Virtual Active Networks — Safe and Flexible
Environments for Customer-Managed Services

Marcus Brunner! and Rolf Stadler?

]Computer Engineering and Networks Laboratory, TIK
Swiss Federal Institute of Technology Zurich (ETH)
Gloriastr. 35, CH-8092 Zurich, Switzerland
E-Mail: brunner @tik.ee.ethz.ch

2Center for Telecommunications Research (CTR)
and Department of Electrical Engineering
Columbia University, New York, NY 10027-6699
E-Mail: stadler@ctr.columbia.edu

Abstract. Recent research has demonstrated the benefits of active networks:
customized network services can easily be built and modified, packet streams
can be processed inside the network, etc. This paper addresses the question how
the benefits of active networking can be exploited in a telecom environment,
where a large number of customers must share a common network infrastruc-
ture. We introduce a framework that allows customers to deploy and manage
their own active services in a provider domain. The key concept in this frame-
work is the Virtual Active Network (VAN). A VAN is a generic service, offered
by the provider to the customer. From the customer’s point of view, a VAN rep-
resents an environment on which the customer can install, run and manage active
network services, without further interaction with the provider. From the pro-
vider’s perspective, the VAN serves as the entity for partitioning the provider’s
resources and isolating customers from one another in virtual environments. We
describe how the VAN concept, VAN management, and customer service man-
agement is realized on ANET, an active networking testbed.

Keywords. Management of Active Networks, Service Provisioning, Service
Management, Active Network Testbeds

1 Introduction

In today’s telecom environments, customers and service providers typically interact
via two interfaces--the management interface and the service interface. The manage-
ment interface, based on standardized management protocols, is generally used for ser-
vice provisioning and service management. The customer accesses the service through
the service interface. Both interfaces are service specific; a provider has to support dif-
ferent service and management interfaces for each service offered, which makes the
introduction of new services dependent on standardization, and therefore time consum-
ing and expensive.

The introduction of active networking technology in telecom environments, character-
ized by the use of active networking nodes as network elements, will change the role of
these interfaces in two ways. First, using active networking nodes enables the defini-
tion of a generic service interface for network services, based on the concept of active

R. Stadler and B. Stiller (Eds.): DSOM’99, LNCS 1700, pp. 195-210, 1999.
(© Springer-Verlag Berlin Heidelberg 1999

196 Marcus Brunner and Rolf Stadler

packets (see Section 2). In addition, this service interface can be used by the customer
for service management interactions, i.e., for operations related to the installation,
supervision, upgrading and removal of a specific service. Therefore, service manage-
ment operations can be performed by a customer without interaction with the pro-
vider’s management system. Second, the management interface, i.e., the interface
through which the customer and the provider management systems cooperate, can be
restricted to the task of service provisioning. Similar to the service interface, the man-
agement interface can be kept generic; it relates to a generic service abstraction that
allows for installing and running a large class of network services.

The introduction of active networking technology, where network nodes perform custom-
ized processing of packets, will change both types of interactions described above. The
granularity of a service abstraction and its related control capabilities can be chosen,
ranging from a very limited, constrained service model to a very detailed one. The key
concept that provides this capability is the Virtual Active Network (VAN), which is the
focus of this paper. In the same way as an active network can be understood as a gener-
alization of a traditional network, a VAN can be seen as a generalization of a tradi-
tional Virtual Private Network (VPN). Similar to a VPN, a VAN can be used by a
customer to run active networking services, using a provider’s networking resources.
In contrast to a traditional VPN, however, a VAN gives a customer a much higher
degree of controllability. Further, the VAN concept supports rapid installation and
upgrade of customer-specific active network services in a telecom environment.

The paper is organized as follows. Section 2 briefly reviews the concept of active net-
working. Section 3 outlines our framework for customer-provider interaction in an
active telecom environment, i.e., an environment that is based on active networking
technology. Section 4 introduces the VAN concept, and Section 5 gives aspects of
VAN provisioning. Section 6 describes an active networking platform we have built for
experimenting with active networking concepts and shows how VAN provisioning and
customer-controlled service management is realized on our platform. Section 7 sur-
veys current efforts on active technologies for network management. Section 8 sum-
marizes the contributions of this paper and gives an outlook on further work.

