
Programmable Agents for Active

Distributed Monitoring

Ehab S. Al-Shaer

Multimedia Networking Research Laboratory,
School of Computer Science, Telecommunications and Information Systems,

DePaul University,
Chicago, IL 60604

Ehab@cs.depaul.edu

http://www.cs.depaul.edu/Ehab

Abstract. The successful deployment of next-generation distributed sys-
tems is signi�cantly dependent on the e�cient management support that
improves the performance and reliability of these applications at run-
time. This paper motivates and describes a programmable agents ap-
proach for active monitoring as an important attribute for supporting
scalable, highly-responsive and non-intrusive management architecture.
Active monitoring enables de�ning re-con�gurable and self-directed man-
agement tasks that can be modi�ed automatically at run-time in order
to track the system behavior. Based on observed events and users' mon-
itoring demands, monitoring agents can dynamically customize their as-
signed tasks and initiate the appropriate monitoring actions. This avoids
activating unnecessary monitoring tasks and provides a dynamic mon-
itoring operations. The presented system, which is referred to as HiFi,
supports a comprehensive environment including code instrumentation,
user subscription, event �ltering and action service. The paper also shows
monitoring examples that illustrates the application and the e�ectiveness
of active monitoring in managing large-scale distributed systems.

1 Introduction

The next-generation distributed systems are large-scale, resource intensive and
more complex. With the increasing demands of deploying large-scale distributed
(LSD) systems, an e�cient on-line monitoring has become an essential service
for improving the performance and reliability of such complex applications. Ex-
amples of LSD systems include large-scale collaborative distance learning, video
teleconferencing,distributed interactive simulation, and reliable multi-point ap-
plications. In an LSD environment, large numbers of events are generated by
system components during their execution and interaction with external objects
(e.g. users or processes). These events must be monitored to accurately deter-
mine the run-time behavior of an LSD system and to obtain status information
that is required for management operations such as steering applications or per-
forming a corrective action. However, the manner in which events are generated

R. Stadler and B. Stiller (Eds.): DSOM’99, LNCS 1700, pp. 19-32, 1999. 
c Springer-Verlag Berlin Heidelberg 1999



in an LSD system is complex and represents a number of challenges for an on-line
monitoring system. Correlated events are generated concurrently and can occur
from multiple locations distributed throughout the environment. This makes
monitoring an intricate task and complicates the management decision process.
Furthermore, the large number of entities and the geographical distribution in-
herent with LSD systems increases the challenge of addressing important issues,
such as performance bottlenecks, scalability, and application perturbation.

HiFi is an attempt to deliver an active monitoring architecture that explicitly
addresses the challenges and requirements associated with managing large-scale
distributed systems. HiFi active monitoring approach supports dynamic and au-
tomatic customization for management operations as a response to changes in
LSD systems behavior [16, 12]. This is achieved through programmable mon-
itoring agents that re-direct their monitoring activities on-the-
y upon users'
requests or based on the information (events) collected during the monitoring
operations. For instance, instead of monitoring all events and processes in the
system, the agents monitor a subset of events/processes and the monitoring
activities expand based on the information of the generated events. Therefore,
active monitoring reduces the monitoring space signi�cantly and o�ers a scal-
able management architecture. The monitoring intrusiveness is also minimized
because this architecture enables initiating few monitoring tasks (targets) at the
proper time. In addition, HiFi active monitoring enables the agents react spon-
taneously (e.g., corrective actions) which improves the management operations
response time compared with human-in-the-loop model [13].

A number of monitoring approaches and systems for monitoring distributed
systems have been proposed (e.g., [5, 9{11, 13{15]). Although some of these sys-
tems provide mechanisms for modifying the monitoring requests dynamically,
these mechanisms are manual and insu�cient to support a programmable or
self-directed monitoring tasks (actions) as described in this paper. In addition,
they do not support a scalable and �ne grain event �ltering mechanism which
is signi�cant for monitoring \large-scale" distributed systems such as Internet-
based applications. This paper is organized as follows: Section 2 explains the
monitoring model and language speci�cations; Section 3 gives an overview of
HiFi monitoring architecture and process; Section 4 describes our active moni-
toring approach and its impact on the management process; Section 5 presents
an application example of using HiFi monitoring system for steering distributed
reliable multicast protocols; and Section 6 presents the summary and concluding
remarks.

