
A Distributed and Reliable Platform for
Adaptive Anomaly Detection in IP Networks

L. Lawrence Ho, Christopher J. Macey, and Ronald Hiller

Communications Sciences Research Laboratory
Bell Laboratories, Lucent Technologies

101 Crawfords Corners Road
Holmdel, NJ 07733, USA

{llho, macey, ronbo}@bell-labs.com

Abstract. Algorithms for anomaly detection in IP networks have been
developed and a real-time distributed platform for anomaly detection has been
implemented. These algorithms automatically and adaptively detect “soft”
network faults (performance degradations) in IP networks. These algorithms are
implemented as a reliable and fully distributed real-time software platform
called NSAD (Network/Service Anomaly Detector). IP NSAD has the following
novel features. First, it provides a flexible platform upon which pre-constructed
components can be mixed/matched and distributed (to different machines) to
form a wide range of application specific and fully distributed anomaly
detectors. Second, anomaly detection is performed on raw network observables
(e.g., performance data such as MIB2 and RMON1/2 variables) and algebraic
functions of the observables (objective functions), making NSAD an objective
driven anomaly detection system of wide detection range and high detection
sensitivity. Third, controlled testing demonstrates that NSAD is capable of
detecting network anomalies reliably in IP networks.

1 Introduction and Algorithmic/System Design
Anomaly detection is concerned with detecting “soft” network faults (e.g.,
performance degradation) in network and their services, which in turn enables
“proactive” containment and correction of network/service faults for reliable
networking [1,2]. Since anomalies are signatures of network/service exceptions and
are preludes to service level failures, being able to detect them reliably and quickly
enables network failures to be anticipated (hence “proactive”) [1–5]. This implies that
fault correction and containment can be applied in a timely manner to manage the
performance and optimize the reliability of networks and their services.

With the explosive growth of heterogeneous data networks (the Internet and intranets)
in the past decade, there has been a corresponding leap in the types, frequencies, and
severity of network/service faults and outages [6]. Some examples of these network
faults include network mis-configuration, hardware problems (e.g., line card failure),
networking software exceptions (e.g., “bugs” in routing software, exceptions in
routing table updates), “bugs” in network-enabled applications (e.g., video streaming
software), traffic anomalies (e.g., packet storms), and so on [7–10]. These anomalies

R. Stadler and B. Stiller (Eds.): DSOM’99, LNCS 1700, pp. 33-46, 1999.
© Springer-Verlag Berlin Heidelberg 1999

and faults, if not contained and corrected in time, will degrade network quality-of-
service (QoS) parameters such as delay, jitter, and packet drop/error rate, which in
turn lead to network/service degradations and ultimately failures. As modern data
networks and their support software become more complex (in physical/logical
topologies and software complexity), the number of potential network/service points
of failures are increasing exponentially, their faults correspondingly less predictable,
and detecting them increasingly difficult.

Recently, there has been another trend in networking increasing demand on network
QoS and reliability [11]. As electronic commerce (E-commerce) and real-time
applications (e.g., video and audio based applications) become more prevalent,
guaranteeing QoS and reliability is becoming increasingly important [12,13]. This in
turn demands that network/service faults be detected and identified reliably and
quickly for rapid fault alert, containment, and correction [1–5].

Together, these two trends have fueled the recent surge in research concerning
network fault detection and performance management [14–17]. These challenges
motivated our previous research in anomaly detection in non-IP based networking
environment [1,2], and our current work in IP based anomaly detection.

To detect network/service anomalies and faults reliably and in real-time, two set of
design factors are relevant, one set is algorithmic, the other system-related [1,2]. For
network/service anomaly detection, algorithms should be:

 Adaptive to the performance fluctuation and the evolution of networks and
their services

 Performing detection in real-time
 A reliable (self-recovering) real-time system
 A flexible and distributed system

It will be explained in detail that most fault detection systems to date do not achieve
all of the above design goals, including algorithms and systems developed by other
researchers and us [1–5,24–27]. The current IP network and service anomaly
detection (IP NSAD) system reported in this paper fulfills these design requirements.

