Service Configuration and Management in
Adaptable Networks *

Livio Ricciulli

Computer Science Laboratory, SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025, US
livio@csl.sri.com
http://www.csl.sri.com/ancors

Abstract. We describe ANCORS, an architecture for the design, con-
figuration, and management of adaptable networks. We describe the pri-
mary components of the architecture and their common system man-
agement infrastructure. We describe alternative techniques that can be
used for the management of adaptable networks and discuss their relative
strengths. We then propose an open and extensible management frame-
work for adapting the management infrastructure to newly deployed net-
work services. We exemplify the use of this framework by outlining four
different representative management applications.

1 Introduction

Current networking systems are very static and are a result of years of standard-
ization efforts that allow different vendors and software developers to interact
through a set of well-defined protocols. Active networking is motivated by the
notion that the improvement and evolution of current networking software is
greatly hindered by slow and expensive standardization processes. Several ac-
tive networking research projects [1,4,5,12-14,11] try to accommodate changes
to network software by facilitating the safe and efficient dynamic reconfiguration
of the network. Adaptive networks may be seen as the composition of the two
main orthogonal approaches to active network design discussed in [13].

— In the discrete approach administrators issue explicit commands that load,
modify, or remove networking software. With this approach a network is
active in the sense that it can be dynamically changed administratively.

— In the integrated approach the network is modified by the data packets that
travel through it. When packets travel through the network, they automat-
ically cause required software resources to be loaded on demand. This ap-
proach is being followed today by most active networking research and allows
a much finer-grain dynamism.

* The work presented in this paper is currently funded by the Information Technology
Office of the Defense Advanced Research Projects Agency, under contract number
DABT63-97-C0040.

R. Stadler and B. Stiller (Eds.): DSOM’99, LNCS 1700, pp. 181-194, 1999.
(© Springer-Verlag Berlin Heidelberg 1999

182 Livio Ricciulli

Adaptable networks result in much more flexibility in designing and using
networks, but pose several challenging technical problems. One of these problems
is how to provide a unifying paradigm for the management of active networks.
As new active network software is developed and deployed, both its static char-
acteristics and runtime behavior should be made known. It should be possible
to allow newly developed system-level software to reuse existing system /network
management paradigms and delegate its management and monitoring functions
to them. Thus, a major challenge that must be met for managing dynamic and
ever-evolving networks is to extend the adaptability of the network services to
their management. Statically defined network management (NM) databases of
the style of SNMP Management Information Bases (MIBs) can no longer be
used to specify the management of evolving systems because this would require
constant updates to the MIBs and NM tools to reflect the additions of new
entities.

We are exploring new ways by which network management can be dynami-
cally updated to include new services in its control and monitoring scope. Our
NM paradigm focuses on supporting services that are relatively permanent and
long-lived and that can benefit from having a specialized monitoring and con-
figuration infrastructure. Examples of these kinds of services are the execution
environments (EEs) produced by current active networking research groups, en-
gineering and prototyping tools such as the one described in [10], and network
monitoring tools like RMON and intrusion detection engines from the EMER-
ALD project [7].

2 Overall Picture (ANCORS)

The ideas in this paper are derived from the ANCORS (Adaptable Network
COntrol and Reporting System) project. ANCORS is intended to streamline
and, at the same time, enrich the management and monitoring of adaptable
networks, while adding new support to the NM paradigm to assist network
designers.

ANCORS targets an active network environment, where powerful design and
assessment capabilities are required to coordinate the high degree of dynamism
in the configuration and availability of services and protocols. To this end, we
have formulated an architecture of a network management and engineering sys-
tem that, while inheriting some components from current NM technology, intro-
duces distributed simulation as an additional tool for design and performance
assessment. Some components of the ANCORS architecture map very well to al-
ready existing technology. Recognizing this, the architecture has been explicitly
designed to accommodate other NM engineering solutions.

