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Abstract. In this paper, we show that the FET-Hash function proposed
by Schnorr [2] is not collision {ree. Finding a collision requires about 2%t
computation of the basic function of FFT. This can be done in few hours
on a SUN4-workstation. In fact, it is at most as strong as a one-way hash
function which returns a 48 bits length value. Thus, we can invert the
proposed FFT hash-function with 2*° basic computations. Some simple
improvements of the FFT hash function are also proposed to try to get
rid of the weaknesses of FFT.

History

The first version of FFT-Hashing was proposed by Schnorr during the rump
session of Crypto’'91 [1]. This function has been shown not to be collision free at
Eurocrypt’92 [3]. An improvement of the function has been proposed the same
day [2] without the weaknesses discovered. However, FFT-Hashing has still some
other weaknesses as it is proved in this paper.

1 FFT-Hash-II, Notations

The FFT-hash function is built on a basic function < . > which takes one 128-
bits long hash block H and one 128-bits long inessage block M, and return
a 128-bits long hash block < H, M >. The hash value of n message blocks
My, ..., M, is < ... << g, My > My >,..., M,, > where Hy is a constant
given in hexadecimal by :

Hg = 0123 4567 89ab cdef fedc ba98 7654 3210

The basic function is defined by two one-to-one functions Rec and FT2 on the
set (GF,)1® where p = 2164 1. The concatenation A M defines 16 16-bits numbers
which represents 16 numbers in GF, between 0 and p—2. (RecoFT2oRec)(H M)

defines 16 numbers of GF,. The last 8 numbers taken modulo 2'¢ are the result
< H M >.
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We define the following notations :

A(M) = HoM

B(M) = Rec(A(M))
C(M) = FT2(B(M))
D(M) = Rec{C(M))

So, < Hg, M > is the last 8 numbers of D(M) taken modulo 2'¢. We define X;
the i-th number of X (from 0 to 15), and X[z, 7] the list of the i-th to the j-th
number of X.

Ifx, € GF,, 1 =0,...,15, we define y_3 = 213, y_o = 14, and y_; = Z15.
Then, following Schnorr :

Y = Tt Y T Yo 2 (1)
where y* = 1if y = 0 and y* = y otherwise. Then, we let :

Rec(zy, ... 2:5) = Yo, .- . ¥13

Ifz; € GF,, 0 =0,...,7, we define :
= Zwijrz
=0
where w = 2%, Then. we define FT(zo.....27) = yo,.... Y7
Ifz; € GFp, 1 = 0,...,15, we deﬁne Yo, Yo y1a = FT(2o, 22, ..., Z14)

and y1.y3,. .., y15 = FT(:Cl,Jrg ..... r:5). Then, we define FT2(zq...., r15) =
Yo,.. s Yis-

2 Basic Remarks

If we want to find a collision to the hash function. we may look for a pair (z, z)
of two 128-bits strings such that < Hg,z >=< Hgy, ' >. In fact, we will look for
z and z’ such that D(z)[8, 15] = D(z')[8, 15].

First, we notice that we have necessarily C(z)[11, 1)] Z(z")[11, 15]. In one
direction, we show that C{r); = C(z'); for ¢ = 11.. . This is due to the
equation :

Ci=D;—Di_Di_y—Dj_3 =2
Conversely, if we have both C(z)[11,15] = C(z)[11,15] and D(x)[8,10] =
D(z")[8,10], then we have D(z)[8,15] = D(z’)[& 15].

Moreover, we notice on the equation 1 that B(z){0,7] is a function of z[5,7]
only. Let us denote :

B(x)[0, 7] = g(=[5.7))

Finally, we notice that FT2 is a linear function.
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3 Breaking FFT

3.1 Outlines

If we get a set of 3.2%? strings x such that C{z)[11,15] is a particular string R
chosen arbitrarily?, we will have a collision on D{x)[8. 10] with probability 99%
thanks to the birthday paradox. We will describe an algorithm which gives some
z with the definitively chosen R for any z{5,7] = abe.

