
shared and external functions in an arbitrary way.

Instead of S(k) (or A(k)) we sometimes write Sk (or Ak). In the following we
simply say Sk+1 is obtained from Sk by executing machine Ak, i.e., the action
of the environment is omitted. We speak of move k or of step (k, k +1) in run ρ.
We say ρ is a run of A if ρ satisfies the constraints given in the following section
2.5.

Remark. We could use real-time semantics with either instantaneous or durative
actions, like in [BGR95], but the algorithm can be formulated naturally and
adequately in this simpler semantics.

2.5 Constraints of A

We present the constraints of A using the standard temporal operators 2 and
3. We denote the value that a term t takes at time k in a run ρ by tk. In the
following let ρ = (A, S) be a possible run of A.

C0: ∀i ∈ Machine : 23(A = i ∧mode(i) = RM)

Intuitively, constraint C0 assures that a message sent is received a finite period
of time later. Note that a machine may never send a message but must receive
a sent message. Suppose one of the machines sends machine i a message. Thus
there exists a time point, say k, with messages(i)k > 0. From C0 we know there
exists a time point, say l, with k ≤ l such that machine i is executed in step
(l, l + 1) with mode(i)l = RM. In this step machine i receives a sent message.

C1: The environment can change the function active in step (k, k + 1)
only from true to false and this only if mode(Ak)k 6= RM.

The receipt of a message is the only way for a passive machine to become active.
Constraint C1 guarantees that the environment cannot change the activity state
of an active machine which tries to receive a message. This avoids “inconsis-
tencies” between receipt of a message and “spontaneous” transitions from the
active to the passive state by the environment. Note that constraints C0 and C1
ensure a kind of “fair” runs. The ASM A together with C0 and C1 model the
distributed system in the problem description.

Let Bk =
∑

i : 0 ≤ i < N : messages(i)k denote the number of messages on
their way at time k. Termination at time k can then be characterized by:

Terminationk , Bk = 0 ∧ (∀i ∈ Machine : active(i)k = false).
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Now we pose some constraints on terminationDetected. These constraints are
an essential part of the higher-level specification.

C2: 2(terminationDetected → Termination)

Constraint C2 assures that the value of terminationDetected is correct, i.e., if
termination is detected in ρ then there is termination.

C3: 2(Termination → 3 terminationDetected)

Constraint C3 makes sure that if there is termination in ρ then terminationDe-
tected eventually becomes true.

C4: 2(terminationDetected → 2 terminationDetected)

Constraint C4 guarantees that terminationDetected remains true if it is once
set to true. Constraints C2, C3, and C4 ensure “good” runs, i.e., runs in which
the value of terminationDetected is true. Constraints C2, C3, and C4 essentially
specify correctness of the termination detection problem. Note that constraints
C3 and C4 implies 2(Termination → 32 terminationDetected). The converse
implication does not hold.

Remark. We think the higher-level specification A represents faithfully the
problem description given in section 1 and hence can be seen as an adequate
mathematical model of the informal problem description. Nevertheless a justi-
fication for this ASM is necessary. We refer the reader to [Bör99] for further
information on the problem of justification. We concentrate in this paper mainly
on the mathematical verification. A detailed justification is beyond the scope of
this paper.

3 Lower-Level Specification

This section presents a lower-level specification for the algorithm presented in
[DFvG83]. The lower-level specification is given as a distributed ASM. We de-
scribe A′ in the same way as A.

3.1 Domains of A0

The abstract state machine A′ has the same domains as A.
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3.2 Functions of A0

Let τ ′ be the vocabulary of A′. We do not mention standard functions on Bool,
Nat, and Int. Vocabulary τ is a subvocabulary of τ ′, i.e., τ ⊆ τ ′. The following
functions of A′ coincides on declaration, classification and initial conditions with
the ones given in A.