Traditionally, research and development in network fault management emphasize the
detection and processing of network and element failures in the form of alarms [18].
For example, most network elements such as routers and switches are equipped with
software agents (e.g., SNMP agents) that can emit traps/alarms upon detecting
exceptional states such as a router interface being “down,” or the utilization of a
network segment exceeding a predefined threshold (e.g., a constant 80% threshold).
Event correlation deals with inferring the root cause(s) of network faults from an
avalanche of network alarms. Recent research and deployment testify to its usefulness
in monitoring and controlling networks [19]. In network fault management, the past
few years have also witnessed much progress in path failure detection (including
break faults) [20–22], billing fraud detection in telecommunication voice networks

34 L. Lawrence Ho et al.

[23], anomaly detection in Ethernet [24,25], anomaly and performance change
detection in small networks [26,27], and network alarm correlation [28–30]. With the
advent and the explosive growth of the global Internet and the electronic commerce
environments, adaptive/automatic network and service anomaly detection in IP wide
area data networks and IP based E-commerce infrastructures (e.g., web based
transaction infrastructures) is fast gaining critical research and practical importance
[5]. In these cases, being able to proactively detect performance degradations (termed
“soft” faults [1–5] as opposed to the “hard” alarms/failures of networks and their
elements [18,19,28–30]) in networks and their services is becoming crucial for speedy
fault recovery, and for preventing the onset of network/service failures.

Most of the developed algorithms and their implementations do not fully conform to
the above algorithmic and system-related design requirements. For example, most
fault detection systems built to date [1–3] are inflexible (meaning they are application
specific) and unreliable. Therefore, they are not general-purpose anomaly detection
platforms. Given the ever-accelerating development/deployment pace of new type of
network services and new network-enabled applications, new types of application
specific anomaly detectors are constantly required. Therefore, the lack of flexibility
and generality in current fault detection systems may hinder their usefulness. On the
algorithmic side, not all the algorithms designed [1–5,25–27] have been subject to
controlled testing with realistic anomaly injection, which could have validated their
effectiveness (e.g., detection hit rates, false positive rates, and so on). Instead, they
were tested and optimized against historical network and service data and their
corresponding historical fault information (usually in the form of trouble tickets) [1–
5,25–27]. These fault information sources are notoriously hard to collect and
unreliable. Even if available, they are not specific enough to enable vigorous testing
and optimization. In our previous work [1,2], this problem was addressed (in a best
effort way) by collecting very low-level, highly specific, and real-time trouble
ticketing information for algorithmic verification. Nevertheless, the drawbacks were
apparent [1,2].

Motivated by these algorithmic and system drawbacks in previous work, we recently
designed a set of IP network/service anomaly detection algorithms, implemented a
real-time distributed anomaly detection platform, and vigorously tested them. This
platform is called the IP network and service anomaly detector (IP NSAD).
Specifically, IP NSAD is:

 Capable of adaptive and automated detection of anomalies in IP networks
and their services in real time. NSAD uses as inputs SNMP based standard
network/service observables such as MIB2 and RMON1/2 variables [31],

 Capable of objective driven and highly effective anomaly detection. In this
case, anomaly detection is performed on performance objective functions (as
opposed to raw network observables) which are algebraic functions of
standard based network/service observables (MIB2, RMON1/2, etc.),

 A flexible platform on which pre-constructed components (such as network
samplers, data filters, rule generators, and anomaly detectors, etc.) can be

A Distributed and Reliable Platform for Adaptive Anomaly Detection in IP Networks 35

mixed and matched (through an intuitive graphical user interface, GUI) for
building application specific anomaly detectors,

 A fully distributed system in which system components can be distributed to
different platforms, and

 A reliable real-time system in which components are dynamically self-
recovering.

This paper is structured as follows. An overview of the anomaly detection algorithms
is presented in Section 2. Section 3 details the system architecture and
implementation of the IP NSAD platform. Section 4 summarizes test results of IP
NSAD. Finally, Section 5 provides a summary.