Given abc = z[5,7], we can compute B(z)[0,7] = g(abc). If we denote y =
B(z)[8,15], the following equatiou is a linear equation in ¥y ;

FT2(g(abe)y)[11,15] = R (2)
We can define a function ég and three vectors UU,, I',, '} such that :
(2) <= 3A N ¢ y=adglabe)+ AU, + XU, + pl,

(see section 3.2).
Finally, the system -

z[5.7] = abe
()11, 15] = R

is equivalent to the system :

z15.7] = abe
y = drlabe) + AL, + NUL+ ul,
Hyz = Rec™ ' (g(abe)y)

Which is equivalent to -

y = oglabe) + AU, + VMU, + pl,
Y13 = a + Y1241 + Yo+ 213
Yyia = b+ ylayis Ty + 21 (3)
Yis = ¢+ Yialis + pio + 21 ’
z[5,7] = abe
2[0, 4] = Rec™ ' (g(abe)y)[8,12]

Is we substitute y by the expression of the first equation in the other equations,
we obtain a system of three equations of three unknown A, A’, . This system can
be shown linear in A and A’ by a good choice of U, U/, and U. Then, this system
can have some solutions only if the determinant, which is a degree 2 polynomial
in g is 0. This can gives some u. Then, the number of (A, X') is almost always
unique. For more details, see section 3.3.

Finally, this gives 0 or 2 solutions z, with an average number of 1 for a given
abe. If we try 1 < a < p, 1 < b < 768 and ¢ = 2, we have 3.22% abe.

% For the collisions found in this paper, R is the image of my phone number by FT2.
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3.2 Solving (2)

The function X —— FT2(X)[11,15] is linear, and has a kernel of dimension 3.
If we define :
= (0,0,0,0, 4081, 256, 1, 61681)

= (0,0,0,0,65521,4352,1,0)
we notice that :

FT(U) = (482, 56863, 8160, 57887, 7682, 0,0, 0)
FT(U') = (4337, 61202, 65503, 544, 61170, 3855, 0, 0)

Let us introduce the following notation :

(xo...., z7) X (Yo, . .-, y7) = (zo Yo, -, T7, Y7)
We have FT2(X x Y) = FT(X) x FT(Y). Thus, we can can define :

U.=1 x0
Uy=0x U
Ul=T" %0

So, we have :

0 0.0.4081,0,256,0,1,0.61681,0)
(0,0,0,0.0, .0. .0,4081 0,206,0,1,0,61681)
(00000000633210435201000)

These vectors are a base of the kernel of X — FT2(X)[11.15].
If M denotes the matrix of FT, we can write it using four 4 x 4 blocks :

_ J’[l 1 ;‘/[12
A\/j - ( 1’1‘31 AJQQ >

If z and y are two vectors of 4 elements, we have ;
FT(zy)[4.7]=0 &= y = =M Moy x
Let us define :

65281 4335 289 61170
3823 8992 53012 65248
8447 61748 56545 4335
4369 57090 3823 256

Now, if £ and y are two vectors of 8 elements, we have :

N = —Mp My =

FT2(zy)(8,15] =0 <= y = Nz" x Nz!
Where £ = 2% x z!. Let us define :
érlabe) = 0(¥z" x Nz' + %)

where g(abc) = z% x z! and R = FT2(0y%)[11,15] for an arbitrary y° (ome’s
phone number for instance). Then, ox(abc) is a vector which begins by g(abc),
and such that FT2(¢r(abe)) ends by a constant vector R.

So, we have :

(2) = 3NN g y=orlabe) + AU, + NU, + pU,



581

3.3 Solving (3)

If we hope that no »; (i = 11,12,13, 14) is equal to 0 (we may ultimately test
this condition, and forget the solutions y which do not pass this test, but this
will be very rare), the system :

y = dplabe) + AU, + XU + plU,
Y13 = @+ Yiayiy + Yo + 277
Y14 = b+ ylayfy + 11 + 21
Yis = ¢+ Yiayis +yro +21°
z[5,7] = abe
£[0,4] = Rec™*(g(abc)y)[8, 12]