2 Monitoring Model

In order to present a complete abstraction of the active monitoring architec-
ture, our work must include modeling the application behavior, the monitoring
demands, and the monitoring mechanism with considering the design objec-
tives presented in Section 1. The program behavior can be expressed in a set of
events revealed by the application during execution. In our monitoring model,

20 Ehab S. Al-Shaer



R: Filter Reincarnation
S: SubscriptionDirect ActionA:Event FlowE:

Forwarding informationF:

R

Event

Action Filter

Monitoring System
Network

consumer

Manual Recovery Path

Automatic Recovery Path

producer

producer

producer
consumer/

S

producer

consumer

consumer

producer

S

E

E

E

S

F

E

A

S
A

E

Application Steering Path

Fig. 1. Monitoring Model

we call the monitored programs event producers which continuously emit events
that express the execution status. An event is a signi�cant occurrence in a sys-
tem that is represented by a noti�cation message which typically contains event
characteristics such as event type and event source. We classify two types of
events used in our model: primitive events which are based on a single noti�ca-
tion message, and composite events which depend on more than one noti�cation
message. In the monitoring language, the event format (noti�cation) is a vari-
able sequence of event attributes determined by the user but it has a �xed header
used in the monitoring process. An event attribute is a predicate that contains
the attribute name which typically represents a variable in the producer (i.e,
program) and a value. The event format also determines the type of event sig-
naling: Immediate to forward the generated event immediately, or Delayed to
allow bu�ering or batching events in the producer before sending them. Table 1
shows the High-level Event Speci�cation Language (HESL) in BNF. This event
abstraction enables consumers (1) to specify any arbitrary event format in a
declarative way, and (2) to construct a complex (multi-level) abstraction of a
program behavior using composite events. In addition, the event abstraction en-
ables the consumers/users to assign values to the event attributes and does not
require specifying attribute type (e.g., int, float or string). This provides
a simpler interface than CORBA IDL [9]. We call the monitoring objects (e.g.,

21Programmable Agents for Active Distributed Monitoring      



<Event> ::= EVENT = <Event Body>.
<Event Body> ::= <Prim Event> j <Comp Event>
<Prim Event> ::= f<Fix Att> ; <Var Att>g <Event Name>
<Comp Event> ::= (<Prim Event> <Event Op> <Comp Event> ) j

(<Prim Event> <Event Op> <Prim Event> )
<Fix Att> ::= ModuleName = <String>,

FuncName = <String>, <Report Mode>
<Report Mode> ::= Immediate j Delayed
<Var Att> ::= <Predicate> , <Var Att> j <Predicate>
<Predicate> ::= <Att Name> <Relation> <Value>
<Event Op> ::= ^ j _ j �
<Relation> ::= < j > j = j 6= j � j �
<Value> ::= <Number> j <String>
<Event Name> ::= <Att Name> ::= <String>

Table 1. High-level Event Speci�cation Language (HESL)

human or software programs) event consumers since they receive and present
the forwarded monitoring information. The consumers specify their monitoring
demands via sending a �lter program via the subscription process which con�g-
ures the monitoring system accordingly (see Figure 1). The monitoring opera-
tion is an event-demand-driven model. In other words, the producer behavior
is observed based on the event generated (event-based) and on the monitoring
requests (subscription-based). Therefore, as illustrated in Figure 1, events re-
ceived in the monitoring system are classi�ed based on exiting �lters. If an event
is detected, the action speci�ed in the �lter is performed such as forwarding the
monitoring information to the corresponding consumers. The �lter and action
speci�cation is described in Section 4.

3 Overview of HiFi Monitoring Architecture

HiFi employs a hierarchical event �ltering-based monitoring architecture to dis-
tribute the monitoring load in application environment. Based on a user's mon-
itoring requests, the monitoring system determines the appropriate agent or set
of agents within the hierarchy to be tasked with inspection and evaluation of
application events. The monitoring system uses �ne grain decomposition and
allocation mechanisms to ensure that �ltering tasks are e�ciently distributed
among the monitoring agents and prevent events propagation in the network.
Since our focus in this paper is on the programmable monitoring environment
in HiFi, we give a brief overview of the HiFi system and refer to [2{4] for more
details.