2 Algorithms for IP Network/Service Anomaly Detection
This section provides a summary of the anomaly detection algorithms, which is an
extension of our previous work [1,2]. The anomaly detection algorithms can be
grouped into three categories: (1) sampling and filtering algorithms, (2) statistical
analysis and rule generation algorithms, and (3) anomaly detection algorithm.

A network anomaly detector is a real-time program that adaptively analyzes
performance data of managed networks to detect “abnormal” changes (relative to
historical baselines or “expected” behavior) in traffic and performance. These
abnormalities are signatures of soft and hard faults. For IP networks, an anomaly
detector analyzes SNMP based network observables (i.e., MIB2 and RMON1/2
variables [31]) to identify fault location, raise alarms, and generate control signals
upon detection of performance anomalies and network faults.

The three steps of adaptive network anomaly detection are:

1. Network data sampling and filtering
For best effort correction of stochastic effects in network monitoring and for
handling missing data.

MIB2 or RMON1/2 counter (or gauge) values [31] generated by network
elements (e.g., routers, switches, etc.) or probes (RMON probes) are retrieved
periodically (in a best effort way with predefined time intervals) through SNMP.
This network performance sampling uses a “overstepping” algorithm which
forces the time stamps of the return SNMP PDUs to be slightly (bounded) later
than the predefined (or theoretical) retrieval time stamps, taking into account the
stochastic network delays on the SNMP PDUs. This in effect minimizes error
interpolation. The time stamps of the resulting counter values are closely aligned,
but not exactly, to a regular schedule. This misalignment is due to stochastic
fluctuations in network delay, which affect the arrival times (with respect to the
regular schedule) of the SNMP PDUs. These counter values are interpolated to
form a set of exactly regular time series. Interpolation is used to synthesize

36 L. Lawrence Ho et al.

A Distributed and Reliable Platform for Adaptive Anomaly Detection in IP Networks 37

missing counter values for missing regions whose sizes do not exceed predefined
bounds.

First and higher order derivatives of counters can be computed directly from their
regular time series.

2. Temporal-based performance thresholds
For predicted or "expected" baselines and their fluctuations of network
performances.

By exploiting the temporal performance regularities of networks, performance
baselines and thresholds of IP networks can be built for their MIB2 or RMON1/2
counters. These baselines and thresholds can be classified into four classes:
weekdays, Saturdays, Sundays, and holidays. Historical data of service classes
are used to construct these adaptive thresholds for each monitored MIB2 or
RMON1/2 counter.

For each of the four threshold groups, a set of adaptive thresholds are built to
predict the expected performance of network services on weekdays, Saturdays,
Sundays, and holidays, respectively. Each set of dynamic thresholds (upper and

lower thresholds) is composed of a predicted baseline Is \Tn s j and tolerance

upper_threshold= IS{T„ ,)+2&.{T* J ^ C1)
suns
holiday

baseline =7S(7; J ^ f (2)
suns
holiday

lowerjhreshold = Is {T„) - 2ds {T„ fcf (3)
suns
holiday

(Js (Tn sJ (note: "~" denotes "predicted") as follows

The baseline Is (Tn sJ and tolerance Os \Tn s) are computed from historical
MIB2 or RMON1/2 data (i.e., counters) through one-dimensional time series
analysis and are classified into the "weekday", "Saturday", "Sunday", and
"holiday" classes [1,2]. The Is\Tns)s represent the predicted "average"

counters, while the Os[Tn s)s represent the predicted "average" fluctuations of

the corresponding counters. Both Is [Tn s J s and Os \Tn s) are updated
periodically to account for the evolution in network traffic.

The baseline Is (Tn s) and tolerance Os \Tn s) can also be computed for
objective functions, which are algebraic functions of raw network observables.
These performance based objective functions provide sensitive measures of

38 L. Lawrence Ho et al.

application specific performance. For example, an objective function can
measure the traffic inbalance between the inbound traffic flowing into a network
region and the outbound traffic. This objective function is

f«<$) = { ~YJyifOctetIn + ifOctetOui) (4)

where ifOctetln and ifOctetOut are MIB2 counters that register byte counts into
an out of an router interface. Finally, the summation is performed over all
interfaces related to the network region. The resulting objective function
(Equation 4) enables detection of traffic inbalance anomalies.