The ANCORS architecture is divided into data, assessment, and control lay-
ers, as illustrated in Figure 1. The data layer operates at the data packet level
and offers a set of services for the manipulation of network data. The assess-
ment layer performs analytical reviews of network behavior to extract relevant
semantic information from it. The control layer performs higher-order functions

Service Configuration and Management in Adaptable Networks 183

Automatic

Control Layer response
Adaptive j k

learmng

Data
~+—» | Monitorin ; :

Fig.1. The ANCORS Architecture

Assessment Layer

based on expert knowledge. All the components constituting these logical layers
may be independently deployed throughout the network, using common sys-
tem management support. ANCORS may distribute data-layer services across
domains', but deploys assessment-and control-layer services to the specific do-
main they manage. Depending on the amount of resource sharing resulting from
the deployment of active networking services, the assessment layer may also be
distributed across multiple domains. Because the control layer must possess a
significant amount of authority to perform changes in the network, it should be
deployed only within a single domain. Several control services may then cooper-
ate at the inter-domain level to exchange information for making better control
decisions about their respective domains.?

3 Deployment and Management Infrastructure

Active network services require similar support functions from network or sys-
tem management. The support functions can be broadly characterized as those
achieving (1) process control, (2) configuration, or (3) monitoring.

Process control functions allow the loading and unloading of network
services to and from network nodes. The physical location of the code that im-
plements the network services may be different from the physical location of their
deployment. For this reason, a reliable transport protocol such as TCP should be
used to transfer the code. We have implemented a software prototype (Anetd [9])
that performs these process control functions. The prototype has a very flexible
and general-purpose API to deploy and control (1) native executables, (2) Java
applications, and (3) ANCORS executables.

! In this context, a domain consists of a collection of software and hardware objects
managed by a single administrative authority.

2 A discussion about inter-domain information exchange between control service is
beyond the scope of this paper.

184 Livio Ricciulli

Configuration functions write control data into the network services af-
ter they have been loaded onto the intended nodes, to integrate them into the
network node and possibly tailor them to particular needs.

Monitoring functions result in reading data from the network service to
supervise its operation. This support function may be invoked remotely as in
SNMP and CMIP, or locally by monitoring agents like RMON, to collect per-
formance data.

3.1 Process Control

Anetd is a system management facility for managing the deployment, operation,
and monitoring of deployable network services in an active network. Anetd is
specifically targeted for the secure management and coordination of active net-
working research over the Internet. Anetd follows the discrete active network-
ing approach, providing code mobility to legacy network software (e.g., SNMP
agents) and system management support for new active networking applications.
Anetd support focuses on services that are fairly permanent and long-lived, that
can benefit from having a separate system management infrastructure, and that
are fairly encapsulated (i.e., they do not rely on large numbers of shared libraries
that may not be commonly available). Anetd also facilitates the deployment of
auxiliary resources needed by the applications to ease the porting of existing
software. However, anetd is not intended to deploy a large number of libraries
or require large installation directories.?

From a system management perspective, anetd views all services within the
ANCORS architecture (Figure 1) as equivalent. Anetd handles process control
requests coming from the management stations or automatic response services
to either load new services or terminate existing ones. Its placement in the AN-
CORS layered architecture [11] is illustrated in Figure 2.

The assessment layer interprets monitoring results from the data layer, and
the control layer reacts to significant conditions as they are reported by the
assessment layer. The automatic response services may reconfigure both the
assessment services and the data-layer services in response to changes in the
network behavior. Note from Figure 2 that this architecture allows the traditional
but nonscalable approach of having the management station directly monitor
and control the data layer. This aspect of our architecture can be very useful
when simple network management technologies are employed that do not require
ad-hoc distributed monitoring functions (e.g., when using legacy SNMP-based
polling mechanisms).

3.2 Configuration and Monitoring (Network Management)

Because in most cases the configuration and monitoring functions are intimately
tied to the semantics of a network service, in active networks, these functions

3 In these cases, we advise standard manual installation techniques or (as in the case
of Java) bundle the required resources with anetd in advance.

Service Configuration and Management in Adaptable Networks 185

Configuration Functions - = = = Monitoring Functions —— Process Control Functions

Service Deployment

Management
Station

Data Layer

Fig.2. ANCORS’s Management Architecture

cannot be generally known in advance by the NM tools. As new services are
deployed, the NM tools should adapt to the newly introduced functionalities.
Two possible approaches can be followed in providing the management of active
networks. We believe that both approaches should be allowed and should be
integrated in a common management framework that can make best use of their
respective advantages.

