
Content- Addressable Search Engines and DES-like 
Systems 

Peter C. Wayner 

Computer Science Department 
Cornell University 
Ithaca, YY 14863 

Abstract. A very simple parallel architecture using a modified version of content- 
addressable memory (CAM) can be used to cheaply and efficiently encipher and de- 
cipher data with DES-like systems. This paper will describe how to implement DES 
on these modified content-addressable memories at  speeds approaching some of the 
better Specialized hardware. This implementation is often much more attractive for 
system designers because the CA!vl can be reprogrammed to encrypt the data with 
other DES-like systems such as Khufu or perform system tasks like data compression 
or graphics. 
The CAM memory architecture is also ehsily extendable to build a large scale engine 
for exhaustively searching the entire keyspace. This paper estimates that it will be 
possible to build a machine to  test Zs5 keys of DES in one day for $30 million. This 
design is much less hypothetical than some of the othersin the literature because it is 
based upon hardware that wdl be available off-the-shelf in the late end of 1992. The 
architecture of this key search machine is much more attractive to an attacker because 
it is easily reprogrammable to handle modified DES-like algorithms such a s  the UYIX 
password system or Khufu. 

T h e  original DES system was designed to be easily implemented in hardware [SBSTT]  
and the current silicon manifestations of the cipher use modern processor design techniques 
to encipher and decipher information a t  about 1 to 30 megabits per second. Implementations 
of DES in software for standard CPUs, however, are markedly slower than  specialized chips 
because many of the operations involved in DES are bit-level manipulations.  As a result, many 
of the DES-like systems such as hlerkle’s Iihufu [MerSO] were designed as replacements t ha t  
could be easily implemented on conventional hardware. 

There is one class of general architecture, however, t ha t  implements bit-level operations. 
T h e  machines like the CM-1, CM-2 and CAI-200 from Thinking Machines Corporation and 
the Maspar machine all have thousands of one-bit processors. The  designers intended that  a 
large number of processors would compensate for the deficencies of the individual nodes. 

Another example of this small architecture is now emerging from the labs of memory 
designers who are trying to buiId sophisticated content addressable memory (CAM). T h e  
individual processors of these machines are even weaker than  the ones of the CM-1, hut  they 
can be packed very densely on a chip. The tiny processors have only a fraction of the memory 
of a CM-1 (42 bits versus thousands) and only a one dimensional interconnection network 
(vs. 12): but  this is sufficient to implement DES. Most importantly,  these restrictions allow 
a packing density (1024 processors per chip) t ha t  is significantly higher at a cheap price. 
(S30-$100 per chip) 

Implementing the cipher on generalized parallel architectures like the CAM have one main 
advantage- cost. Many computer designers often find tha t  the speed of a specialized DES 
chip is often not worth she price. Generalized, content-addressable machines, however, have 
many other applications and this makes them a good compromise for the system designer. 
T h e  design presented here can be easily reprogrammed in software t o  encrypt with DES or 

E.F. Brickell (Ed.): Advances in Cryptology - CRYPT0 ’92, LNCS 740, pp. 575-586, 1993 
0 Springer-Verlag Berlin Heidelberg 1993 



576 

any DES-like variant like Khufu. The hardware can also be used do data compression, data 
searches or even many different graphics operations. 

This paper will describe how to implement the DES algorithm on this architecture and 
produce results that are on par with the middle range of the specialized hardware. The 
main contribution is not extremely fast encryption speeds. It is very fast speed coupled with 
software-level flexibility. Many other papers have offered flexible hardware designs [VHVM88, 
FMP851 that can be easily reworked to handle variants of DES, but  none offer the flexibility 
of this system. Verbauwhede et  al. [VHVM88] requires new silicon to be fabricated in all 
cases and the designs of Falfield e t  al. [FMP8.5] run internal microcode that can be easily 
reprogrammed to implement other slight variants of DES such as cipher-block chaining. 
However, new algorithms like Khufu, however, would require a new micro-code instruction 
set. The flexibility of this CAM based design is quite attractive to both the system designer 
and the brute-f0rc.e attacker because it allows the hardware to be used for different purposes 
and different algorithms. 