3. Anomaly detection
For comparing expected baselines/fluctuations with current network states to
measure departures from predicted performances, which are signatures of
anomalies.

Expected performance of IP networks are predicted through the above thresholds,
and deviations (in both magnitude and duration, as defined by a set of fault
criteria) from the expected are indications of network/service anomalies [1,2].

In anomaly detection, an alarm is raised that signaling the onset of a
network/service anomaly if (1) the measured (in real-time) Is?measUred(T,nJ at time
T„iS deviates from the thresholds by more than a from the predicted baseline, and
(2) the previous condition persists and for more than Tpersist, i.e.,

*£E.{T„U IX(?;J (5)
where

if / , _ , fa„) < [7, {T„) - 2ds {T„)] - ais (T„):
E. {T„) = / , _ , (Tn,) - [7, fa,) - 2&s (T„)] - al. (^) (6)

if/ ,(T)>\7(T)+2a (T)] + al(T):
s,measured \ n,s / |_ s \ n,s / s \ n,s /J s \ n,s /

Es (T„,s) = / , _ , (Tn,) - [7, (7;s) + 2ds (7;s)] + al, (T^S). (7)

The choice of the parameters in the above criteria (a and Tperslst) are determined
experimentally. Finally, the detected anomaly is written to a diagnosis log that
identifies the "guilty" elements and the possible cause(s) of anomaly. This
information is presented to network operators through a graphic user interface
(GUI).

3 System Architecture and Implementation of NSAD
In this section, the system architecture of the IP NSAD is presented. The
corresponding implementation is also detailed.

The overall system architecture of the IP NSAD platform is shown in Figure 1, which
presents the various system components that make up an anomaly detector. As will be
explained in detail, these components are responsible for gathering network
performance data from network elements or probes (samplers), numerically and
arithmetically processing the gathered data (filters), statistically analyzing the
gathered data (rule generators), and finally performing real-time anomaly detection
(detectors). These components are monitored and controlled by a centralized master
controller, which can distribute the above system components to different machines
connected by LAN(s) or WAN(s). Thereby, computationally and network-bandwidth
intensive operations (such as rule generation of predicted baselines and thresholds,
and network sampling, respectively) can be distributed to a set of processors and
network segments for load balancing and for enhancing reliability. Further, local
traffic reduction (by distributing some of the filters) reduces the bandwidth required
for subsections of the system and reduces the managed scope. This is especially
important when configuring data collection and anomaly detection for a wide area
network, in which firewalls or other policy managed domains may need to be
traversed. Currently, platforms supported by the core NSAD components and their
master controller include Sun’s Solaris 7 and Microsoft’s Windows NT 4.0. Human
interaction with the NSAD platform is conducted through a graphical user interface
(GUI), which enables system construction (i.e., building anomaly detectors from
system components), configuration, and advanced performance/anomaly visualization
of IP networks.

statistical analyzer
& rule generator

real-time
detection engine

anomaly
modelerfilter

IP
networks

SNMP

data
store

sampler

sampler

sampler filterSNMP

distributed controller GUI

(1) Samples network/service
 for performance data
(2) Correction for stochastic sampling
(3) Temporal analysis of
 network/service data

(1) Performs arithmetic operations
 (e.g., +, -, *, /, derivatives, etc) on
 network/service performance data

(1) Compares real-time data
 with rules
(2) Detects network anomalies
 in real time
(3) Alarm generation

(1) Computes expected network/service
 performance (as rules)
(2) Statistical & algorithmic analyses of
 network/service performances
(3) Summarizes network/element performances

(1) Overall controller
 of the distributed
 NSAD

(1) Models network
 anomalies (fault
 model)

(1) Visually driven
 detector configuration
(2) Network/service
 performance visualization
(3) Anomaly visualization

Fig. 1. Architecture of NSAD, showing the system components of a single anomaly
detector.