Active Management One strength of active networking concepts is that the
network can be adapted at runtime by network operators. Within this frame-
work, when a new network service is deployed, all necessary management agents
and control software can also be deployed by the network operators in parallel.
For example, as a new admission control protocol is deployed on the routers of an
IP network, its corresponding MIB and SNMP agent may also be dynamically
deployed. Such adaptation can also be achieved at a finer granularity by just
adding methods to an existing agent that can access the new deployed service
(as suggested in [2]).

Knowledge-Based Management Knowledge-based management (KBM) tries
to integrate new network services much more closely into the NM system to
provide greater software reuse and composition. In this paradigm when a new
network service is deployed, it only exports an interface without requiring the
deployment of specific NM code. In this context the NM management software
should be able to correctly interpret the exported interface and directly integrate
the new service in a pre-existing semantic framework. For example, when a new
service is deployed it may export several alarms indicating failures and/or meth-
ods through which the service could be monitored or configured. The methods

186 Livio Ricciulli

and alarms would then be interpreted and categorized by an existing NM ap-
plication into specific predefined classes. For example, a service providing access
control and bandwidth allocation such as RSVP may export an alarm indicating
that the provisioned bit rate is not available to the service or there is an unusual
number of bad packets. In KBM such alarms would be correctly interpreted and
perhaps correlated with alarms originating from other services. In summary,
KBM supports a higher level of composition through the dynamic extensibility
of NM application.

Discussion KBM is hard because it requires the design of predetermined se-
mantic contexts that are general enough to be extensible but that are not too
general to be impractical to implement. However, it provides a logical framework
through which one could achieve a high level of integration and more software
reuse.

Active management is conceptually simpler and perhaps more practical but
lacks the ability to support composition. When a new service and its correspond-
ing management code are deployed, they could be (and in some cases should be)
completely isolated from the rest of the NM system. For instance, in the above
example, when an alarm is generated as a result of unavailable bit rate, it must
be interpreted by a human and manually relayed to the service provider in the
form of a complaint.

It is not clear which approach is preferable. In general, active management
may be preferable for active applications that do not have much interaction
with the system or other active components, while KBM will provide support
for composition of services having a high degree of interdependencies. We believe
that the management of programmable networks should allow both approaches
and should be designed in an open fashion.

In the next sections we describe a design of a powerful and extensible common
management framework (CMF) that tries to merge these two concepts through
the reuse of Web-based tools. We will further exemplify KMB in Section 3.2.

4 CMF

An infrastructure to manage and support active networks must be open, simple,
and flexible, and therefore we do not intend to have a unique format for the
information exchanges between network services and management stations.

To support multiple management frameworks, we introduce a discovery mech-
anism to probe newly deployed services. The idea is quite simple and is somewhat
similar to the approach followed today on the Web. Each network service listens
on a port known to Anetd. After deployment, the services respond to a pre-
defined and universally agreed-upon Anetd command INIT (the equivalent of
GET / in HTTP). The INIT command will cause the network services sub-
scribing to CMF to respond with a MIME-encapsulated reply. In general, the
reply contains information to be used for the configuration and monitoring of
the service itself and the configuration of other related services. In other words,

Service Configuration and Management in Adaptable Networks 187

as the result of an INIT command, the services export the interfaces necessary
for their operation.
Using MIME encapsulation as three main advantages:

1. It allows the reuse of existing powerful tools, such as HTML browsers, that
can be extended to handle user-defined application types and that conve-
niently integrate into current Web-based technology.

2. By breaking down a potentially very large application domain for manag-
ing active networks, it makes the problem more tractable. In particular, it
allows the design of domain-specific semantic interpretation of the exported
interfaces without the need of extremely general and potentially ambiguous
specifications.

3. The MIME dereferencing mechanism naturally supports extensibility.

In the simplest scenario, the service replies with an encapsulated message
in HTML format. This reply format allows the administrator to use standard
HTML forms to configure and later interactively monitor the service through
HTML forms.

5 CMF Applications

We will describe the design of four different management APIs that are being
developed as part of an ongoing effort in realizing a worldwide testbed for active
networks (ABONE [8]). These examples show how we intend to use our CMF
design in enabling active networking software to be included at runtime into an
active network management infrastructure. We refer to network management, in
this case, as the ability to monitor and control aspects of the active networking
software that go beyond the process control functions of Anetd and allow much
finer grain resolution within a deployed service.