1 Content-Addressable Memory Machines 

Standard memory maps an address to a value. Unfortunately, there are many applications 
when an algorithm needs to know which memory location holds a particular value. The 
only recourse is to search all the memory to find the value in question. Content-addressable 
memory is a hardware solution to this problem that will inver t  the search and provide t h e  
address holding a value in a single operation. This technique has been well-researched over 
the years and the book by Kohonen [Koh87] notes many approaches and summarizes some 
of the more salient aspects of this research. Several companies including AMD are making 
basic content-addressable memory modules. 

MIT and Cornell ([BriSO, WS89, ZipSU]) have developed more sophicated and powerful h i -  
plementations in silicon. These implementations allow the programmer to chain the result of 
several searches together in a simple fashion so that larger data structures and more compli- 
cated searches can be performed in hardware. Some of this hardware was originally intended 
to speed up logic programming, but many people have found surprising and interesting appli- 
cations for the simple hardware. Oldfield and his team at  Syracuse. for instance, are currently 
working on compressing data. 

A company, Coherent Research Incorporated of Syracuse. Yew York, is building sophisti- 
cated content-addressable memory chips called the Coherent Processor for widespread use. 
This paper will use their chip as an example because it is commercia!ly available. but  there 
is n o  reason why the algorithms cannot be modified slightly for use on similar chips. 

A t  the basic level, the Coherent Processor is a large, single dimensional array of very 
simple parallel processors. Each processor has 32 bits of memory (W,[O] 
denotes the processor number) and three one-bit registers (R , :  R2 and R3). It also has a 
processing unit that can execute instructions on the registers. transfer data  between the 
registers and the memory, communicate with the two neighboring processors or match a 
value on the internal bus. The instructions are simple operations that read the three register 
bits of memory and store the result in one of the three. The match instructions can be used 
to simultaneously compare one 42-bit value against the entire array of processors. If there is 
a match, then the appropriate value is placed in a register. 

The following table shows the basic Coherent Processor instructions and the number of 
clock cycles used to complete them. 

Recently teams at Syracuse University (some publications include iOld86, OWT87, OSBS7]), 

1. MATCH: Simultaneously compare the 42 general bits at each processor w i t h  the values 
on a bus and store the result of this match in R1. This is used to look up items quickly. 



577 

The match routine can Include wild-card matches for individual bits so it is possible to 
match for strings of hits like “OOOD******ll*****~‘ (a  “*” matches both a ”0“ and a “1’’). 
If you want to move the value of bi t  FV,[2] into Rz, then you would “ m a t c h  a pattern 
with 1 in bit W,[2] and wild-card matches specified for the rest and store the result in R3. 
If the value of bit Wi[2] was 1 in a particular word, then the match would be successful 
and a 1 would be stored in R3. If a zero was in bit W;[2], then the match would be 
unsuccessful and a zero would be stored. The values of the other columns would not he 
affected. Cost : 4 cycles .  

2. CALC: Calculate a three-bit function of the three registers and store the result in  a third 
register. Cost: 2 cycles .  

3. READ: Take the result of a selected word and place it on  the bus. This operation usually 
follows a MATCH operation. Cost: 3 c y c l e s .  

4. LVXITEr Move the result from the bus into the selected word(s). Cost: 2 cycles .  
5 .  SHIFT: The first registers of each word are interconnected. They can shift the bit in 

their register to adjacent words in one step. Cost: 2 cycles. 
6. WRITECOL U.W.v: Moves a b i t  from a regiskr into one of the 42 bits of memory. Cost : 

2 c y c l e s .  

These commands can he strung together to InanipirIate data i n  simple and straight- 
forward methods. 

2 Implementing Plain DES 

There are three main operations involved in encrypting a block of 64 bits w i t h  the basic 
mode of the Data Encryption St,andard known as the Electronic Code Book (ECB). They 
are 1) permuting the bits: 2 )  passing a 32-bit block through an s-box and 3) permuting the 
key structure. Each of these steps is easy to program on the Coherent Processor , in a large 
part  because the architecture is so limited. Several features of the instruction set ,  IioLvvever, 
make implementing the algorithm very easy. 