mply :
s+ p=a+ (zi2+ A+ M) 311+ 256p) + 210 + 256 + 4352 + 277
214 + 61681A = b+ (213 + p)(312 + A+ A') + (211 + 256) + 2
735 + 616810 = ¢ + (214 +61681N) (310 4+ p) + (z2 + A+ A} +27°

where z = ¢g(abc). If we define -

/ 13 .
@ =a+ 2+ 20+ 277 - i
1 ald
b =b+zi3zip+ 1 +27 — g

/ 515 -
¢ =c+zianat it 27— s

we have :
Ziy 4 256 + 256 zp + 256 + 4332 @’ — (1 - 256212 )p A
Z13 +/1»—b].681 Z13 + u b/+(256+112)y. by =
61681 {z15 + p) + 1 1 ¢ — (61681 — z14)p 1

This is a linear system of unknown A and A’. If this system has an equation,
which determinant has to be 0.

3.4 Discussion

This condition may be sufficient in most of the cases. The determinant should
be a degree 3 polynomial. However, the coefficient of u? is the determinant of
the following matrix :

256 256 (1 — 25621,)
11 —(256+ z10)
61681 0 (61681 — 214)

which is 0 since the first line is 256 time the second.

The coefficient of u” is 0 with probability 1/p, this is rare. In this case, we
have one solution if the equation has a degree one, and zero or p solutions in the
other cases.
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u has to satisfy a degree 2 equation. If the discriminant is different from 0,
it has a square root with probability 50%. So, we have two different g or no
solution with probability 50%, and a single sclution with probability 1/p.

For each p, we are likely to have a uniq solution (A, A"). However, it is possible
to have 0 or p solutions, but it is rare. So, for each solution (A, X, ), we can
compute y in the system (3), then z. Finally, we have zero or two solutions x in
almost all cases.

3.5 Reduction of the Function FFT
To sum up, we have a function fg such that for a given abe :
friabe) = {D(x)[38.10]; 2[5.7] = abe A C{2)[11,15] = R}

fr(abe) 1s a list of 0 or 2 D(z)[8. 10] for each x such that 2[5.7] = abe and
C(z)[11,15]) = R. The average of number of z is 1, so fg is almost a function.

The function fg is a kind of reduction of F FT since a collision for fg gives
a collision for FFT. We can use the birthday paradox with fr to get some
collision. The expected complexity is O(2%4).

We can invert F ['T with fg to. If we are looking for & such that D{z){%. 13] =
z, we can compute R = Rec‘l(:){ll, 15] and look for abe such that fr(abe) =
z[0.2]. The complexity is 2*®. Then. we get the r required.

4 Finding Collisions with the Birthday Paradox

If we suppose that fg is like a real random function, the probability that a set
{fr(z;)} for k different z; have k elements is next to :

S

5

€

l

v
Fl

where n is the cardinality of the image of fgr. when & is next to /2. So. with
n = 2% and k = 3.2%4 the probability is 1%.

Two collisions have been found in 24 hours by a SUN4 workstation with
k = 3.2% different x. With the choice :

R=5726 17 fc b115 ¢5cl abdl

We got :
FET(17h3 2755 452 6915 2218 1948 00a3 0002) =
FFT{9¢70 504e 834c b15c f404 942 02a7 0002) =
0851 393d 37¢9 66e3 d8OI dR0B He8c 0568
and :

FFT(8cce 23a4 0864 f609 854 T0b2 029¢ 0002) =
FFT(9d53 43ae 3286 ada7 8c¢7T7 9877 0264 0002) =
10e5 49 £5 9df0 d91b 0450 a fee fbad 20683
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Conclusion

The main weakness of FFT-Hash-11 are described in section 2. First, the begin-
ning of the computation depends on too few information of the input : B(z){0, 7]
is a function of z[5, 7]. Second, the output allows to compute too much informa-
tion of the computations in FFT : D(z)[8,15] allows to compute C(x)[11,15].
The connection between B(z) and C(z) is linear, this makes our attack possible.

To get rid of the first weakness, we might mix Hy and z in A(z) before
applying Rec. Similarly, the result of < Hg,z > should be the set of D{x)2:41
instead of the right side.
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