5.1 The text/ancors MIME

Within the Anetd implementation of CMF, we have developed a specific MIME
environment (text/ancors) that assists in the deployment, monitoring, and con-
trol of active networking software. This MIME, can be used to (1) generate GUIs
through HTML forms or (2) to build, in command-line mode, ad-hoc manage-
ment front ends based on standard Unix string processing tools like Perl or
Awk, or to operate from terminals that do not support graphics.

Each of the lines returned by a deployed network service can be either a
simple text line or a GUI line. Text lines and GUI lines are differentiated by the
fact that a GUI line starts with tags LOAD, QUERY, INIT, CONF, GET, PUT,
KILL, GETACL, or GETWEB (that correspond to Anetd’s commands), while
text lines do not. GUI lines serve the dual purpose of specifying an interface and

offering a convenient way to automatically issue Anetd commands.
GUI lines have the following format:

<Anetd_command>&[submit !<submit_label>]&[new]&[add]&<any>{!|7}<port>&<any>{?|!}<host>[&any{!|?}<arg>]+

188 Livio Ricciulli

where:

— < Anetd_command > is one of the possible Anetd commands (LOAD, QUERY,
INIT, CONF, GET, PUT, KILL, GETACL, GETWEB) to be invoked. This field
determines which Anetd command will be issued upon activation of this GUI line.

— The optional submit! < submit_label > argument pair specifies that a clickable
button with the label < submit_label > should appear to the user. When this
button is pressed, one or more Anetd commands are executed.

— The optional new keyword specifies that, when the submit button is pressed, a
new window is created by the GUI to display the results. If new is missing, results
overwrite the current window.

— The optional add keyword specifies that this command should be automatically
executed after the execution of the command specified in the previous GUI line.

— 1|7 separates an argument tag from its default value. ! specifies that the argument
should be hidden to the user, and ? means that a value should appear in an input
field and should be editable by the user. When the argument is editable, the tag
is used to describe the input field.

— < any > |7 < port > is a required argument pair that directs the Anetd command
to an appropriate port.

— < any > ?|! < host > is a required argument pair that directs the Anetd command
to an appropriate host.

— [any!|? < arg >]+ is a list of tag/value pairs that are used to complete the speci-
fication of the command. < any > is any character string.

When GUI lines are returned, they are interpreted by a local client’s script
to generate HTML forms. GUI lines of the text/ancors MIME can therefore
indirectly also issue any Anetd command. For example, the following GUI line

GET&new&submit!Get&port!3322&hostname?grumpy.csl.sri.comé&filelfile.out
would automatically produce the HTML form of figure 3

<FORM ACTION=file:exec.ax method=get TARGET=new>
<INPUT TYPE=SUBMIT VALUE=LOAD>

<INPUT NAME=exec VALUE=LOAD TYPE=HIDDEN>

<INPUT NAME=port VALUE=3322 TYPE=HIDDEN>

<INPUT NAME=host VALUE=grumpy.csl.sri.com TYPE=text>
<INPUT NAME=file VALUE="file.out" TYPE=text>

</FORM>

Get | hosthame: qrumpy.csl.sri. com

Fig. 3. GUI Example

This form would not be correctly interpreted and executed by a standard
HTML browser, and it is therefore necessary to process it with the ANCORS
front end. Notice that the action is the local file exec.az; this local script is
responsible for parsing the form arguments and issuing the LOAD command.
When the user presses the clickable button, the Anetd command

Service Configuration and Management in Adaptable Networks 189

GET 3322 grumpy.csl.sri.com file.out

is executed, and the returning output is displayed in a newly created window.

The ancors GUI front end was developed specifically to facilitate the use
of Anetd and its related deployment capabilities and is fully integrated with
the ANCORS executable specifications to properly handle text/ancors, simple
text/text, and standard text/html MIME types. The ANCORS GUI front end
was derived from the public-domain HTML browser called “Plume” written
in TCL [6]. The browser was modified to invoke local scripts as well as remote
scripts through the CGI protocol. The local scripts denoted with the extension ax
are responsible for invoking various Anetd commands triggered by the clickable
buttons.