Let the plaintext blocks of data be denoted, BIT.. . !  8, and the individual bits of block 
Bi be (B,[O]. . .Bi[63]}. The key is K and the individual bits are A ’ [ O ] .  . . I<;%].  

There are sixteen rounds of encryption and the key scheduling algorithm chooses a 4S-bit 
subset of key bits to be used on each round. Let fic’)[o], . . fdi)[47] be the -IS bits used in 
round 1. Each block of 64 bits is broken into two 32-bit halves (called BL and BR) and in each 
round the value of one of the halves is mixed with a subset of the key bits, pased  through 
the s-box and then mixed wi th  the right 32-bit half. MQre precisely, in each round: 

Br. - B L  8 JC[,E(BR) 9 I<(’)). 

(“@”=XOR) Then BL and BR are exchanged. f is the s-box function that takes 4S bits and 
returns 32 and the E ( )  function is an “expansion” function that maps 32 bits into 48 bit.s SO 

it can be combined with the 48 bits of key. Some bits of the input to E are used more than 
others. 

The  data  to  be encrypted is broken into 54-bit blocks and each block is stored in 32-bit 
halves in two adjacent 42 bit words in the array, Wi and !Ti+:. 

2.1 Permuting the Bits 

At the beginning and the end of the encryption process, the 64 bits in the block are passed 
through a bit-wise permutation. This step is often considered the slowest part  of many 
software implementations for general purpose machines and many people believe that it was 



578 

included to slow down software implementations and force general CPUs to move bits one 
by one. The Coherent Processor must also move each bit one a t  a time, but a t  least this is 
the best that it can do. In practice, the large number of parallel processors makes up for the 
weakness. 

Let the permutation be written as a set of cycles: WZb[po] -+ Wj[p,] -+ . . . -+ wibi] - 
Wi[p~]. There are 64 bits to be exchanged, but they do not move in one cycle. The process can 
be accomplished by stringing together a chain of bit moving commands. When the bits to be 
exchanged are on different words, then the CAM must also execute a bit-passing command 
to  swap the bit to the adjacent word. The work can be summarized in pseudo-code: 

Move Wi[p~] into a bit . 
for k : = l  to  63 do 

Move Wi[p,] into a bit. 
Move W,[P,_,] into its destination 
If W,[pk] is on the wrong word, 

then pass it to the correct one. 
Move W, [p63] into W, [Po] . 

There are only 32 bits that need to be shifted between words It is possible to do this 
quickly. The next section which computes the values of the s-boxes IS much more time in-  
tensive. The cost: 129 MATCH and IVRITECOLTL~I.IN lnstructlons, 32 SHIFT instructions 
About 580 cycles 

2.2 Computing the S-boxes 

The s-box are responsible for providing the non-linear mixing of the bits that is necessary LO 

provide adequate security. At the highest level. the s-box is a function that maps 32 bits t.0 

32 other bits. The s-boxes used in DES are! though, much simpler and they can be described 
as eight functions that take 6 out of the 32 bits and return four. Some bits are used more 
than others. These eight s-boxes can be further simplified into 32 functions that map six bits 
to  one bit and this is the best level of abstraction to use when programming the Coherent 
Processor . 

Meyer and Matyas [MM82] describe t h e  design of the s-boxes in terms of minferms, which  
are roughly the same as clauses of boolean variables. An equation describing output of one 
bit of an s-box might look something like this: 

9 i [ l ] . l B i [ 2 ] . B i [ 3 ] . B ; [ 4 ] + B , [ l ] . ~ B i [ j ]  . -B i [G]+B2[2] .B , [5] .  (1) 

("."=boolean and, "+"=boolean or: "-"=boolean not.') There are three minterins in  che 
example and it is generally believed that the number of minterms in a minimal expression 
is one measure the complexity of the s-box. The recent papers by Biham and Shamir [BS91] 
and others , show that there are additional criterion that are more important. hleyer and 
hlatyas note that there are 52 and 53 minterms in the description of each of the 8 s-boxes. 