A Distributed and Reliable Platform for Adaptive Anomaly Detection in IP Networks 39

In real applications, multiple anomaly detectors can be controlled and distributed by a
master controller. For example, in an E-Commerce infrastructure composed of
servers, routers, and Fast Ethernet switches, one detector may be used for web server
anomaly detection (server overload, denial of service, etc.), while others may be
configured to detect traffic anomalies by sampling router and switch performance
data. This deployment of interrelated detectors in multiple points of a network is a
key to effective performance monitoring and fault detection.

The architecture of NSADS is implementation-independent. It relies on a small
number of behavioral and communication conventions. It consists of a number of
simple system components (Figure 1) which are interconnected by communications
links and provide time-stamped values (according to a fixed schedule) for further
processing. The current implementation is in C for maximal efficiency. A Java
version is planned and Inferno, CORBA and even hardware implementations are
envisioned.

A detector instance is a configuration of an arbitrary number of these components,
connected in a directed a-cyclic graph. The instance computes an objective function
of the input observables, which can then be statistically modeled (Figure 1). Instances
are configured from templates that describe generic versions of each supported
detector type.

The user selects a supported type of fault detector interactively, then instantiates
actual detectors with a minimal specification of bindings to the target network. Once
instantiated and launched the detector is robust and generally requires no further user
intervention, even in the presence of network failures. Adaptation to network growth
is accommodated with simple editing of existing configurations. Scalability is
provided by redistribution of component instances across the network.

The core system components of the NSAD platform include the (1) samplers, (2)
filters, (3) rule generators, (4) detectors, (5) anomaly modeler, (6) master controller,
and (7) GUI. Their functions are as follows.

 Sampler
Samplers are data retrieval units that periodically poll network elements
(including servers) and monitoring probes (e.g., RMON probes) for
network/service performance data. Currently, they support (1) SNMP based
(variable based and table based) and (2) flat file based retrieval. Therefore, MIB2
variables, RMON1/2 variables, and generic data (e.g., web server logs) can be
retrieved periodically or on demand. Effectively, this module implements the first
part of the anomaly detection algorithms outlined in Section 2. For periodic
retrieval (i.e., with a fixed frequency), SNMP PDUs are generated on a fixed
schedule (for example every 10 seconds starting at 0:00:00 GMT). The return
SNMP PDUs (which carry the performance data) are not spaced at 10 seconds

40 L. Lawrence Ho et al.

interval, owing to the stochastic delay of the network(s) involved. Therefore, a
“overstepping” algorithm is used to guarantee that every return PDU is displaced
(time-wise) slightly later than the ideal 10 second time grid, without divergence
(running over into the next time bin). Interpolation is used to realign the data
back to a 10 second spaced (regular) time series. In addition, algorithms are
provided to handle missing data. This sampling schedule (interval and start time)
generate the clock for the entire system.

 Filter
Filters perform numerical and arithmetic computation on sampled network data.
Supported numerical operations include derivative calculations. Supported
arithmetic operations include summation, difference, multiplication, and division.
Using these filters, network observables (such as individual MIB2 or RMON1/2
variables) can be combined into performance objective functions for more
effective anomaly detection. For example, traffic inbalance between inbound and
outbound octet rates of a router can be measured and computed in real time.

 Rule generator
Rule generators are the modules that implement the statistical analysis algorithms
(second part of the algorithms outlined in Section 2) for generating predicted
baselines and fluctuations of the performance variables or their objective
functions. They analyze the stored historical performance data or their composite
objective functions (filter outputs) of networks periodically, and compute the
predicted baselines of these. Predicted fluctuations of the corresponding baselines
are then computed. Rule generators are executed periodically, and infrequently
compared to the frequency of real-time sampling. Typically, they are executed a
few times per day (in our present system, every 12 hours). This means baselines
and fluctuation rules for variables or objective functions are predicted for 12
hours periods on an ongoing basis (12 hours ahead of their use).