Hierarchical Monitoring Agents: In HiFi monitoring system, the task of
detecting primitive and composite events is distributed among dedicated moni-
toring programs calledmonitoring agents (MA). MA is an application-level mon-
itoring program that runs independently of other applications in the system and

22 Ehab S. Al-Shaer



DMA

DMA

DMA

DMA

LMALMA

DMA DMA

DMAroot

LMALMA

DOMAINDOMAIN
MachineMachineMachineMachine

L
M

A
G

rp
D

M
A

G
rp

M
G

R
G

rp
(E

ve
n

t 
C

on
su

m
er

s)
E

ve
n

t 
P

ro
d

u
ce

rs

DMA
Comm

Mgr Mgr Mgr

Fig. 2. Hierarchical Filtering-based Monitoring Architecture

that communicates with the outside world (including producers and consumers)
via message-passing. HiFi has two types of MAs: local monitoring agents (LMA),
and domain monitoring agents (DMA) (see Figure 2). The former is responsible
of detecting primitive events generated by local applications in the same machine
while the latter is responsible of detecting composite events which are beyond
the LMA scope of knowledge. One or more producer entities (i.e., processes) are
connected to a local LMA in the same machine. Every group of LMAs related
to one domain (geographical or logical domain) is attached to one DMA. These
DMAs are also connected to higher DMAs to form a hierarchical structure for
exchanging the monitoring information. Because of the di�erent roles of LMA
and DMA, LMAs use Direct Acyclic Graph (DAG) [6], however, DMAs use Petri
Nets (PN) in order to record and track the event history [7].

Subscription Process: The monitoring process starts by a consumer sending
a �lter program that describes the monitoring request to the local MA. The �lter
is validated and decomposed into sub�lters (e.g. F1,..,Fn) using the decomposi-
tion algorithms in such a manner that each one represents a primitive event [3].
Then, each decomposed sub�lter is assigned to one or more LMAs using the

23Programmable Agents for Active Distributed Monitoring      



<Filter> ::= FILTER = <Filter Body>
<Filter Body> ::= [<Event Expr>]; [<Filter Expr>]; [<Actions>];

<Filter Name>.
<Event Expr> ::= ( <Event Name> <Event Op> <Event Expr> )

j <Event Name>
<Filter Expr> ::= ( <Predicate> <Filter Op> <Filter Expr> )

j <Predicate> j TRUE
<Predicate> ::= ( <Pred Att> <Relation> <Pred Att> )

j ( <Pred Att> <Relation> <Value> )
<Pred Att> ::= <Event Name>.<Att Name>
<Filter Op> ::= <Event Op>
<Actions> ::= <Action> ; <Actions>
<Filter Name> ::= <Program Name> ::= <String>

Table 2. High-level Filter Speci�cation Language (HFSL)

allocation algorithms based on the event sources and application distribution.
Decomposition and Allocation algorithms are described in [3]. The monitoring
system also determines the proper DMAs for evaluating the event and the �lter
expression of the �lter program. When MAs receive delegated monitoring tasks
(sub�lters) [8], they con�gure themselves accordingly by inserting this sub�lter
in the �ltering internal representation which is a direct acyclic graph (DAG) for
LMAs and Petri Nets (PN) for DMAs [4]. This architecture alleviates any per-
formance bottlenecks or scalability problems by distributing the monitoring load
among MAs and limiting the events' propagation to the originating sources [3].

4 Techniques for Active Monitoring

The main goal of active monitoring is to o�er dynamically customizable moni-
toring tasks. This provides a 
exible management infrastructure that scales very
well with number of producers and causes a minimal overhead in the application
environment. In addition, active monitoring, in HiFi, reduces the monitoring la-
tency by supporting an automatic monitoring customization performed by MAs
without the users involvement. In this section, we present several techniques
developed in HiFi in order to support a programmable agents environment for
active monitoring. We also describe the impact of these techniques on improving
scalability and performance of HiFi.

4.1 Filter-based Programmable Monitoring Agents

Users (or event consumers) describe their monitoring demands via programs
called �lters submitted to the monitoring system at run-time. A �lter is a set of
predicates where each predicate is de�ned as a boolean-valued expression that
returns true or false. Predicates may be joined by logical operators (such as
AND and OR) to form an expression. In our model, the �lter consists of three
major components: the event expression which speci�es the relation between
the interesting event, �lter expression which speci�es the attributes value or the

24 Ehab S. Al-Shaer



relation between the attributes of di�erent events, and the action to be performed
if both event and �lters expressions are true. Table 2 shows the High-level Filter
Speci�cation Language (HFSL) in BNF.