These minterm descriptions of the s-boxes can be directly converted into operations for 
the Coherent Processor . Each clause of variables to be ANDed together can he computed 
with a M.4TCH equation with appropriate set of ones for the variables in the clause, zeros 
for the negated variables in the clause and wildcards for the unrepresented variables. The 
expression from equation 1 can be encoded: 



57 9 

This takes 6 cycles per minterm. At 53 minterins pet s-box and 8 s-boxes per encryption 
round, this takes 2544 cycles per encryption round to calculate the values of the bits. It takes 
one SHIFT, one MATCH, one CALC and one COLUMNWRITE to XOR each of the 32 
bits into the adjacent word. That is an additional 384 cycles for 2928 per encryption round. 
There are 16 rounds in DES, the permutations take 580 cycles and the overall encryption 
process takes 37,523 cycles. 

2.3 Handling the Key 

When the result of one of the 32 functions is computed it  must, be XOR-ed with the key 
and then passed to  the adjacent word to be XOR-ed wi th  the appropriate bit. The same 
key encrypts all the blocks at  the same time and it can be included by XORing the key 
vector, I("),  into the match words. For instance, assume that "11001100 10101110 O l O O l l O O  
11100101" is the 48 bits of key being used in a round and the ininterms from equation 1 
define the s-box equations. Then the operations in example 2 become: 

The same key is used to encrypt or decrypt each block of data  in the simple version of 
DES. There are 56 key bits, but only 48 of them are used during each of the 16 different 
rounds. The bits being used are maintained by the program running on the general machine 
that is driving the Coherent Processor . It selects the subset of 48 bits that are used in each 
encryption and modifies the s-box functions accordingly. 

This method presupposes that  the sixteen 48-bit subsets of the keys are precomputed and 
"compiled" into the code. This process is non-trivial and certain to cost sonie time. When 
the amount of data  encrypted or decrypted per key change is large, then this "compilation" 
time is minimal. If the key is changed frequently,then there may be some impact on the 
encryption times. I t  is not likely to impact the overall throughput, however, if the CPU 
driving the CAM array is fast enough to interleave operations in between the various CAM 
instructions. This is not unreasonable because many of t,he CAM instructions take 2 to 4 
cycles to complete. A modern pipelined RISC architecture should be able to complete the 
key scheduling instruction inbetween. A better understanding of the effects of this will need 
to wait until the software is completely implemented on a working system. 



2.4 The Total Cost 

The current version of the Coherent Processor will run a t  speeds up to  50 MHtz. If an 
encryption takes about 47,428 cycles, then each pair of words in the processor array can 
encrypt about 1,000 64b i t  blocks per second. Writing a word into the array and reading it 
out takes 5 cycles in total. One chip of the current model has 1024 words or processors, SO it 
can read in, encrypt and write out blocks of 32K in 52,548 cycles. This is equivalent to 31.2 
megabits per second- something that is in line with the middle range of current DES chips- 
The  Cryptech CRY12C102 data sheet reports t ha t  i t  runs at 22.5 megabits per second and 
the Pijnenburg PCClOO attains 20 megabits per second. Moreover, the Coherent Processor 
is designed to be easily expanded by linking together multiple copies of the chip and n chips 
will R times faster for small numbers of n. When there are hundreads or thousands of chips, 
the cost of writing and reading the information from the Coherent Processor hecomes the 
limiting factor. Coherent Research reports t,hat t h e  new chip will cost about $100 per COPY 

in small quantities and substantially less in large ones. 

3 Exhaustive Attack on DES 

When DES was  introduced in 1977. some computer scientists protested that 56 bits were 
not sufficient because it would be possible to  do an exhaustive search of the key space in a 
short amount of time using a massively parallel computer. In their book, I feyer  and Mat!.= 
[MM82] discount that  possiblity and predict that  it would just not be physically possible to 
build t,he machine until the 1990’s because there were too many physical limitations. Heat  
and power usage are two major barriers. Diffie and Hellman describe the design in detail and 
respond to  these criticism in [DHi?]. 

How easy xould it be to build one today? Standard off-the-shelf rncryption chips are 
plentiful and relatively cheap, but they require a second processor feeding t,hem the keys 
and the test cases. -2nyone who wants to build such a machine must undertake a project 
of building such a large array of distributed computers. This would require a large amount 
of custom design work. A truly dedicated attacker could even fabricate custom DES testing 
chips which have a built in circuit for incrementing the key by one bit and testing the result 
against another register. Only governments could afford a budget this large. Moreover, t h e  
slightest change in the algorithm would render this machine worthless. 