2 The Concept of an Active Network

The processing of packets (or cells) inside traditional networks is limited to operations
on the packet headers, primarily for routing purposes. Active networks break with this
tradition by letting the network perform customized computation on entire packets,
including their payloads. As a consequence, the active network approach opens up the
possibilities of (1) computation on user data inside the network and (2) tailoring of the
packet processing functions in network nodes according to service-specific require-
ments.

Active networks transport active packets [1] (also called capsules [2]). Active packets
carry programs, in addition to data. A network node executes such a program, which
possibly modifies the nodes’ state and possibly generates further active packets to be
sent over the outgoing links. Specifically, an active packet can include a program that
modifies or replaces the nodes’ packet processing function.

Virtual Active Networks - Safe and Flexible Environments 197

Similar to traditional networks, an active network consists of active network nodes,
which are connected via links. In addition to transmission bandwidth, the key
resources of an active network node include memory and CPU resources for process-
ing active packets.

Physical

Physical Virtual In-Port Virtual Out-Port
Ports

Execution
Environment N

Execution
Environment 1 Multiplexing
Outgoing
Packets

—<> Demultiplex
Incoming

Packets
/ Access l Schedu}e
Execution
control
T T Cerv)

Storage Active Network Node

Figure 1: Active Node Architecture

Figure 1 gives a model of an active network node. The basic functions of such a node
are (1) the control of the incoming packets, (2) the control of the outgoing packets, (3)
packet processing, and (4) memory access. An active network node runs several Exe-
cution Environment in parallel. Each active packet arriving at a physical port contains
an identifier of the Execution Environment that will process this packet.

Figure 1 also illustrates that an active network node can be seen as a generalization of
traditional network node, such as an IP router. An IP router is limited in the sense that
there is only one Execution Environment and a single set of pre-installed functions for
packet processing.

A different view of an active network node is given in Figure 5, which stresses operat-
ing system aspects. This figure is specialized for a provider-customer environment
where each customer service is run in a separate Execution Environment.

3 Customer-Provider Interactions in Active Telecom Environments

3.1 Interactions in Traditional Environments

Figure 2 shows the interaction taking place between a customer domain and a provider
domain for the purpose of service provisioning, service delivery, and service manage-
ment. Depending on the type of service, customers and providers interact in two funda-
mentally different ways. The first way is characterized by a provider offering
functionality in its domain through a service interface. A typical example of such a ser-
vice is a virtual network, e.g., a Virtual Path (VP)-based service, which is purchased by
a customer with geographically separated premises networks in order to construct a

198 Marcus Brunner and Rolf Stadler

company-wide enterprise network. In the provisioning phase, the customer negotiates
the connectivity and resources of the service, i.e., the virtual network topology and the
quality of service (QoS) requirements. (A customer may request a set of constant bit
rate (CBR) VPs of a certain bandwidth with delay and loss bounds.) This interaction
takes place via the management interface, which interconnects the customer’s and pro-
vider’s management systems, and generally includes communication between human
operators on both sides. The provisioned service can be accessed via the service inter-
face, which corresponds to the user-network interface (UNI) in our example.

Customer Domain : Provider Domain

Customer NMS Managemen} Interface Provider NMS

Service Provisioning !
T

-

! Service Provisioning
T

Service Management B Service Management

+ Service Interface +

Service I {- } I Service
.

Figure 2: Management Interaction in a Traditional Telecom Environment

The second way of interaction shown in Figure 2 relates to the case where a customer
outsources control and management of a specific service to a provider, which installs
and runs the service in the customer domain. In this case, the customer gives the pro-
vider access to its networking elements via management interfaces. The customer is
not involved in service installation, upgrade, and management, but can concentrate on
its core business instead. The provider customizes the service according to the cus-
tomer’s requirements.

3.2 Our Framework for Active Telecom Environments

In an active networking environment, the above described two ways of interactions
between a customer and a provider can be realized in a much more flexible way with
respect to service abstractions and control capabilities for the customer in the pro-
vider’s domain and vice versa. In the following, we outline our framework for interac-
tion in an active networking environment, which we have first proposed in [3].

Figure 3 shows the interaction between a customer domain and a provider domain for
service provisioning, service delivery and service management in our framework.
When comparing Figure 3 with Figure 2, the key differences between a traditional
environment and an active telecom environment that follows our approach become
clear. We propose that the provisioning of a specific (active) network service X is split
into two different operations--a) the provisioning of a generic service, which we call
the VAN service, is performed via the cooperative VAN provisioning interface; and b)
the installation of the specific service X is performed via the generic service interface,
without further interaction with the provider. The same interface is used by the cus-

tomer for managing service X during its lifetime.