Consumers may add, modify or delete �lters on-the-
y through the subscrip-
tion service component [3]. When a consumer performs �lter subscription, the
monitoring agents re-con�gure itself accordingly by updating their internal �l-
tering representation [4]. HiFi uses the subscription protocol, described in [2],
to maintain state consistency and synchronize the monitoring agents. The �lter-
based programming abstraction enables the consumers to describe the expression
relation not only between the events but also between the attributes of di�erent
events as well. This improves the expressive power of the monitoring language,
and permits �ne-grain �ltering based on regular expressions.

Example (1): Assume agents have been con�gured through �lter to detect any
AudioWarning or VidWarning events generated from Audio and Video processes,
respectively. Consumers can re-program or re-con�gure the MAs at run-time to
detect only the event correlation between these two events such that they are
both generated by the same machines via sending the following �lter.

FILTER= [(AudioWarning ^ V idWarning)];

[(AudioWarning:Machine=V idWarning:Machine)];

[FORWARD]; Warnings Correlation Filter.

After decomposing and allocating this �lter, the DMA will only forward
Audio and Video warning events that are generated by the same machine. Con-
sumers can also delete (deactivate) or modify (re-activate) existing �lters using
DEL and MOD in the action part (see Table 3). In addition, the programming
environment permits consumers to overload the attributes values in the events
in order to create a di�erent event instance in the �lter program.

4.2 Event Incarnation

Actions in the monitoring model can be simply executing a program (local or
remote) or forwarding the detected event to the corresponding consumers which
are both necessary for automatic fault recovery and application steering, re-
spectively. In order to improve the dynamism and the expressive power of the
monitoring system, the model provides more complex actions: a new event or a
new �lter. In HiFi, generating new events as an action is called event incarna-
tion. This feature improves the expressive power, performance and usability of
the active monitoring system as follows:

{ The event-�lter-action programming model (see Figure 1) enables the con-
sumer to activate a sequence of monitoring operations (�lters and actions)
automatically and without the human involvement. In addition, generating
new events (as an action) may trigger other �lters that are necessary to track

25Programmable Agents for Active Distributed Monitoring      



<Action> ::= <Exec> j <Event Name> j <Filter Rinc> j <Filter Registers> j FORWARD
<Exec> ::= <Path Name> <Program Name>
<Path Name> ::= <String> / <Path Name> j <String> /
<Filter Register> ::= <Identi�er> = <Event Name>.<Att Name>
<Filter Registers> ::= <Filter Register> j <Filter Register>;<Filter Registers>;
<Filter Reinc> ::= ADD <Filter Name>; <Filter Reinc> j ADD <Filter Name> j

DEL <Filter Name>; <Filter Reinc> j DEL <Filter Name> j
MOD <New Filter>; <Filter Reinc> j MOD <New Filter> ;

<New Filter> ::= <Filter Name>.EX= <Event Expr> j <Filter Name>.FX= <Filter Expr> j
<Filter Name>.EX= <Event Expr>; <Filter Name>.FX= <Filter Expr>

Table 3. High-level Action Speci�cation Language (HASL)

the observed problem. For example, a failure that occurs in a producer (pro-
cess) as a result of abnormal close of a communication connection (primitive
event) may involve two actions: failure recovery and sending a new event in
order to diagnose this failure further (e.g., checking memory usage). Based
on this event, new actions (e.g., recovery procedures) could be performed.

{ A new event could be an \aggregate" event that summarizes the information
of multiple (composite). This reduces event tra�c and avoid event report
implosion in the monitoring environment. For example, an aggregate event
may convey the average drop rate of a set of receivers. Section 5 shows how
this aggregate event is useful for monitoring reliable multicasting.

{ Performing an action such as executing a program may change the state of a
running program. Therefore, sending an event that reveals the state change
to the monitoring system is important to allow re-observing the behavior,
and attaining stability in automatic application steering.