Garon and Outerbridge calculated the approximate costs of designing such a machine and 
found that i t  would cost about 5129,000 for a machine that would break DES within 1 year if 
the machine was built in 1990. [GOSl]. They also say that  a machine that could exhaustively 
search all the bits in one day for $46 million in 1990. This price would drop to S18 million 
in 1995. They assume that it is possible to build a node that encrypts 2 million key tests for 
S25 in 1990 in order to complete such a machine. ‘They do riot describe the details of how to 
design the board or manufacture i t  is sufficient quanties. 

The  Content Addressable klemory array chips, however, a re  designed to be built into 
large parallel arrays of chips. I t  is already possible to  buy a board for a PC which has 6.1 
chips of a previous model of the Coherent Processor . Large arrays should not be hard to 
create. Moreover, the algorithm is implemented in software, so the machine can also be used 
to  attack many other subtle and not-so-subtle variations of DES. 

W h a t  is the best way to do an e-xhaustive search with the current architecture of the 
Coherent Processor? The version described for simple encryption and decryption is able to 
work very quickly because it can encode the key in the stream of instructions fed to the 
Coherent Processor. This approach must be abandoned because an exhaustive search of the  
key space requires that each processing node must use a different key. 



581 

One alternative is to  store the key bits in the 10 extra tag bits stored a t  each node. Two 
nodes are used to hold tlie two 32-bit half-blocks of each case, so there are up to 'LO emra 
key bits which can be stored at  each node. Let there be 2" processors in the machine. That 
means there are 2"-' potential keys that  can be tested with each round because two nodes 
are used for each encryption. Assume that n <_ 21 and the problem does not overflow the 
physical space of the real machine. (Later versions of the architecture could have more free 
bits available.) At  each pair of nodes, store a unique set of n - 1 key bits. These bits will be 
used by this pair of nodes alone. The other 56 - (n - 1) bits are shared by all the instances 
and they are encoded in the instruction st,ream as before. 

.4t the beginning of each round of encryption. the local key bits must be XOR-ed into 
the appropriate half-block of bits before that half-block is passed through the s-boxes. These 
four or five instructions will XOR in the key hit  I(, in to position Bj: 

The SHIFT instruction is only necessary if the key bit is on the opposite node from t h e  
destination bit. This process is repeated at the end of the s-box calculation to remove t,he bit 
from the data. Only 48 of the 56 key bite are used at each round. but  it is possible that u p  to 
n -  1 of these bits will come from the bits stored locally. The operations in equation 1 take 16 
cycles. They must be repeatcd 2n - 2 times for each round. The result takes 5 l ? n  - 512 extra 
cycles for each encryption. If a machine was built with a full complement of 2" processors. 
then it would take 37,126 cycles to test 229 potential kevs. This step must be repeated 236 
times and the machine is capable of doing about Si '5  of these tests per second or about 76 
million per day. Exhausting t,he entire space would require 904 days. If the ivell-known crick 
of exploiting symmetry in the keys is  used to reduce the key space to 2'' kek-s, then one 
machine will test all in 452 days. 

How much would such a machine cost'? There are 2" processors on a chip that will cost 
between $30 and SIOO. 211 chips are necessary and this would cost between about 960,000 
and %200,000. Control hardware would add additional S10.000 to 1520.000. 45 machines would 
cost about 53 million dollars and exhaustively search tlie space in 10 days. 530 million would 
buy a machine that would search the space in 1 day with-450 machines. I'm assuming that 
volume discounts would apply at this scale and $30 is a price that should apply at  the end 
of 1992 when the chips become widely available. 

Although this design is still hypothetical, it is much more real than some of the other 
designs available because the chip fabrication and design is already complete. The process of 
building a machine out of chips is not much different from connecLing a large bank of memory 
up to a single processor. This paper does not pretend to address any of the important 
questions about heat and power dissipation. These could also affect the design and it is 
possible that my estimate of 910,000 to 820,000 for the SUppGrt hardware is too low. 