5.2 SNMPV2 MIME Type

This example shows how our framework can be used to build a bridge with tradi-
tional non-active NM approaches. It is important to keep backward compatibility
so that one can leverage legacy applications in solving problems that do not re-
quire innovation. For this reason, we show how an SNMP MIME type and its
corresponding applications are capable of dynamically deploying and configuring
SNMP agents. A deployed service wanting to use SNMP replies with informa-
tion encapsulated in an SNMP-specific MIME type (application/SNMPV2). The
reply might be similar to the following;:

content-type application/SNMPV2

<SNMP>

<AGENT=http://www.abone.org/SNMP/snmpd>

<PORT=8000>

<MIB=http://www.abone.org/SNMP/mib.txt>
<ACL=http://www.abone.org/SNMP/acl.conf>
<PARTY=http://www.abone.org/SNMP/snmpd/party.conf>
<VIEW=http://www.abone.org/SNMP/snmpd/view.conf>
<CONTEXT=http://www.abone.org/SNMP/snmpd/context.conf>
<ENVIRONMENT VAR=MIBFILE VAL=mib.txt>

</SNMP>

This reply specifies the URL of the SNMP agent, the associated MIB, and
access control information to be loaded with the service. It causes the manage-
ment station to use Anetd to load the requested SNMP agent and MIB and
to either spawn an SNMP browser to access the deployed service or update an
existing SNMP management application.

5.3 Java_nm MIME Type

This example shows how CMF can be used to implement active NM mechanisms.
In this approach the service replies by providing Java applications or applets
that can then be embedded either in the central management stations or in a
distributed monitoring agent, perhaps in a scheme similar to the one proposed
in [2]. A reply using this MIME type might be something like

190 Livio Ricciulli

content-typeapplication/java_nm

<JAVA>

<AGENTAPPLICATION=http://www.abone.org/java/agentPARAM=<parameters>> or

<AGENT APPLET=http://www.abone.org/java/agent_appl PARAM=<parameters>>

<AGENT FILES=http://www.abone.org/java/mib.txt FILES=http://www.activate.org/java/acl>
<AGENT_ENVIRONMENT VAR=MIBFILE VAL=mib.txt>

<MANAGER APPLICATION=http://www.abone.org/java/manager PARAM=<parameters>> or

<MANAGER APPLET=http://www.abone.org/java/manager_appl PARAM=<parameters>>

<MANAGER FILES=http://www.abone.org/java/mib.txt FILES=http://www.activate.org/java/acl>
<MANAGER_ENVIRONMENT VAR=MIBFILE VAL=mib.txt>

</JAVA>

Notice that the MIME can either specify an application or an applet for both
the agent side and the manager side. The application would not require special
support other than an interprocess communication mechanism with the EE and
the NM station, respectively. In this mode one only exploits the portability of
Java to implement ad-hoc management protocols, and the solution may not be
functionally different from what is provided by SNMP. With the specification of
an applet, one can instead provide a mechanism that exploits active networking
concepts. In this case the applet is assimilated by either a management or an
agent EE, thus effectively extending the NM system at runtime. To support this
latter mode of operation, it is possible to reuse existing active network software
prototypes (such as ANTS [13]).

5.4 Active Management Information Base MIME

This example shoes how KBM can be used within the CMF design. KBM focuses
on the fact that the data formats of standard NM frameworks (SNMP, CMIP)
do not provide semantic interpretation of the MIB data. This limits their appli-
cability to static and ad-hoc management where human intervention is necessary
to interpret the meaning of specific management information and manually con-
figure the management infrastructure. In dynamically changing networks, it will
be necessary to (1) dynamically extend MIBs to include new management en-
tities that come into existence and (2) automate the task of recognizing the
semantic meaning of new or modified management primitives, to avoid frequent
and costly human management operations.

In our design, an active network MIB is defined using multiple dimensions.
The first dimension is analogous to the current MIB specification in which man-
agement information is organized in a tree structure reflecting the logical decom-
position of the information. Figure 4 details how we plan to initially hierarchi-
cally organize active object definitions. This structure is deliberately very general
because it is intended to be extended at runtime with new kinds of objects that
are brought into existence with the deployment of new network services.