1. messages : Machine -> Nat (internal, dynamic)
2. mode : Machine -> {SM,RM,P,S} (external, dynamic)
3. active: Machine -> Bool (shared, dynamic)
4. receivingMachine: -> Machine (external, dynamic)

In A the function terminationDetected is an external, dynamic function. In
A′ the function terminationDetected is an internal, dynamic function.

terminationDetected : -> Bool.

We assume terminationDetected initially to be false.
Now we present new functions of A′, i.e., functions of A′ which are not part of
the signature of A. Each machine has a local message counter which is modeled
by an internal dynamic function

c: Machine -> Int.

This local message counter can be incremented (sending a message) or decre-
mented (receiving a message) by each machine. The intention is that counter
c(i) represents local knowledge which can be used and changed only by ma-
chine i, i.e., c(i) can be seen as an internal location for machine i. We assume
that initially all local message counters have value 0.
Each machine can turn either white or black. The color of a machine is realized
by an internal, dynamic function

color: Machine -> {black, white}.

We assume each machine initially to be white.
We describe the probe as a token being sent around the ring using signalling
facilities. The token is realized by an internal, dynamic function

token: Machine -> Bool.

Initially token is false for all machines. Like machines the token can turn either
white or black. Since there is at most one token propagated through the ring we
use nullary, internal, dynamic functions to model color and value of the token,
respectively.

tokenColor: -> {black, white}
tokenValue: -> Int
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The function tokenColor is assumed initially to be white and the function
tokenValue initially to be 0. Note that M0 initiates the probe by transmitting
the token to MN−1 and each Mi+1 transmits the token to Mi. We use the
internal, static function

next: Machine -> Machine,

to model this circular arrangement of machines3.
The internal, static function

id: Machine -> Machine,

returns for each machine its machine identifier.
We assume that machine M0 can initiate the probe. We realize the initiation of
the probe by a shared function

initiateProbe : -> Bool.

We assume initiateProbe initially to be false.

3.3 Modules of A0

Each machine executes a module consisting of the rules SendMessage, ReceiveMes-
sage, TransmitToken, InitiateProbe, NextProbe, and Skip.
Rule SendMessage of A′ is a refined version of the one ofA. In the refined version
additionally the local message counter c(me) is affected.

SendMessage

if mode(me) = SM and active(me) = true then
messages(receivingMachine) := messages(receivingMachine) + 1,
c(me) := c(me) + 1

On receipt of a message, the receiving machine is active and turns black. Note
that machines can receive messages irrespective of their activity state. Note
further that rule ReceiveMessage is a refined version of the one of A since it
coincides with the latter on vocabulary τ .

ReceiveMessage

if mode(me) = RM and messages(me) > 0 then
messages(me) := messages(me) - 1, active(me) := true,
c(me) := c(me) - 1, color(me) := black

3 next(0) = N − 1, next(N − 1) = N − 2, . . . , next(1) = 0
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In A the probe is realized by stuttering steps (rule Skip) and the external, dy-
namic function terminationDetected constrained by C2, C3, C4. In A′ the
probe is realized by the rules TransmitToken, InitiateProbe and NextProbe and
the internal, dynamic function terminationDetected. Upon token transmis-
sion4 the executing machine is passive and turns white. The value of the token is
changed according to the local message counter. Note also that in the following
rule only machines Mi+1 can transmit the token.

TransmitToken

if mode(me) = P and token(me) = true and
active(me) = false and id(me) <> 0 then
token(me) := false, token(next(me)) := true,
if color(me) = black then tokenColor := black,
tokenValue := tokenValue + c(me), color(me) := white

If machine 0 is executed in mode P and initiateProbe = true holds then a new
token is created and transmitted to machine N−1. The token itself is white and
has value 0. Furthermore machine 0 turns to white and sets initiateProbe to
false. The latter avoids “nested” probes.

InitiateProbe

if mode(me) = P and id(me) = 0 and initiateProbe = true then
token(next(me)) := true, tokenValue := 0,
tokenColor := white, color(me) := white,
initiateProbe := false

At token return machine 0 investigates whether the stable state of termination
has been reached or not. We say, the probe has been successful if at token return
c(0) + tokenValue = 0, machine 0 is white and passive, and the token is white.
After an successful probe machine 0 sets terminationDetected to true. After
an unsuccessful probe machine 0 initiates a next probe by setting initiateProbe
to true.