4.3 Filter Incarnation

In addition to the user (manual) re-con�guration via dynamic users subscription
(described in Section 3), HiFi active monitoring also supports programmable
agents that re-con�gure themselves automatically based on events occurrences.
An action can be a �lter manipulation (typically, adding a �lter, deleting a
�lter, and modifying a �lter). For example, another new �lter can be activated
in the monitoring environment as a result of detecting an event. We call this
�lter incarnation (see Figure 1) because a �lter may add, delete or modify a new
�lter in the system. Filter incarnation is de�ned in Table 3 of the monitoring
language. Adding a new �lter means activating a pre-de�ned �lter that has
not been submitted to the system. This is speci�ed in the monitoring language
using a special reserved word (ADD) with the pre-de�ned �lter name. On the
other hand, deletion or modi�cation must be performed on an existing �lter for
which consumers subscribed. This is speci�ed using the reserved words, MOD and
DEL, with an active �lter name. When modifying an active �lter, consumers must
specify which parts to modify: event expression (EX), �lter expression (FX), or
both. This can be designated by appending the �lter name as a pre�x to EX

26 Ehab S. Al-Shaer



and/or FX. The resulting EX and/or FX are the e�ective �lter parts after the
subscription is completed.

Filter incarnation enables users to de�ne \general" monitoring tasks that
can be automatically customized by agents at run-time to diagnose speci�c sys-
tem behavior such as failures or performance bottlenecks. This also avoids over-
whelming the system by a large number of \static" (hardwired) monitoring tasks
to observe a large number of system activities. Therefore, consumers can monitor
subset of events and request modifying (changing or expanding) the monitoring
scope to include other events and processes whenever certain event patterns are
detected. In the following, we describe various applications of �lter incarnation
in active monitoring.

Adding/Deleting Filters for controlling monitor timing: Consumers can
specify start and end times for any given monitoring activity based on events.
In other words, consumers can specify to start/stop a trace activity when a cer-
tain event (primitive or composite) is detected. This minimizes the monitoring
overhead and produces concise traces.

Example (2): Assume a consumer wants to monitor the drop rate in the \re-
ceiving" events (RecvEvent) of bar program only when the transmission rate
in the \transmission" event (TransEvent) of foo program drops below a certain
threshold (STHRESHOLD). In this case, the consumer can specify a �lter (Mon-
itorSender) that monitors the \transmission" events of foo and triggers another
�lter (MonitorReceiver) that monitors bar \receiving" events, if the transmission
rate drops below the threshold. The �lters example is shown below.

FILTER= [(TransEvent)];

[(TransEvent:ModuleName= \foo" ^ TransEvent:transrate < STHRESHOLD)];

[ADD MonitorReceiver]; MonintorSender:

FILTER= [(RecvEvent)];

[(RecvEvent:ModuleName = \bar" ^ RecvEvent:droprate > RTHRESHOLD)];

[FORWARD]; MonintorReceiver:

The MonitorReceiver �lter monitors \receiving" events (RecvEvent) from foo
and forwards events to consumers if the drop rate exceeds the threshold. Simi-
larly, the MonitorReceiver �lter can be deactivated (Deleted) based on changes
in the drop rate in TransEvent. This permits activating/deactivating Monitor-
Receiver �lter automatically and at the proper time which minimizes the moni-
toring perturbation in the application environment.

Modifying Filters Speci�cations: Usually, monitoring tasks are static and
de�ned prior to any monitoring operation. However, using �lter incarnation,
the �lter speci�cations can be determined during the monitoring process itself
based on event patterns and information. For this purpose, the HASL provides

27Programmable Agents for Active Distributed Monitoring      



a set of virtual registers called �lter registers that consumers can use for load-
ing/restoring variables in/from the monitoring agents. These registers are used
by MAs to store attribute values of received events. Consumers can simply as-
sign the attribute value of an event used in EX or FX to a �lter register and
vice versa for this purpose.

Example (3): For example, consumers may want to generate an event trace
(or history) for processes that have produced at least one security warning event
(WarningEvent). In this case, the module name is not known to the monitoring
system at trace speci�cation time. Therefore, the monitoring system must de-
termine the module name during the monitoring operations. This is achieved by
using �ler registers to save and restore the event information. In the following,
the DynamicErrorTrace is the �lter speci�cation for this example. Notice that
ThisMod is a �lter register that restores the module name, ModuleName, after
the occurrence of WarningEvent of type SECURITY. Then, the �ler incarnation
is used to modify the expression of TraceProcess �lter so that the modi�ed �lter
executes the new trace speci�cations.