Virtual Active Networks - Safe and Flexible Environments 199

Customer Domain Cooperative VAN Provider Domain
Provisioning Interface
Customer NMS 'l Provider NMS
1l
VAN Provisioning |T—‘ ':' ‘—H VAN Provisioning
VAN Z VAN
Management ' Management
Interface ' Interface
Service X Service
VAN Management o Management VAN
Mgt t H ¢ Met
Active Service Genéric Active Service
Service Interface
Active Network . Active Network

Figure 3: Management Interaction in an Active Telecom Environment
that follows the VAN concept

The generic service interface for accessing network services is enabled through the
concept of active packets. It is used for data transport, as well as for all operations
related to the installation, supervision, upgrading and removal of a specific service X.
(See Section 6.2 for an example of service installation and supervision through this
interface).

The cooperative VAN provisioning interface, i.e., the interface through which the cus-
tomer and the provider management systems cooperate, is restricted to the task of VAN
provisioning. VAN provisioning includes negotiating the Virtual Active Network
topology and the resources allocated to the VAN.

Within a domain, a VAN is created, changed, and monitored by the VAN provisioning
system, which interacts via the VAN management interface with the active networking
platform. This interface can be realized using management protocols, such as SNMP
or CMIP, or--by exploiting active networking technology--it can be realized using a
similar interface as the generic service interface. In the latter case, VAN provisioning
via the VAN management interface uses the same techniques as service provisioning
via the generic service interface. (See Section 6.1 for a specific example.) The (local)
VAN management interface for an active network node is given in Section 6.

4 The Virtual Active Network (VAN)

A Virtual Active Network (VAN) can be described as a graph of virtual active nodes
interconnected by Virtual Links. Virtual active nodes are also called Execution Envi-
ronments (EEs), following the terminology of the AN working group [1]. A virtual
active node has resources attached to it in form of processing and memory resources,
provided by the underlying active networking platform. Similarly, a virtual active link
has bandwidth allocated to it. We envision that a single (physical) active node can run
several virtual active nodes belonging to different VANS, and a single (physical) net-
work link can support several Virtual Links for different VANs. (The term Virtual

200 Marcus Brunner and Rolf Stadler

Active Network, as defined in this paper, is also used by other authors with a different
meaning [4].)

Figure 4 shows an active network with five nodes in a provider domain. On this net-
work, two VANSs have been installed, one for customer 1 and one for customer 2. The
figure also shows the Management VAN, interconnecting the Management EEs, which
are used by the provider for VAN provisioning and supervision (see Section 5).

Node A Node E

| Managlnent EE|

Management EE

Management EE

Node B

Management EE

Node D

Figure 4: An active network with nodes A-E, on which VANs for customers 1 and 2
have been installed.

What problem exactly does the VAN concept address and what are its benefits? First,
the VAN provides a generic service abstraction for an active telecom environment.
From a provider’s point of view, the VAN is the entity according to which active net-
work resources are partitioned and according to which the customers, using the pro-
vider’s infrastructure, must be isolated from one another. The VAN is further the (only)
object that is shared between provider and customer, and it is the object of negotiation
between the two parties. Specifically, the provider is not concerned about which spe-
cific service(s) a customer is running on its VAN. The task of the provider is solely to
monitor and police the use of resources on the VAN level and to ensure that the QoS,
as agreed upon between customer and provider, can be guaranteed.

Second, from a customer’s perspective, the VAN concept allows for installation and
management of active network services, without interaction with the provider. (As
mentioned above, all interactions between customer and provider relate strictly to the
VAN.) The customer can run a large variety of active network services on the VAN.

Virtual Active Networks - Safe and Flexible Environments 201

These services are only restricted by the specific Execution Environment(s) the VAN
supports. (Developing Execution Environments for active networks is currently subject
of intensive research. In our work, we base on the current state of the AN working
group [8]). Note that the high degree of customer control over services running in a
provider’s domain, which a VAN provides, is virtually impossible to realize with

dq S6

today’s “traditional” networking technology.

Third, --exploiting a general benefit of active networking-- the VAN concept enables
rapid deployment of new network services. Deploying and upgrading network services
is difficult and time consuming in today’s networks, due to the closed, integrated archi-
tecture of network nodes. With the concept of a VAN, which divides the active network
resources into partitions for different customers, the installation of any customer-spe-
cific service becomes feasible, and, as explained before, it can be accomplished by the
customer alone, without interaction with the VAN provider.