Active NM objects will also be defined by a vector of attributes, each of
which is chosen from a discrete set of values and characterizes the objects in
other dimensions. As an example, the following attributes may introduce useful
additional dimensionality.

Service Configuration and Management in Adaptable Networks 191

Time Id Device Process Service Security |
} } \ }

POC OStype SysName
CPU type Memory Swap

| Policies Cryptographic Keys

Seconds |CPU Memory Network Disk |
Microseconds {

| Protocols Monitors Engineering |

| Physical Virtual | Ethernet Loopback | IP UDP P TCP RIP RSVP |

System Utilization o
User Utilization

| RMON ABoneStat | | ANCORS’ Virtual Kernel

Fig. 4. Example Top-level MIB definition

— Criticality. This attribute specifies to what extent the value of the object is
critical for the correct operation of the system. For example, (0) would mean
that the value of the object does not affect operations, (1) would mean that
the value of the object has significance at the local level, and (2) would mean
that the value of the object has significance at the system level.

— Frequency of Change. This attribute tells the NM system how often the
value(s) of the object is expected to change. For example, (0) would mean
that the value(s) of the object does not change, (1) would mean that the
value(s) of the object changes with the frequency of human interactions
(every seconds to minutes), and (2) would mean that the value(s) of the
object changes with the frequency of system interactions (less than every
second).

— Accessibility. This attribute regulates who can access or affect the objects.
For example, (0) would mean that the object is public and anyone can access
it, (1) would mean that the object is accessible by authorized users and that
access control should be enforced, and (2) would mean that the object should
be accessible only by the super-user.

These attributes facilitate the runtime inclusion of new objects into an NM
infrastructure. For example, if a new monitoring service is added to an active
network node to perform a specialized monitoring function, this service may
introduce new objects in the hierarchy upon deployment and classify them ac-
cording to their significance. Depending on what the monitor is doing it would
associate different values to its attributes. For example, if the monitor produced
an object that estimated CPU utilization, its attributes would probably be set
to 0,1,0 to indicate that this object has a noncritical significance, it changes ev-
ery few seconds, and it should be widely accessible. On the other hand, consider

192 Livio Ricciulli

amonitorforintrusiondetectionthat producedintrusionattemptalarms. For
obvious reasons, this object would probably be characterized as 2,1,1 meaning
that the object interpretation is critical, it should be checked every few seconds,
and it should be accessed only by privileged users.

A deployed service could cause the extension of an active MIB in an NM
station as follows:

content-type application/anetm

<AMIB>

<EXTEND MIB=http://www.abone.org/amib/mib.txt>

<0BJECT NAME=service.protocol.rsvp.Encapsulation RPC=get_version()
MODE=READ CRITICALITY=0 FREQUENCY=0 ACCESS=0>

<0BJECT NAME=service.protocol.rsvp.Encapsulation
RPC=get_encapsulation() MODE=READ CRITICALITY=0 FREQUENCY=0 ACCESS=0>
<0BJECT NAME=service.protocol.rsvp.RefreshInterval
RPC=get_refresh() MODE=READ CRITICALITY=0 FREQUENCY=0 ACCESS=0>
<0BJECT NAME=service.protocol.rsvp.SessionTable

RPC=get_table() MODE=READ CRITICALITY=0 FREQUENCY=1 ACCESS=0>
<0BJECT NAME=service.protocol.rsvp.BadPackets

RPC=get_badpackets MODE=READ CRITICALITY=1 FREQUENCY=1 ACCESS=0>
</AMIB>

The above reply might be returned by an activated RSVP service such as
ARP [3]. This reply exports management operations and indicates that these
operations should be used to extend a base active MIB located on an ABONE
code server. The object name specifications will be automatically added to the
ABONE active MIB, thus actively extending it at runtime. Analogously execut-
ing the INIT probe on other EEs may further extend the local active MIB with
other functions particular to that EE?.