The standard assumptions about time and transistor density should apply to this model 
a~ well. It is entirely conceivable that we will see larger improvements in density and price 
of these machines in the near future because they are younger designs. 

The UKIX password system uses a version of DES ohat svt-as presumably modified to make 
i t  impossible to gang together a number of off-the-shelf DES chips and use the system to 



break UNIX passwords. This large machine, however. is not constrained by this modification 
or any other modification that re-arranges the pattern of s-boxes, permutations and mixing. 
The salting process used in the UKIX password operation is easy to express with extra 
bit swapping operations. The only problem with attacking systems like Merkle’s Khufu is 
expressing the sboxes as minterms. Incidentally, logic minimization is also easily handled by 
the Coherent Processor . 

The availability of these systems puts even more pressure on the Unix password system. 
In 1989, Feldmeier and Karn [FK89] estimated that the UNIX password system was insecure 
for short alphanumeric passwords because a DEC 3100 could process about 1000 passwords 
per seconds. Given that each password needs 25 passes of DES, then it is possible to estimate 
that a Coherent Processor based processor will be able to test about 20,000 passwords per 
second per chip. If a basic Coherent Processor processor comes with between 8 to 64 chips, 
then it is easily possible to imagine computers with the ability to test between 160,000 and 
1,280,000 tests per second. How fast could such a standard machine test all passwords made 
up of 6 alphanumeric characters (“A” - “Z” , “a” - “z” , “1” - ‘9”) ? Between about 3.75 days 
(8 chips) and about half a day (64 chips). A large scale machine with 2 l 1  chips should be 
able to Gackle passwords with 7 alphanumeric passwords in about one day. 

4 DES with Modified Chaining 

The last several sections described how to encrypt a large block of data in parallel using a 
simple DES with no feedback. A more robust version of DES feeds the result of encrypting 
each block into the key selection of the next block. Let Ei = f ( l i , B , )  represents the ci- 
phertext blocks. A feedback cipher sets E; = j ( I t v 3  Bi a Ei-1) Lvhere .‘%’’ represents boolean 
XOR. Eo is set to a pre-arranged constant. This process is called Cipher Block Chaining 
(CBC). 

The modification adds a great deal of strength to the plain DES because it reduces the 
redundancies that can developed if there is an 64 bit block that occurs often in the plaintext. 
The feedback mode ensures that a different value will permute each block and obscure the 
redundancy. It should be obvious that this system cannot be used when all the blocks are 
computed in parallel. Here is a modified version of chaining that can be implemented i n  
parallel. 

One solution is to exchange and S O R  hits with neighbors a t  the end of certain rounds 
of encryption. In round 1. the left half of each block is used to compute the value XORed 
into the right half. After this, the left blocks are exchanged with the neighboring blocks and 
XOR’ed into the right halves of the neighboring block. This can be done with pseudo-code 
like this. TV, is the left half and iV,+l is the right half. 

for k:=O to 31 do 
MATCH Wi[k] + R1 
CALC COPY R1-+ R? 
SHIFT 
SHIFT 
CALC XOR R1R2 + R1 
WRITECOLUMN R1 + W + l [ b ]  

This command shifts one bit to the next pair of words over and XOR’s it with the value of 
a neighboring block. It  takes 16 cycles per bit to achieve this. This can be repeated as often 

desired at the cost of slowing down the entire encryption. Doing this at the end of each 
round of encryption costs 8.132 cycles and this slows the encryption rate to 27.0 megabits 



583 

per second. In this case: a change in block E, will propigate through blocks Bi t,o Bttl6 and 
effect their encrypted values. Arbitrarily complex shifting can be included a s  long as care is 
taken to ensure that  the results can be reversed. If this step is done often in the process. it 
can effectively turns the encryption into one large block a t  a small decrease in speed. 

5 Conclusion 

This paper has described a simple architecture intended for information storage and retrieval 
that can also encrypt and decrypt messages faster than all hut the best specialized chips. 
More importantly, the results are achieved in software so the process can be extended to 
other DES-like systems without refabricating the chips. The only problem is expressing the 
s-boxes so they can he implemented with minterms. This should make the chip much more 
desirable for many implementat,ions of DES that  require more flexibility t,han extreme speed. 