 Detector
Detectors are executed in real time to detect network and service anomalies. They
compare the predicted rules (in terms of baselines and their fluctuations) against
their corresponding real time network data (or their objective functions) with
respect to a set of anomaly criteria. These criteria are in the form of the
algorithms outlines in Section 2 (part 3 of the set). Violations of the criteria are
interpreted as anomalies. Degrees of violation are mapped to conditional
probabilities, i.e., how likely the detected violations are real anomalies.

 Graphic User Interface (GUI)
The GUI provides users the following functions. First, it provides advanced
visualization capabilities for users to graphically view raw network performance,
their statistical summaries, and network anomalies. Second, it enables users to
graphically build anomaly detectors from components. Third, it allows the user to
set system parameters (e.g., the machines on which to execute specific system
components and the data sampling schedule). A screen shot of the NSAD GUI is
shown in Figure 2, highlighting the detector construction and anomaly
visualization functions. The GUI is written in Java, and is therefore platform
independent. It can be remotely invoked through a web browser or executed as a
standalone Java application (Figure 2).

A Distributed and Reliable Platform for Adaptive Anomaly Detection in IP Networks 41

 Controller
A controller runs on each machine that will execute anomaly detector
components. Typically, it is automatically initiated on machine boot. It launches
and monitors all other components except rule generation. Failed components are
re-spawned as necessary. Controllers communicate with one another on a well-
known TCP port and mediate all communication between the GUI and other
components.

Interface for
building anomaly
detectors through
mixing and matching
components

Interface for
visualizing network

performance and
anomalies

Fig. 2. A snapshot of the NSAD GUI.

The primary recovery mechanism provided by NSAD handles the loss of inter-
component connections and file system unavailability. If a component detects the loss
of a connection to any of its downstream or upstream connections, it simply
terminates. This causes a cascade of terminations through the entire configuration.
Even components hosted on other machines are cleanly shutdown so recovery can be
initiated. Since the topmost component in any configuration is connected to the local
controller, its termination initiates the recovery. If this connection is lost, the
controller reinitiates the configuration using an exponential backoff strategy for
repeated failures. If the controller fails, it is relaunched and then relaunches the
components.

The combination of configuration files and controllers provides a mechanism for
partitioning recovery. Any portion of a detector can be converted into a separate
configuration. The topmost component of the new configuration will only terminate if
it loses a downstream connection or the connection to the controller. This can be used
to limit the downstream propagation of failures. When the upstream components have
recovered from a non-local failure, they will reconnect to the subsystem.

If the local file system becomes unavailable, local components are prevented from
recording their values. Instead, they queue values in available memory and log
requests for operator intervention. If the rule bases are unavailable, the detector logs
the problem and becomes quiescent.

42 L. Lawrence Ho et al.

Scalability is provided through the distributed nature of the detector and the use of
remote aggregation to limit the quantity of data which must be moved upstream over
any single link.

4 An Application and Preliminary Test Results
This section provides an example of IP anomaly detection, and a summary of some
initial test results performed in our specially developed controlled testbed, where
anomalies are injected to test the algorithmic performance of the IP NSAD.

Construction of anomaly detector(s) can be done intuitively through the GUI by a
series of drag-and-drop steps, and the filling in of some system related and functional
parameters (e.g., IP addresses for data polling and polling frequencies, respectively).
Figure 3 shows an example of constructing an anomaly detector through the NSAD
GUI. In this case, an anomaly detector is constructed to monitor the overall
(summation of inbound and outbound) traffic (byte count) rate tranversing a router
interface. The objective function being monitored is rate of the summation of the
inbound-outbound interface octet counts, i.e.,

    (8) ,ifOctetOutifOctetIn
dt
dtfobj 

which is a sensitive measure of the traffic and load conditions on a subnetwork, as
well as the health of a router interface.

rule generator
(1-dim statistical)

filter
(summation)

filter
(rate conversion, or
 first derivative)

sampler
(SNMP-get)

Router
name

sampler
(SNMP-get)

filter
(rate conversion,
 first derivative)

corresponds to

statistical analyzer
& rule generator

real-time
detection engine

anomaly
modeler

filter

data
store

sampler

sampler

distributed controller GUI

filter

filter

router Bob

ifOctetIn

ifOctetOut

Fig. 3. A snapshot of the NSAD GUI, showing the detector construction .panel, and
the corresponding anomaly detector.