NextProbe

if mode(me) = P and id(me) = 0 and token(me) = true then
if c(me) + tokenValue = 0 and color(me) = white and

tokenColor = white and active(me) = false then
terminationDetected := true

else
initiateProbe := true, token(me) := false

4 via signal communication facilities which are available irrespective of facilities for
message transmission, cf. section 1
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As in A we realize stuttering by a rule Skip. Note also that in A an executing
machine in mode P performs a stuttering step (cf. rule Skip of A).

Skip

if mode(me) = S then skip

3.4 Runs of A0

We use the same notion of possible run of A′ as for A. We say ρ′ is a run of A′ if
ρ′ satisfies constraints C0, C1, and the constraints given in the following section
3.5.

3.5 Constraints of A0

In the following let ρ′ = (A′, S′) be a possible run of A′. Besides constraints C0
and C1 (stated for A′) a run of A′ has to fulfill the following constraints.

C5: ∀i ∈ Machine : 23(A′ = i ∧mode(i) = P )

Intuitively, constraint C5 assures that token transmission proceeds. More pre-
cisely, constraint C5 assures that each machine is executed infinite many times
in mode P.

C6: The environment sets initiateProbe in ρ′ exactly once to true.

Intuitively, constraint C6 assures that in each run the first probe is initiated by
the environment. Note that initially initiateProbe is false and cannot changed
by a machine until it is set to true by the environment.

4 Verification

In this section we show that the lower-level ASM A′ is an implementation of A.
In the first subsection we define what it means for A′ to implement A. In the
second subsection we prove that A′ implements A.

4.1 Implementation

In this subsection we define what it means for the lower-level ASM A′ to imple-
ment the higher-level ASM A.
There exists two distinct approaches to specification which Lamport calls in
[Lam86] the prescriptive and restrictive approaches. In the prescriptive approach
an implementation must exhibit all the same possible behaviors as the specifi-
cation. In the restrictive approach, it is required that every possible lower-level
behavior is represented by a higher-level behavior. In this paper the intention is
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that the lower-level specification A′ should satisfy constraints C2, C3, C4, i.e.,
each run of A′ should satisfy C2, C3, C4. We do not require that all higher-level
runs are implemented in a single implementation. Otherwise an implementation
has to detect termination in the moment it occurred (cf. constraint C3). We
adopt here the restrictive approach.
As in first-order logic, the reduct of an τ ′-state S′ to the vocabulary τ is the
state S denoted by S′|τ obtained from S′ by restricting the interpretation of
function names on τ ′ to τ . Note that τ is a subvocabulary of τ ′.
Now we define a refinement-relation, more precisely, we define a refinement-
relation between A and A′ which is sufficient to give the corresponding correct-
ness proof. We say a run ρ′ = (A′, S′) of A′ implements a run ρ = (A, S) of A
if

1. Sk
∼= S′k|τ , and

2. Ak = A′k

for all k ∈ Nat. Call a run ρ of A a higher-level run and a run ρ′ of A′ a lower-
level run, respectively. We say that ASM A′ implements A iff each lower-level run
implements a higher-level run. If Run(A) denotes the collection of runs of A and
Run(A′) the collection of runs of A′, respectively, then this refinement-relation
can be characterized by

Run(A′)|τ ⊆ Run(A),

where Run(A′)|τ denotes the collection of runs of A′ restricted to the vocabulary
τ of A (cf. the construction of ρ in the following section 4.2). Look at [AL91]
for a detailed discussion under which assumptions the existence of a refinement-
relation can be guaranteed.