Lastly, customers can run a mix of different network services on a single VAN. This
allows customers to perform dynamic re-allocation of VAN resources to the various
services, according to their own control objectives and traffic characteristics--again,
without interaction with the VAN provider.

As mentioned before, the VAN concept can be compared to that of a Virtual Path (VP)-
based Virtual Private Network (VPN). Similar to a VAN, a VP-based VPN provides
customers with a service abstraction, on which they can run their own services, such an
IP-based data or real-time services. Since a VP is a simple abstraction, a customer’s
ability to control traffic inside the provider’s domain is very limited. (See [19] for a
discussion of this point.) A VAN, on the other hand, is a much more complex abstrac-
tion than a VP, and, consequently, gives customers extensive control capabilities inside
the provider’s domain. In a similar way as dynamic bandwidth provisioning can be
performed in a VP-based VPN [19], we envision that VAN resources can be re-negoti-
ated during the life-time of a particular VAN via the VAN management interface
shown in Figure 3.

5 VAN Provisioning and Supervision

Figure 5 gives an operating system point of view of an active network node in the pro-
vider’s environment. A node operating system layer configures and provides access to
the node’s resources, such as links, processing and memory resources. This layer runs
the Execution Environments, separates them from each other, and polices the use of
the resources consumed by each Execution Environment.

Figure 5 specifically shows the case where a provider offers Virtual Active Networks
to several customers (Customer 1, Customer 2, ..., Customer N). Each customer runs
its service in a separate Execution Environment, which corresponds to a Virtual Node
of the VAN.

A privileged Execution Environment, the Management EE, runs the provider’s VAN
management system, which creates the customer EEs and is able to modify, monitor
and terminate them. The Management EE is accessed by the provider’s VAN provi-
sioning system via the local VAN management interface, which is described in Section
6.

202 Marcus Brunner and Rolf Stadler

Service Service VAN Management
Mgt.
Execution Environment Management EE
~ —~
- // ~ — 7 > ~ \ /
- ~/ ~
—~
- / - 7 ~ ~

Customer N | Provider

Node Operating System

Hardware

Figure 5: Architecture of an Active Network Node in a Telecom Environment

At the beginning of the VAN provisioning phase, the customer and the provider negoti-
ate the topology and the resource requirements for the customer’s VAN. The provider’s
VAN provisioning system then maps the VAN topology onto its active networking
platform and interacts with some of the active nodes via the VAN management inter-
face to create this VAN. By accessing the Management EEs on the active nodes, the
provider sets up EEs for the customer and interconnects them via virtual links, accord-
ing to the VAN topology that has been negotiated with this particular customer.

Note that the design given in Figure 5 is compliant with the architecture of an active
network node developed by the AN Working Group [1]. The difference between Fig-
ure 5 and [8] is that we explicitly assign each Execution Environment to a particular
VAN, i.e., to a particular customer.

6 Realizing VAN Provisioning and Management on the
ANET Platform

We have built an active networking platform, in order to test, evaluate and demonstrate
active networking services and management concepts. The core of this platform con-
sists of a cluster of Ultra-SPARC:s, interconnected via an Ethernet and an ATM LAN.
Each active network node runs on a separate workstation. On top of this infrastructure,
we have implemented traffic generators, traffic monitors, a VAN management system,
and a service management system.

All software components of our platform are written in Java. We chose Java because of
its strengths as a prototyping language for networking environments, and because Java
directly supports the realization of active packets through the concept of mobile code.
Additional Java features which we take advantage of include object serialization,
thread support, and safe memory access achieved by the type-safety of the language. In
our implementation, an active network node is implemented entirely in software,
which gives us the flexibility of experimenting with different designs. Achieving high
performance, such as realizing a high throughput of packets on a network node, is not
the focus of our work on the ANET platform. (Instead, we plan to realize the VAN
concept, once it has been fully studied on the ANET platform, on a high-performance

Virtual Active Networks - Safe and Flexible Environments 203

active node, which is currently under development in our lab at ETH Zurich [5].)

The complexity of the software we have built to date--active network node, provider
management system, and service management system--is in the order of 400 Java
classes with 30’000 lines of code.