This NM paradigm requires the development of a special-purpose NM appli-
cation capable of correctly interpreting the information returned by the service.
This application, after querying the EE with the INIT probe, will automat-
ically add the remote procedure stubs in appropriate threads. The threads in
the NM application will in turn reflect the values of the attributes exported by
the deployed service, thus providing different types of polling modalities, ac-
cess control mechanisms, and priority. Each time a remote procedure is called
(whether the initial INIT call or subsequent remote procedure calls), it will re-
spond with a MIME-encapsulated reply that will be recursively interpreted by
the NM application. Leaf calls (procedures that only return data objects) may
replay either with simple text MIMEs (which will simply display textual infor-
mation), HTML formatted text, or special-purpose MIMEs designed to decode a
particular binary encoding. The remote procedure stubs will also be classified, in
the traditional manner, according to their structural role. They will be grouped
into tree structures to facilitate the observation and control of the services from
a process-oriented perspective.

4 Collisions may occur when two different services choose the same name for an object.
The colliding objects will be renamed using appropriate informative formats.

Service Configuration and Management in Adaptable Networks 193

6 Conclusion

The dynamism of adaptable networks will require novel management and assess-
ment techniques and tools to aid in the design, deployment and operation of net-
work services. The integration of these different management aspects in a unified
paradigm such as the one proposed in ANCORS requires a very flexible and open
management framework that can be used in different ways. We have proposed a
simple, open mechanism to support a plurality of management paradigms while
observing a consistent architectural view. We have also outlined four different
management approaches, from simple HTML based to more complex knowledge
based, that show the generality of our open management framework and that
will be used as case studies in the management of the ABONE.

References

1. D. Scott Alexander, Marianne Shaw, Scott M. Nettles, and Jonathan M. Smith. Ac-
tive bridging. Proceedings of the ACM SIGCOMM’97 Conference, Cannes, France,
September 1997.

2. F. Barillaud, L. Deri, and M. Feredun. Network management using internet tech-
nologies. Integrated Network Management V, San Diego, 1997.

3. R. Braden. Active signaling: the arp project. In OPENSIG Workshop, University
of Toronto, Toronto, CA, October 1998.

4. J. Hartman, U. Manber, L. Peterson, and T. Proebsting. Liquid software: A new
paradigm for networked systems. Technical Report 96-11, University of Arizona,
1996.

5. U. Legedza, D. J. Wetherall, and J. V. Guttag. Improving the performance of
distributed applications using active networks. Submitted to IEEE INFOCOM’98,
1998.

6. J. K. Ousterhout. Tel and the Tk Toolkit. Addison-Wesley, 1994.

7. P.A. Porras and P.G. Neumann. EMERALD: Event monitoring enabling responses
to anomalous live disturbances. Proceedings of the National Information Systems
Security Conference, Baltimore, October 1997.

8. Livio Ricciulli. ABONE: Active network back bone.
hittp://www.csl.sri.com/ancors/abone, 1998.

9. Livio Ricciulli. ANETD: Active NETwork Daemon. Technical report, Computer
Science Laboratory, SRI International, 1998.

10. Livio Ricciulli. High-fidelity distributed simulation of local area networks. Pro-
ceedings of the 81st Annual Simulation Symposium, Boston, April 1998.

11. Livio Ricciulli and Phillip A. Porras. ANCORS: An adaptable network control and
reporting system. Integrated Network Management V, Boston, 1999.

12. Jonathan Smith, David Farber, Carl A. Gunter, Scott Nettle, Mark Segal,
William D. Sincoskie, David Feldmeier, and Scott Alexander. Switchware: To-
wards a 21st century network infrastructure. hitp://www.cis.upenn.edu/ switch-
ware/papers/sware.ps, 1997.

13. D.J. Wetherall, J. V. Guttag, and D. L. Tennenhouse. ANTS: A toolkit for building
and dynamically deploying network protocols. Submitted to IEEE OPENARCH’98,
1998.

194 Livio Ricciulli

14. Y. Yemini and S. da Silva. Towards programmable networks. IFIP/IEEE Interna-
tional Workshop on Distributed Systems: Operations and Management, L’ Aquila,
Italy, October 1996.

	Introduction
	Overall Picture (ANCORS)
	Deployment and Management Infrastructure
	Process Control
	Configuration and Monitoring (Network Management)

	CMF
	CMF Applications
	The text/ancors MIME
	SNMPV2 MIME Type
	Java_nm MIME Type
	Active Management Information Base MIME

	Conclusion
	References