4.2 A0 Implements A
Now we will prove that A′ implements A. We have to show that each lower-level
run is an implementation of a higher-level run. Let ρ′ = (A′, S′) be an arbitrary
run of A′. We define a tuple ρ = (A, S) by:

1. Ak := A′k
2. Sk := S′k|τ

We show that ρ is a run of A. We make the following observations: (i) constraints
C0 and C1 are satisfied in ρ (denoted by ρ |= C0 ∧ C1), (ii) Sk

∼= S′k|τ and
Ak = A′k hold for all k ∈ Nat. It remains to show that (i) ρ is a possible run of
A, and (ii) ρ |= C2 ∧ C3 ∧ C4. In this case ρ is a run of A. From this we can
conclude that ρ′ is an implementation of ρ and hence that A′ implements A.
Since A and A′ require the same initial conditions for functions from τ we know
that S′0|τ is an initial state of A. It remains to show that Sk+1 can be obtained
from Sk by executing machine Ak in A, i.e., that the so-called reduct property
depicted in Fig. 2 holds. Note that in A′ (and in A) for each time point at most
one guard of the rules is satisfied.
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A : S′
k|τ

A′
k- S′

k+1|τ

A′ : S′
k

|τ
6

A′
k

- S′
k+1

|τ
6

Fig. 2. Reduct Property

Lemma 1. For all k ∈ Nat state Sk+1 can be obtained from Sk by executing
machine Ak in A.

Proof. Let k ∈ Nat. We simply say Rk holds, if the reduct property holds for
k, i.e. if S′k+1|τ is obtained from S′k|τ by executing machine A′k. (1) Assume
mode(Ak)k 6= P. Rules SendMessage and ReceiveMessage of A′ are refined ver-
sions of the corresponding rules of A. Mode S leads in both A′ and A′ to stut-
tering steps. Hence we can conclude Rk. (2) Assume mode(Ak)k = P. Rules
TransmitToken and InitiateProbe of A′ change only functions from τ ′ \ τ . Rule
NextProbe of A′ changes function terminationDetected. This function is an ex-
ternal function of A, i.e., can be changed by the environment in an arbitrary
way. q.e.d.

With lemma 1 we can now conclude that ρ is a possible run of A. It remains
to show that ρ fulfills constraints C2, C3, and C4. Let t : Nat → Machine be
a partial function which is defined for all time points k, denoted by Def(t(k)),
at which a token exists and which returns for such time points the machine at
which the token resides. For the sake of brevity let qk denote tokenValuek. The
following property P is taken from [Dij99] and is defined as

P: 2(Def(t) → (P0∧ (P1∨P2∨P3∨P4)))

where:

P0: B = (
∑

i : 0 ≤ i < N : c(i))

Informally, property P0 says that the sum of all local message counters is the
number of all messages on their way.

P1: (∀i : t < i < N : active(i) = false) ∧ (
∑

i : t < i < N : c(i)) = q)

Call machines i : t < i < N visited machines. Informally, property P1 says that
all visited machines are passive and that the tokenValue is the sum of the local
message counters of these machines.
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P2: (
∑

i : 0 ≤ i ≤ t : c(i)) + q > 0

Informally, property P2 means that the sum of all local message counters of the
unvisited machines plus the value of the token is greater than 0.

P3: ∃i : 0 ≤ i ≤ t : color(i) = black

Informally, property P3 means that there exists an unvisited machine i which is
black.

P4: tokenColor = black

The meaning of property P4 is clear. We write A′ |= P if each run of A′ satisfies
property P.

Lemma 2. P is an invariant of A′, i.e., A′ |= P.

Proof. Let ρ′ = (A′, S′) be a run run of A′. We simply say Qk holds for a state
property Q if S′k |= Q is true.
The message counter of a machine will be incremented when sending a message
and decremented when receiving a message. Thus we can immediately conclude
∀k : P0k or equivalently 2P0.
Let k̂ be an arbitrary natural number such that t(k̂) is defined. From the rules of
A′ follows that there must be at least one probe starting before k̂. More precisely,
there exists a maximal k0 ≤ k̂ such that at time k0−1 no machine has the token
and at time k0 machine MN−1 has the token.
We show:

1. the conjecture holds for k0, and
2. if the conjecture holds for a k < k̂ so it holds for k + 1.