In the following, we describe the realization of an active network node, as outlined in
Figure 5, on ANET. The in-bound ports of the active node deliver the incoming pack-
ets to the appropriate Execution Environments, identified by a multiplexing identifier
in the packet header or in underlying protocol headers. The node operating system
schedules the Execution Environments, taking into account the processing resources
allocated to each of the Execution Environments. Packet schedulers on the outgoing
ports multiplex and transmit packets produced by the Execution Environments to
neighboring nodes.

The provider VAN management system, which performs VAN provisioning and super-
vision, interacts with customers over the cooperate VAN provisioning interface, and
with the active network nodes via the VAN management interface. On ANET, we have
implemented the VAN provisioning system on a VAN management station. This man-
agement station performs VAN management operations by sending active packets via
the Management VAN to particular Management EEs in the network. These active
packets, which are executed in the Management EEs, perform the management opera-
tions on the active nodes via the local VAN management interface.

Table 1 lists the most important functions of the local VAN management interface as
implemented in the ANET prototype. The functions are described using a Java-like
notation with input parameters in brackets and return values in front of the function
name.

vin portid install Virtual InPort (in portid, eeid, inmid);

vout_portid install Virtual OutPort (out portid, eeid, outmid,
bandwidth) ;

void remove VirtualPort (vportid) ;

eeid install EE (ee, cpu_resource, memory) ;

void remove EE (eeid);

cut_through id install ThroughLink
(in portid, inmid, out portid, outmid, glen,bandwidth)

void remove ThroughLink (cut through id);

Table 1: Local VAN Management Interface of an ANET active node

The install_Virtual_InPort function creates a Virtual In-Port for the Execution Envi-
ronment identified by eeid. It further configures a physical port identified by the
in_portid to dispatch incoming packets with multiplexing identifier inmid to the just
created Virtual In-Port.

The install_Virtual _OutPort function creates a Virtual Out-Port for the Execution
Environment identified by eeid, and multiplexes outgoing packets leaving the Execu-

204 Marcus Brunner and Rolf Stadler

tion Environment over the just created Virtual Out-Port with multiplexing identifier
outmid. The outgoing stream of packets is constrained by the amount of bandwidth
reserved with this function. Any virtual port can be removed in case the VAN topology
changes.

The install_EE function installs a new Execution Environment given in the parameter
ee. The node operating system is configured to give the Execution Environment a por-
tion of cpu_resource and memory and to police it to not overconsume the reserved
resources. An Execution Environment identifier is returned for further use.

The install_ThroughLink function installs a cut-through path from the physical port
with identifier in_portid to the physical port identified by out_portid. Packets arriving
at in_portid tagged by the multiplexing identifier inmid travel along the cut-through
path and are not executed in an Execution Environment. They are switched to the spec-
ified outgoing link, where they are sent with multiplexing identifier outmid. The node
operating system has to know what amount of bandwidth is expected along the cut-
through path to configure the packet scheduler accordingly. Further, a buffer with
length glen is created to store the packets in case they have to wait some time until the
packet scheduler serves them.

The local VAN management interface includes functions that are not shown in Table 1.
Most of them relate to monitoring operations, such as gathering statistics about the
state of the node operating system, the resource consumption by the customer Execu-
tion Environments, virtual ports, and cut-through links.

Similar to the VAN management station, we have implemented the (customer-oper-
ated) service management system on a service management station. The service man-
agement station sends active packets into the VAN to perform management operations,
such as the installation of a particular service and the supervision of the service.

In the following, we illustrate some of the design principles and capabilities of the
ANET platform, by describing a series of demonstrations we can perform.

6.1 Demonstrating VAN Provisioning and Supervision

Figure 6 shows the situation at the start of the demonstration. The provider network

VAN Management Station.

Bl
Provider Domain O

Figure 6: Situation at the Start of the Demonstration

Service Management Station

consists of three active network nodes. The provider VAN management station is con-

Virtual Active Networks - Safe and Flexible Environments 205

nected to one of these nodes. Three customers are involved in the scenario. Customer
A and B have two (active) customer premises networks each, and customer C has
three. The Virtual Active Networks for customer A and customer B have been set up
by the VAN management system. The view of the provider VAN management station
at this point in the demonstration is displayed in Figure 7a. It shows the VANs for cus-
tomers A and B and the management VAN. Further, customer premises networks are
represented by a star labeled customer A, B, and C.