FILTER= [WarningEvent];

[(WarningEvent:ModuleName =\ANY" ^ WarningEvent:Type= \SECURITY")];

[ThisMod =WarningEvent:ModuleName;

MOD TraceProcess:FX = (AnyEvent:ModuleName = ThisMod)]; DynamicErrorTrace:

FILTER= [AnyEvent];

[(AnyEvent:ModuleName = \ANY")];

[FORWARD]; TraceProcess:

The TraceProcess is a \generic" �lter that monitors and forwards all events
from any module to the corresponding consumers1. However, this general �l-
ter/task is modi�ed by DynamicErrorTrace �lter to perform a special customized
monitoring operation. Therefore, this technique enables activating/deactivating
the appropriate monitoring operations (or �lters) at the right time (event), and
thereby relieving the system environment from the overhead of launching mul-
tiple �lters or monitoring requests simultaneously. It also reduces the moni-
toring latency since the monitoring agent can react spontaneously without the
consumers intervention. Moreover, the �lter incarnation feature provides an ex-
tendible programming environment utilizing the power of the recursive event-
�lter-action model as shown in Section 5.

5 Active Monitoring of Distributed Multi-point

Applications

The HiFi monitoring system is used in a number of applications such as applica-
tion steering, fault recovery and debugging of distributed multimedia systems.

1 \ANY" is a language keyword that means any string value.

28 Ehab S. Al-Shaer



In this section, we present an example of using HiFi for monitoring and steer-
ing Reliable Multicast Server (RMS) [1]. One of the known problems in reliable
multicasting, is the e�ect of slow members (e.g., machines) in group communi-
cation. A machine is described as a slow machine if its receiving rate is \much"
less than the other members in the group. In this case, a slow machine could
typically slow down the communication of the entire group because the sender
transmission rate, in RMS, eventually adapts to the rate of the slowest receiver.
Developing a solution for slow members in multicast groups is beyond the focus
of this paper. However, the e�ective use of HiFi active monitoring is presented
in the dynamic discovery of slow members (machines) during a multicast ses-
sion and the automatic feedback to the RMS senders which make the proper
steering management decision accordingly. The criteria of slow members is de-
�ned based on the user speci�cations. For example, the user (or manager) may
de�ne a slow member whose performance is below a certain threshold. In our
example below, the RMS sender acts as a manager and sends the threshold
information. Figure 3 shows the event (HESL) and the �lter (HFSL) speci�ca-
tions used to discover slow members in multicast groups. Each RMS receiver is
instrumented (using HiFi) to send McastRec event that contains the machine
name, the domain name, the group name, total bytes received (KBrec), and
number of NACKs scheduled (NackSch) 2. Because of NACK suppression mech-
anism [1], the number of NackSch gives more accurate estimation of the drop
rate than number of Nacks sent. The McastRec event is sent periodically based
on time limit or maximum number of bytes received. And the RMS senders send
McastSend to indicate two things: the transmission rate (TransRate), and the
drop rate threshold (threshold) for receivers in the group. The TransRate is �rst
checked by MonMcastSender �lters to determine if the \slow members" mon-
itoring activity should be started. If TransRate is below the STHRESHOLD,
then the Slow Memebers �lter is modi�ed to use the GrpName stored in the
�lter register as described in Section 4. This also activates the Slow Memebers

�lter that compares the NackSch in McastRec and threshold in McastSend to
identify slow members. However, because the threshold value is dynamic and
may be determined from the overall performance of the participants, another
�lter (Update Threshold) is used to provide a feedback on the overall drop rate
average to senders which consequently re-adjust the threshold value accordingly.
Each LMA forwards McastSend and McastRec primitive events to its DMA that
evaluates the �lter expression upon receiving both events. The second �lter,
Slow Members, waits to receive one McastSend and McastRec events from all
LMAs in the domain. Then, the �lter expression is evaluated. The ctr and
LMAs are HiFi reserved key words and used to denote the number of the event
occurrences and the number of LMAs in the domain, respectively. The �lter
expression evaluates to true if all RMS receivers in the domain send McastRec

event from the indicated group name (GrpName) and the NackSch of one re-
ceiver or more is higher than the threshold. If the �lter expression becomes true,
then three actions are performed: (1) the average scheduled Nacks for receivers

2 NackSch = Number of NacksSent+Number of NacksCancelled

29Programmable Agents for Active Distributed Monitoring      



EVENT= f ModuleName=RMS,FuncName=McastSend,Immediate; Machine=\ANY",
Domain=\ANY", GrpName=\ANY", TransRate=ANY, threshold= ANY g
McastSend.