We start with k = k0. At step (k0−1, k0) the token is created. Thus M0 executes
in this move rule InitiateProbe. Hence t(k0) = N − 1 and P1k0 . Assume the
conjecture to be true for k < k̂. Thus at least one of the properties P1k, ..., P4k

holds.

(1) Assume P1k holds.
(1.1) Assume that there exists i0 : t(k) < i0 < N such that Mi0 receives

a message in step (k, k + 1). Since Mi0 executes rule ReceiveMessage
in step (k, k + 1) the message counter of Mi0 is decremented and Mi0

becomes active (cf. C1). Token location, token color, and token value do
not change. We know that c(i0)k+1 = c(i0)k − 1, active(i0)k+1 = true,
and t(k) = t(k + 1) hold. Since machine i0 receives a message we get
Bk > 0. With P1k we can conclude (

∑
i : t(k + 1) < i < N : c(i)k+1) =

qk −1. With P0k+1 and Bk+1 ≥ 0 we get P2k+1.
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(1.2) Assume that for all i : t(k) < i < N machine Mi does not receive a
message in step (k, k + 1). At time k all machines Mi with t(k) < i < N
are passive, thus they can not send a message and hence their message
counters do not change. Their activity state does not change, too.

(1.2.1) Assume the token is not transmitted in step (k, k + 1) . Then P1k+1

holds.
(1.2.2) Assume the token is transmitted in step (k, k +1) . We can conclude

that rule TransmitToken is executed by machine Mt(k) and t(k) > 0.
Hence machine Mt(k) is passive both at time k and at time k +1 (cf.
C1). The message counter of Mt(k) does not change. When Mt(k)

executes rule TransmitToken it increases the token value by c(t(k)).
Hence P1k+1 holds.

(2) Assume P2k holds.
(2.1) Assume there exists i0 : 0 ≤ i0 ≤ t(k) such that Mi0 receives a message

in step (k, k + 1). Then color(i0)k+1 = black and t(k + 1) = t(k) holds.
Thus P3k+1 holds.

(2.2) Assume for all i : 0 ≤ i ≤ t(k) Mi receives no message in step (k, k + 1).
Thus we get

∑
i : 0 ≤ i ≤ t(k) : c(i)k+1 ≥

∑
i : 0 ≤ i ≤ t(k) : c(i)k.

(2.2.1) Assume there is token transmission in step (k, k + 1). In this case
P2k+1 holds.

(2.2.2) Assume there is no token transmission in step (k, k +1). In this case
we know that rule TransmitToken is executed by machine Mt(k).
Furthermore we know that t(k) > 0 holds. We get immediately

∑
i :

0 ≤ i ≤ t(k) : c(i)k+1 =
∑

i : 0 ≤ i ≤ t(k) : c(i)k. Using t(k + 1) =
t(k) − 1 and qk+1 = qk + c(t(k))k we get (

∑
i : 0 ≤ i ≤ t(k + 1) :

c(i)k+1) + qk+1 = (
∑

: 0 ≤ i ≤ t(k) : c(i)k) + qk. The assumption
P2k gives P2k+1.

(3) Assume P3k holds.
(3.1) Assume t(k + 1) = t(k) holds. We get immediately P3k+1.
(3.2) Assume t(k + 1) 6= t(k) holds.

(3.2.1) Assume Mt(k) is black at time k. The token will be blackened and
transmitted to machine Mt(k+1) in step (k, k + 1). Thus, we get
P4k+1.

(3.2.2) Assume Mt(k) is white at time k. There exists i with 0 ≤ i ≤ t(k+1)
such that Mi is black at time k + 1. Thus, we get P3k+1.

(4) Assume P4k holds. If Machine 0 initiates the probe it creates a new token
(cf. rule InitiateProbe). This token is transmitted to machine N − 1. The
token is white and has value 0. Within a probe the token can only turn black
(cf. rule TransmitToken). Thus we can conclude that P4k+1 holds.

q.e.d.