The VAN provisioning capability is demonstrated by setting up a new VAN for cus-
tomer C. The process of provisioning a VAN includes the installation of Execution
Environments on all three nodes, connecting the Execution Environments by setting up
Virtual Links between them and connecting one end of a Virtual Link to the customer
premises. The view of the provider management system after the VAN for customer C
has been provisioned is shown in Figure 7b.

File Algoritims Edit Properties Tools | File Algoritams Edit Properties Tools |

., Custormer B
<>
— b Customer ©
Provisioni

A

(o rA \r
o Custorner £ ﬁ}? <>
Customer ©
| Customer ©
- bl

(a) (b)

Figure 7: VAN provisioning as displayed on the provider’s VAN management station:
before (a) and after (b) provisioning a new VAN.

The service management system in the domain of customer C has now the view of a
VAN spanning over the provider domain and all domains of customer C. Figure 8
shows this view, which includes seven nodes. Three of them are in the provider domain
and four in the domain of customer C. Note that, on this level of abstraction, nodes in
the customer domain do not differ from those in the provider domain in terms of ser-
vice management capabilities. The service management system has the view of a sin-
gle active network, on which services can now be installed and supervised.

Figure 8 shows a window from the service management station of customer C. It
includes a snapshot of the Execution Environment of a VAN node. In our current
implementation, the service management system can display the configuration and the

206 Marcus Brunner and Rolf Stadler

state of Execution Environments in VAN nodes. The figure shows the buffers of the
CPU scheduler, the memory, the in-bound, and the out-bound links. Three buffers are
associated with the CPU scheduler: the default buffer for (active) packets, a second
buffer for packets that belong to service management functions (e.g., filters for detect-
ing specific events), and a third buffer for packets of a mechanism that routes the pack-
ets of the service management system. This is the basic configuration of an active
network node, after the VAN has been set up by the provider and the service manage-
ment system has been initialized by the customer. At this point, the service manage-
ment system is ready to install specific network services and service management
functions on the VAN.

= &net Service Management ==

File Algorithms Edit Properties Install_Services Service_Management_Tools

Servicelanagemnt /
kom2

The EE CPU scheduler kom20
with three buffers

The structure of this Node
is viewed

J X

| =] _&net service Monitaring | - | | kom3
[

kom27 kom?21

— |:| E ~|:|—[kom22
| Three Virtual InLinks | i H’D‘D |: ~|:|-|:
H H_D/ Three Virtual Outlinks
[=] r with one Buffer each
Memori | | ﬂ{ |

L
kom 21

Figure 8: View of the Service Management Station after Provisioning a VAN for a Customer

6.2 Customer-Controlled Service Installation, Upgrade, and Supervision

On the ANET platform, we can demonstrate the installation, upgrade, and supervision
of an IP service. Installing an IP service on a active network node is achieved by con-
figuring a virtual router inside the node’s Execution Environment. The service man-
agement system sends a sequence of active packets to the Execution Environment.
Processing these packets results in installing an IP routing table, creating output buft-
ers for the virtual out-bound links, setting up packet schedulers that operate on these
buffers, installing function code for routing and management operations, configuring
service-specific control parameters and management parameters, etc. After that, the IP
service is initialized, which includes starting the routing protocol.

Upgrading the IP service to an IP service supporting several traffic classes with differ-
ent QoS requirements is accomplished in our system by reconfiguring the virtual rout-
ers inside the Execution Environments. The service management system sends an

Virtual Active Networks - Safe and Flexible Environments 207

active packet to each Execution Environment of the VAN. The processing of this
packet results in upgrading the packet classifier (to detect the class of a packet), setting
up buffers for each traffic class, and substituting the packet scheduler with a scheduler
for multi-class traffic.

Figure 9 shows the structure of the Execution Environment after installing an IP ser-
vice and upgrading it to a multi-class IP service. Compared to Figure 8, the structure of
the output-buffers has changed to contain two buffer partitions, and the CPU scheduler
part has grown by two additional components, one for the IP routing protocol and one
for the management of the multi-class IP service.

=] Anet Service Management

Additional Service Management
Component for IP Service and
for the Multi-Class IP Service
L
- |

Output Buffers for
Packets of Different
Traffic Classes

korn2l

Figure 9: Node Structure after Installing an IP Service and Upgrading
to a Multi-Class IP Service

In our implementation, the service management system can change the partitioning of
the output buffers, by sending active packets to the virtual routers installed on the
ANET platform. Further, it can monitor the buffer usage, by configuring the active
management component to send packets back to the service management station in
regular time intervals. This way, we can perform service management operations the
same way as a customer would do while managing its IP service on its own premises.