EVENT= f ModuleName=RMS,FuncName=McastRecv,Immediate; Machine=\ANY",
Domain=\ANY", GrpName=\ANY", KBrec= ANY, NackSch=ANY g McastRec.

EVENT= f ModuleName=DMA,FuncName=ANY,Immediate; Machine=\ANY",
Domain=\ANY", KBrec= ANY, NackSch=ANY g DomAVG.

FILTER= [McastSend];
[McastSend.TransRate < STHRESHOLD];
[ThisGrp=GrpName; MOD Slow Memebrs:FX=(McastRec.GrpName=ThisGrp);
ADD Update Threhold]]; MonMcastSender:

FILTER= [(McastSend ^McastRec)];
[(McastRec: ctr = LMAs ^ McastRec:GrpName = \*") ^
McastRec:NackSch > McastSend:threshold)];
[CalcAvg;DomAVG; FORWARD]; Slow Memebrs:

FILTER= [DomAV G];
[DomAV G: ctr = DMAs];
[UpdateThrehold; McastSend]; Update Threhold:

Fig. 3. Active Monitoring Example of Reliable Multicasting.

in same domain is calculated (CalcAVG), (2) the DomAVG, which represents an
aggregate (summary) event, is sent to the containing DMA to reveal the domain
average, (3) the McastRec event that matches the slow member criteria rep-
resented in the �lter expression (i.e., NackSch < threshold) is forwarded to the
manager (RMS sender). The third �lter, Update Threshold, receives the DomAVG
events from the DMAs and then calculate the total NackSch average, update
the threshold and send the McastSend with new threshold to the LMAs/DMAs
again. This �lter can be a DMA task, instead of RMS senders. However, users
must provide the action UpdateThreashold to this DMA which then can take care
of updating the threshold dynamically while the RMS senders can take care of
managing slow members problem. Since senders or receivers could be members
in various multicast groups, the group name (GrpName) is used to limit the slow
members monitoring activities (�lters) on the multicast groups that su�ers from
this problem. Similarly, another �lter can be used to deactivate Slow Memebers

�lter when the TransRate becomes less then STHRESHOLD. In other words,
the slow members �lter can activated and deactivated dynamically based on the
condition of the multicast group.

The slow members and NackSch average information are collected from each
receiver via LMAs and then combined and propagated in hierarchical fashion via
DMAs to the RMS of the sender. In addition to the dynamic feedback service
o�ered in this example, this mechanism is scalable because it avoids the noti�ca-
tions implosion that may occur when McastRec are forwarded to one RMS sender

30 Ehab S. Al-Shaer



R: McastRec Event

S: McastSend Event

D: DomAVG Event

V: CalcAvg action

U: UpdateThreshold Action

F: Forwards Event Action

D

_DMAs
 S

U

V

F

S

R
_LMAs

R.NackSch >  S.threshold

Fig. 4. The PN Filter Representation in HiFi Monitoring Agents.

from group of receivers. Furthermore, distributing the processing load such as
calculating the average drop rate contributes to the monitoring performance.

6 Conclusion and Future Work

This paper describes a novel architecture for supporting active distributed moni-
toring. The monitoring system, called HiFi, uses a hierarchical monitoring agents
architecture that distributes the monitoring load and limits the event propaga-
tion. The monitoring agents are programmable and can be recon�gured manually
through users' interactions at run-time or automatically by the agents themselves
based on the information of the detected events. Users utilize a simple language
interface, called �lter, to de�ne their monitoring demands and associated ac-
tions. Users can also specify \general" monitoring tasks that can be customized
automatically by the monitoring agents to perform specialized monitoring op-
erations. We developed several techniques to support an e�cient programmable
agents environment for active monitoring. This includes event incarnation to
enable event-�lter-action programming model, �lter incarnation and �lter regis-
ters to enable automatic modi�cations and self-directed monitoring operations,
and dynamic subscription that enables users to add, delete or modify their re-
quests at run-time. We demonstrate an example of using HiFi for monitoring
and steering a reliable distributed multicast server (RMS). This active monitor-
ing architecture o�ers signi�cant advantages in the scalability and performance
of the monitoring systems. It also enables consumers to control the monitoring
granularity, and thereby minimizing its intrusiveness.