This invariant is now used to prove ρ |=C2∧C3∧C4. Note that ρ′ |=C2∧C3∧C4
implies ρ |= C2∧C3∧C4. We start with a simple lemma.
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Lemma 3. ρ |= C4

Proof. There exists no rule in A′ which sets terminationDetected to false. Thus
we get ρ′ |= C4 and hence ρ |= C4. q.e.d.

Now we show that the value of terminationDetected in ρ is “correct”.

Lemma 4. ρ |= C2

Proof. Assume in ρ′ that there exists a time point k with terminationDetectedk =
true. Let k1 be the smallest number with this property. This means that at
time k0 := k1 − 1 terminationDetected is false. Hence M0 sets in step (k0, k1)
terminationDetected to true. Thus c(0)k0 + tokenValuek0 = 0, color(0)k0 =
white, active(0)k0 = false, and tokenColork0 = white. With lemma 2 we know
that P1k0 ∨ P2k0 ∨ P3k0 ∨ P4k0 . From the above follows ¬(P2k0 ∨ P3k0 ∨
P4k0). Hence P1k0 holds. We can conclude that Terminationk0 holds. Since
terminationDetected remains true and the termination situation is stable this
leads to ρ′ |= C2 and hence ρ |= C2. q.e.d.

Note that in each probe the token returns to machine 0 after a finite period
of time if ρ′ contains termination. In the following we simply say that in this
case the probe ends after a finite period of time. This can be seen by constraint
C5 and the rules realizing the probe, i.e., InitiateProbe, TransmitToken, and
NextProbe, respectively.

Lemma 5. ρ |= C3

Proof. Assume there exists in ρ′ a time point k such that Terminationk holds.
We know that in this case each probe ends after a finite period of time. If a probe
ends at a point with no termination machine 0 initiates a new probe. Otherwise
machine 0 would detect termination at a point with no termination. This is in
contradiction with lemma 4. Hence lemma 4 guarantees the initiation of a new
probe. Thus there exists a probe, say Pr0, which ends within the termination.

(1) Assume M0 detects in probe Pr0 termination. Then we are finished.
(2) Assume M0 detects not termination in probe Pr0. Then a new probe Pr1 is

initiated by M0. The token returns in probe Pr1 with tokenValue = 0. Since
upon token transmission machines whitens itself we know that all machines
are white when the token returns to M0.

(2.1) Assume the token returns white to M0 in Pr1. Then M0 detects termi-
nation.

(2.2) Assume the token returns black to M0 in Pr1. Then M0 initiates a new
probe Pr2. In this probe the token returns white to M0 and M0 detects
termination.

q.e.d.

We can conclude that ρ is a run of A. We have shown that each lower-level run
is an implementation of a higher-level run. This subsection is summarized in the
following theorem.

Theorem 1. A′ implements A
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5 Conclusions

In this paper we have presented a methodology for the specification and ver-
ification of distributed algorithms using Gurevich’s concept of Abstract State
Machines. Starting with an informal problem description one constructs a higher-
level specification, which should be an appropriate mathematical model of the
problem description. The appropriateness is established by a justification. A
lower-level specification represents the algorithm on a more concrete abstraction
level. The mathematical verification guarantees that the lower-level specification
implements the higher-level specification. This methodology was presented by a
well-known distributed algorithm, namely the termination detection algorithm
originally invented by Dijkstra, Feijen and van Gasteren in [DFvG83] in a slight
variation presented in [Dij99].
In this paper we have mainly stressed on the mathematical verification. The
verification is given on a detailed mathematical level. Note that the presented
proofs are not formal, i.e., they are not based on a proof calculus. The goal
of these informal proofs is to give the underlying ideas. They can be seen as
abstractions from detailed and rigor formal proofs based on a proof calculus.
Future research will emphasize on a formal, mathematical verification.
The justification that the higher-level specification is appropriate for the problem
description is beyond the scope of this paper. Future research will emphasize
on methods for justification. More precisely, we will investigate the FOREST-
approach presented at web page [KP] (cf. [PGK97] for the underlying idea).
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