7 Related Work

The networking community is currently putting substantial efforts into investigating
the active networking approach. Additional motivation for this work and ongoing
projects can be found in [2]. Two areas of current research are (1) designing Execution
Environments for active network nodes ([6], [7], [4]), and (2) extracting application-
specific functionality to be integrated into the network layer, such as, application-spe-
cific packet filtering functions and application-specific packet routing ([8], [9], [10]).
An architectural framework for active networks is being developed by the AN Working
Group [1].

208 Marcus Brunner and Rolf Stadler

One part of the Netscript project [11][4] deals with management of active networks. In
that project, a platform for programming network services is being built. These ser-
vices can be automatically instrumented for management purposes, and corresponding
MIBs can be generated. During operation, services can be managed through those
MIBs. Contrary to the Netscript project, our work leaves open the question of service
instrumentation in an active network environment, but it focuses on a flexible frame-
work for supporting interactions between customers and providers.

Research approaches in the area of programmable networks focus on developing inter-
faces that facilitate flexible service creation and resource partitioning in a telecom
environment. This work generally centers around a programmable control plane for
broadband networks [12][13][14]. While the current research in programmable net-
works clearly facilitates service instrumentation, it does not pursue service manage-
ment aspects and does not deal with customer-provider interaction, as this paper does.

The Genesis project [15] brings up the notion of virtual programmable networks as the
entity to bind resources to it, and they describe the life-cycle to install such a virtual
programmable network. First, the Genesis approach is derived from the programmable
networking (build on top of switchlets [12]), which concentrate the virtualization to the
control plane. Our paper also includes the data path, which makes the network active
on the data, control, and management plane. Second, the described life-cycle virtual
networks, does not include any customer-provider interaction, as our paper does.

During our work we have identified several requirements to be met by an active net-
working platform for an effective realization of our management framework and the
VAN concept. They include:

* Active packets from different Execution Environments have to be multiplexed onto
a physical link to enable the abstraction of Virtual Links.

* Resources, such as CPU-cycles, memory, and link bandwidth have to be shared
among different Execution Environments.

* An active network node has to prevent a customer from consuming more resources
as he is entitled to.

* Access to memory has to be protected against unauthorized read and write.

High-performance platforms under development today lack at least one of these
requirements. The ANN project [5] follows the approach of trusted code. The installa-
tion of code into a network node is performed by loading code from a trusted code
server, which prohibits a customer from introducing any code into the node. Further,
the CPU-cycles and link bandwidth are equally shared between different classes of
flows, which restricts customizable resource allocation. Finally, multiplexing is
achieved by using ATM on the physical link, which relieves the node operating system
to perform the multiplexing.

The Switchware project [16] takes a language based approach. The memory access is
controlled via a type-checked Programming Language for Active Networks (PLAN)
[17]. Switchware does not support resource partitioning. Multiplexing is implicitly
build into the active packet carrying the code to evaluate on intermediate active nodes.
The executing code calls in a controlled way previously installed routines on the net-
work node.

Virtual Active Networks - Safe and Flexible Environments 209

8 Discussion and Further Work

Rapid deployment of new services on an network infrastructure is the main driving
force behind active networking research. In this work, we specifically focused on ser-
vice provisioning and management in an active telecom environment and we showed
the promising potential that active networking opens up in this area.

We identified the concept of a Virtual Active Network as the key abstraction in our
framework. The VAN

* defines the object and level of customer-provider interaction,

» provides a basis for the provider to manage the resource consumption of customers
in a safe way, and

» allows a customer to install, upgrade, and supervise a customer-specific service in a
VAN spanning both the customer and provider domains.

We illustrated the above properties of a VAN by describing a series of demonstrations
conducted on the ANET active networking platform.

We believe that our work opens up the way for further research. Obviously, efficient
and flexible resource partitioning mechanisms need to be developed for sharing of
CPU, memory, and link bandwidth in an active networking environment. Also worth
pursuing are toolkits to support the design and implementation of active services. We
have experienced that service management functionality is often similar for different
active services. This similarity lets us conclude that a set of generic components can be
build that will facilitate the realization of active services and their management appli-
cations.