Although HiFi is developed and used in real-life applications, it remains a
prototype monitoring system. Many open issues remain to be addressed in the
HiFi research plan. These include improving the �lter incarnation mechanism

31Programmable Agents for Active Distributed Monitoring      



to provide higher abstraction such that users can specify the ultimate monitor-
ing target without having to specify intermediate monitoring tasks, integrating
system and network management, and extending the monitoring language to
support temporal event relations.

References

1. Al-Shaer, E., Abdel-Wahab, H., Maly, K.: Application-Layer Group Communica-
tion Server for Extending Reliable Multicast Protocols Services. IEEE Int. Con-
ference on Network Protocols. 10 (1997) 267{274

2. Al-Shaer, E., Abdel-Wahab, H., Maly, K.: Dynamic Monitoring Approach for
Multi-point Multimedia Systems. International Journal of Networking and Infor-
mation Systems, Vol. 2. 6 (1999) 75{88

3. Al-Shaer, E., Abdel-Wahab, H., Maly, K.: HiFi: A New Monitoring Architecture
for Distributed System Management. Proceedings of International Conference on
Distributed Computing Systems (ICDCS'99). 5 (1999) 171{178

4. Al-Shaer, E., Fayad, M., Abdel-Wahab, H., Maly, K.: Adaptive Object-Oriented
Filtering Framework for Event Management Applications. To appear in ACMCom-
puting Surveys.

5. Alexander, S., Kliger, S., Mozes, E., Yemini, Y., Ohsie, D.: High Speed and Robust
Event Correlation. IEEE Communication Magazine. 5 (1996) 433{450

6. Bailey, M.L., Gopal, B., Pagels, M.A., Peterson, L., Sarkar, P.: PathFinder: A
Pattern-Based Packet Classi�er. USENIX Symposium on Operating SystemDesign
and Implementation. 11 (1994) 24{42

7. Gatziu, S., Dittrich, K.R.: Detecting Composite Events in Active Database Systems
Using Petri Nets. Int. Workshop on Research Issues in Data Engineering: Active
Database Systems. 2 (1994) 2{9

8. Goldszmidt, G., Yemini, S., Yachiam, Y.: Network Management by Delegation -
the MAD approach. CAS Conference. (1991) 347{359

9. Object Management Group. The Common Object Request Broker: Event Service
Speci�cation, Tech. Rep. CCITT X.734/ISO 10164-5. (1993)

10. Joyce, J., Lomow, G., Slind, K., Unger, B.: Monitoring Distributed Systems. ACM
Transactions on Computer Systems, Vol. 5. (1987) 121{50

11. Marzullo, K., Cooper, R., Wood, M.D., Birman, K.P.: Tools for distributed Appli-
cation Management. IEEE Computer, Vol. 24. 8 (1991) 42{51

12. Merwe, J.V.D., Rooney, S., Leslie, I., Crosby, S.: The tempest: A practical frame-
work for network programmability. IEEE Network Magazine. 6 (1998)

13. Parulkar, G., Schmidt, D.C., Kraemer, E., Turner, J., Kantawala, A.: An architec-
ture for monitoring, visualization, and control and gigabit networks,. IEEE Net-
work Magazine, Vol. 11, 10 (1997) 32{38

14. Schroeder, B.: On-line Monitoring: A Tutorial. IEEE Computer, Vol. 28. 6 (1995)
72{78

15. Sloman, M. editor. Network and Distributed System Management. Addison-Wes-
ley, Reading, Massachusetts (1994)

16. Tennenhouse, D.L., Smith, J.M., Sincoskie, W.D., Wetherall, D.J., Minden, G.J.:
A Survey of Active Network Research. IEEE Communications Magazine, Vol. 35.
1 (1997) 80{86

32 Ehab S. Al-Shaer


	Introduction
	Monitoring Model
	Overview of HiFi Monitoring Architecture
	Techniques for Active Monitoring
	Filter-based Programmable Monitoring Agents
	Event Incarnation
	Filter Incarnation

	Active Monitoring of Distributed Multi-point Applications
	Conclusion and Future Work
	References