A Distributed and Reliable Platform for Adaptive Anomaly Detection in IP Networks 43

In this case, the rule generator generates the dynamic baselines and fluctuations of the
objective function (Equation 7). Figure 4 shows traffic anomalies detected by the
detector.

To enable controlled testing of IP NSAD, we have constructed a special-purpose
network testbed. This generates realistic background traffic, and can inject anomalies
of different classes (e.g., web server overload, traffic storm, etc.) [32]. Preliminary
results indicate that NSAD is capable of highly accurate anomaly detection. For
example, in anomaly detection of web servers, the average hit rate exceeds 98%, with
2% of false positives.

anomalies thresholdsobjective function

Fig. 4. A snapshot of the NSAD GUI, showing the visualization panel.

5 Conclusions
We have developed a general platform for IP anomaly detection. This IP NSAD

Ongoing and future work IP NSAD include:

 Vigorous controlled testing with realistic anomaly injections,
 Implementation of additional components including new filters, samplers,

and rule generators, and
 System enhancements through re-implementing selected components with

Java and CORBA.

References
1. Ho, L.L., Cavuto, D.J., Papavassiliou, S., Hasan, M.Z., Feather, F.E.,

Zawadzki, A.G., “Adaptive Network/Service Fault Detection in Transaction-
Oriented Wide Area Networks,” Proceedings of the Sixth IFIP/IEEE

44 L. Lawrence Ho et al.

International Symposium on Integrated Network Management (IM’99), Edt. M.
Sloman, S. Mazumdar, and E. Lupu, (IEEE Press), to appear in May 1999.

2. Ho, L.L., Cavuto, D.J., Papavassiliou, S., Zawadzki, A.G., “Adaptive and
Automated Detection of Network/Service Anomalies in Wide Area Networks,”
Journal of Network and Systems Management, to appear in 1999.

3. Thottan, M., Ji, C., “Fault Prediction at the Network Layer using Intelligent
Agents,” Proceedings of the Sixth IFIP/IEEE International Symposium on
Integrated Network Management (IM’99), Edt. M. Sloman, S. Mazumdar, and
E. Lupu, (IEEE Press), to appear in May 1999.

4. Hood, C. and Ji, C., `` Intelligent Processing Agents for Network Fault
Detection'', IEEE Internet Computing, Vol. 2, No. 2, March/April 1998

5. Hellerstein, J.L., Zhang, F., Shahabuddin, P., “An Approach to Predictive
Detection for Service Management,” Proceedings of the Sixth IFIP/IEEE
International Symposium on Integrated Network Management (IM’99), Edt. M.
Sloman, S. Mazumdar, and E. Lupu (IEEE Press), to appear in May 1999.

6. Huberman, B.A., Lukose, R.M., “Social Dilemmas and Internet Congestion,”
Science, Vol. 277, p. 535, July 1997.

7. Held, G., LAN Testing and Troubleshooting: Reliability Tuning Techniques,
John Wiley & Sons, 1996.

8. Ballew, S.M., Managing IP Networks, O’Reilly & Associates, 1997.
9. Miller, M.A., Troubleshooting Internetworks, M&T Publishing, 1991.
10. Espinosa, R., Tripod, M., Tomic, S., Cisco Router Configuration &

Troubleshooting, New Riders, 1998.
11. Kumar, V.P., Lakshman, T.V., Stiliadis, D., "Beyond Best-Effort: Gigabit

Routers for Tomorrow's Internet," IEEE Communications Magazine, V36(5),
p152, May 1998

12. White, P.P., "RSVP and Integrated Services in the Internet: A Tutorial," IEEE
Communications Magazine, V35(5), p100, 1997.

13. Reininger, D., " A Dynamic Quality of Service Framework for Video in
Broadband Networks," IEEE Network, V12(6), p22, 1998.