References

1. AN Architecture Working Group, “Architectural Framework for Active Net-
works,” K. Calvert (editor), 1998.

2. D. Tennenhouse, J. Smith, W. Sincoskie, D. Weatherall, G. Minden, “A Survey of
Active Network Research,” IEEE Communications Magazine, Vol. 35(1), 1997.

3. M. Brunner, R. Stadler, “The impact of active networking technology on service
management in a telecom environment,” IFIP/IEEE International Symposium on
Integrated Network Management (IM ‘99), Boston, MA, May 10-14, 1999.

4. S. Da Silva, Y. Yemini, D. Florissi, “The Netscript Project,” ICC Workshop on
Active Networking and Programmable Networks, Atlanta, 1998.

5. D. Decasper, G. Parulkar, S. Choi, J. DeHart, T. Wolf, B. Plattner, “A Scalable,
High Performance Active Network Node,” IEEE Network, Vol. 13(1), 1999.

6. D. Weatherall, J. Guttag, D. Tennenhouse, “ANTS: A Toolkit for Building and
Dynamically Deploying Network Protocols,” IEEE Conference on Open Archi-
tecture and Network Programming (OPENARCH’98), San Francisco, USA, April
1998.

7. J. Smith, D. Farber, C. Gunter, S. Nettles, D. Feldmeier, W. Sincoskie, “Switch-
Ware: Accelerating Network Evolution,” Technical Report MC-CIS-96-38, CIS
Department, University of Pennsylvania, May 1996.

8. S. Bhattacharjee, K. Calvert, E. Zegura, “An Architecture for Active Network-
ing,” Proceedings of High Performance Networking (HPN’97), 1997.

210

9.

10.

11.

12.

13.

14.

15.

16.

17.

Marcus Brunner and Rolf Stadler

U. Legedza, J. Guttag, “Using Network-level Support to Improve Cache Rout-
ing,” 3rd International WWW Caching Workshop, Manchester, England, June
1998.

S. Bhattacharjee, K. Calvert, E. Zegura, “Self-organizing wide-area network
caches,” IEEE INFOCOM, 1998.

Y. Yemini, S. da Silva, “Towards Programmable Networks,” IFIP/IEEE Interna-
tional Workshop on Distributed Systems: Operations and Management
(DSOM’96), L’ Aquila, Italy, 1996.

J. van der Merwe, 1. Leslie, “Switchlets a Dynamic Virtual ATM Networks,” Fifth
IFIP/IEEE International Symposium on Integrated Network Management
(IM’97), San Diego, California, U.S.A., May, 1997, pp. 355-368.

A. Lazar, K. Lim, F. Marconcini, “Realizing a Foundation for Programmability of
ATM Networks with the Binding Architecture,” IEEE Journal of Selected Areas
in Communications, Vol. 14(7), September 1996.

J. Biswas, A. Lazar, J. Huard, K. Lim, S. Mahjoub, L. Pau, M. Suzuki, S. Tor-
stensson, W. Wang, S. Weinstein, “The IEEE P1520 Standards Initiative for Pro-
grammable Network Interfaces,” IEEE Communications Magazine, Vol. 36(10),
1998.

A. Campbell, M. Kounavis, D. Villela, H. De Meer, K. Miki, J. Vicente, “The
Genesis Kernel: A Virtual Network Operating System for Spawning Network
Architectures,” IEEE Conference on Open Architecture and Network Program-
ming, (OPENARCH’99), 1999.

S. Alexander, W. Arbaugh, M. Hicks, P. Kakkar, A. Keromytis, J. Moore, C.
Gunter, S. Nettles, J. Smith, “The Switchware Active Network Architecture,”
IEEE Network, Vol. 12(3), May/June 1998.

M. Hicks, P. Kakkar, J. Moore, C. Gunter, S. Nettles, “Network Programming
with PLAN,” IEEE Workshop on Internet Programming Languages, May 1998.

	Introduction
	The Concept of an Active Network
	Customer-Provider Interactions in Active Telecom Environments
	Interactions in Traditional Environments
	Our Framework for Active Telecom Environments

	The Virtual Active Network (VAN)
	VAN Provisioning and Supervision
	Realizing VAN Provisioning and Management on the ANET Platform
	Demonstrating VAN Provisioning and Supervision
	Customer-Controlled Service Installation, Upgrade, and Supervision

	Related Work
	Discussion and Further Work
	References