14. Lazar, A.A., Wang, W., Deng, R., “Models and Algorithms for Network Fault
Detection and Identification: A Review,” ICC Singapore, Nov. 1992.

15. Parulkar, G., Schmidt, D., Kraemer, E., Turner, J., Kantawala, A., “An
Architecture for Monitoring, Visualization, and Control of Gigabit Networks,”
IEEE Networks, p.34, Sept/Oct, 1997.

16 Katzela, I. Schwartz, M., “Schemes for Fault Identification in Communication
Networks,” IEEE/ACM Trans. Networking, Vol. 3(6), p.753, Dec, 1995.

17. Aidarous, S. (Edt.), Plevyak (Edt.), “Telecommunications Network
Management: Technologies and Implementations,” IEEE Series on Network
Management, (IEEE Press, 1998).

18. Aidarous, S. (Edt.), Plevyak (Edt.), “Telecommunications Network
Management into the 21st Century: Techniques, Standards, Technologies, and
Applications,” (IEEE Press, 1994).

19. Yemini, S., Kliger, S., Mozes, E., Yemini, Y., Ohsie, D., “High Speed and
Robust Event Corrrelation,” IEEE Communication Magazine, May 1996.

A Distributed and Reliable Platform for Adaptive Anomaly Detection in IP Networks 45

20. Wang, C., Schwartz, M., “Fault Diagnosis of Network Connectivity Problems
by Probabilistic Reasoning,” Network Management and Control Volume Two
(Ed. Frisch, I.T., Malek, M., Panwar, S.S.), p.67, (Plenum Press 1994).

21. Dawes, N., Altoft, J., Pagurek, B., “Network Diagnosis by Reasoning in
Uncertain Nested Evidence Spaces,” IEEE Transactions on Communications,
Vol. 43, p.466, 1995.

22. Cortes, C., Jackel, L.D., Chiang, W., “Limits on Learning Machine Accuracy
Imposed by Data Quality,” Proceedings of NIPS94 - Neural Information
Processing Systems: Natural and Synthetic Pagination, p. 239, (MIT Press
1994).

23. Cox, R.M., “Detecting Lost Billing Records Using Kalman Filters,” AT&T
Labs Preprint (submitted), Oct. 1997.

24. Feather, F.E., Siewiorek, D., Maxion, R., “Fault Detection in an Ethernet Using
Anomaly Signature Matching,” ACM SIGCOMM'93, 23(4), 1993.

25. Maxion, R., Feather, F.E., “A Case Study of Ethernet Anomalies in a
Distributed Computing Environment,” IEEE Transactions on Reliability,
39(4), Oct 1990.

26. Hood, C., Ji, C., “Proactive Network Fault Detection,” IEEE Trans. Reliability,
Vol. 46, No. 3, p.333, 1997.

27. Hood, C., Ji, C., “Proactive Network Fault Detection,” Proceeding IEEE
INFOCOM, 1997.

28. Jakobson, G., Weissman, M.D., “Alarm Correlation,” IEEE Network, p. 52,
Nov 1993.

29. Katker, S., Paterok, M., “Fault Isolation and Event Correlation for Integrated
Fault Management,” Proceedings of the Fifth IFIP/IEEE International
Symposium on Integrated Network Management, p. 583, 1997.

30. Hasan, M.Z., Sugla, B., Viswanathan, R., “A Conceptual Framework for
Network Management Event Correlation and Filtering System,” Proceedings
of the Sixth IFIP/IEEE International Symposium on Integrated Network
Management (IM’99), Edt. Edt. M. Sloman, S. Mazumdar, and E. Lupu, (IEEE
Press), to appear in May 1999.

31. Stallings, W., “SNMP, SNMPv2, SNMPv3, and RMON 1 and 2,” (Addison-
Wesley, 1999).

32. Ho, L.L., Macey, C., Hiller, R., in preparation, 1999.

46 L. Lawrence Ho et al.

	Introduction and Algorithmic/System Design
	Algorithms for IP Network/Service Anomaly Detection
	System Architecture and Implementation of NSAD
	An Application and Preliminary Test Results
	Conclusions
	References