Chips like the Coherent Processor also make i t  very easy to create a large-scale processor 
for exhaustive cryptanalysis of the key space because the chips were designed to be grouped 
toget,her in a large array. The hypothetical machine described here is much different from die 
other machines described in the literature because it is both reprogrammable and substan- 
tially closer to being realized. Only a minimal amount of logic is necessary to turn the chips 
into machines that  are ible to handle DES and \variants of DES like the U S I X  password 
system or Khufu. 

The  flexible software st.ructure also provides an easy method to test for broken chips. I t  
is possible t o  load each line with a test vector, encrypt them in parallel and r.hen test for 
failures with a MATCH instruction. Many of the earlier designs for large machines needed 
to build in a specific test function to maintain the system. 

There are several changes to t,he Coherent Processor tha t  would improve i t s  ability to 
encrypt DES. Currently. the key is “compiled” into the program for the CA14 and this may 
be a non-trivial event. If future versions of the architecture have more that  42 bits per rvord. 
then i t  could be practical to store the key locally and add the key in bit by bit as it is done in 
the brute force attack. Also, the current version of the Coherent Processor will only compute 
3 bit functions. 4 or 5 bit functions may be quite practical and they would certainly speed 
the results of the process. 

Working hardware is due i n  early 1993 and this will provide an opportunity to develop 

6 Acknowledgements 

T h e  author would like to thank Chuck Stormon at Coherent Research for taking the time to 
teach me how to program the Coherent Processor and making many valuable cornment,s about 
the structure of this paper. I would also like to thank Luke O’Connor for his comments 011 the 
structure of the paper and for providing the minterin representations of the s-box included 
here in the appendix. Richard Outerbridge also provided invaluable help and suggestions. 

References 

[BriSO] Sharon Marie Britton. 8k-trit  Datobose AcceIerator w ~ t h  Error Detection. PhD thesis, 
Massachusetts Institute of Technology, February 1990. 

[BS91] Eli Biham and Adi Shamir. Differential cryptanalysis of Snefru. Khafre. REDOC-11, 
LOKI, and lucifer. In Crypto 91; Santa Barbara, California, 1991. 

[DH77] Whitfield Diffie and Martin Hellman. E.shaiistive crypt.analysis of the nbs data encrpp 
tion standard. Computer, 10(6):74-54, 1 9 i 7 .  



584 

[FKE9] 

[F MP 851 

[GO911 

[Koh87] 

[ Me19 01 

[MM82] 

[N BS7 71 

[Old861 

[0 S B87] 

[0 WN 8 71 

[ST791 

David C. Feldmeier and Philip R. Karn. In 
G. Brassard, editor, Advances in Cryptology: Proceedings of Crypto '89. pages 44-63, 
New York City, Berlin, 1989. Springer-Verlag. 
Robert C. Fairfield, Alex Matusevich, and Joseph Plany. An 1si digital encryption pro- 
cessor. IEEE Communication, pages 23-37. July 1985. 
Gilles Garon and Richard Outerbridge. Des watch: .\nd examination of the sufficiency of 
the d a t a  encryption standard for financial institution's information security in the 1990's. 
Cr yptologin, 15( 3 ) :  177-193, July 1991. 
Teuvo Kohonen. Content-Addressable Memories. Springer-Verlag, Berlin, New York 
City, 1987. 
Ralph Merkle. Fast software encryption function. In A.J .  Menezes and S.A. Van Stone, 
editors, Crypt0 90, Berlin, New York City, 1990. Springer Verlag. 
Carl H. Meyer and Stephen M. Matyas. Cryptography: JVeu Dimension in Computer 
Security. John Wiley and Sons, New York, 1982. 
NBS. Data  encryption standard (des). Technical report, National Bureau of Standards 
(US), Federal Information Processing Standards, Publication 46, Xational Technical In- 
formation Services, Springfield, Virginia, April 1977. 
J.V. Oldfield. Logic programs and an experimental architecture for their execution. 
Procedings of the I.E.E.E. Part E ,  133:163-167, 1986. 
J.V. OIdfieId, Charles D. Stormon, and M.R. Brule. The  application of vlsi content- 
addressable memories to the acceleration of logic programming systems. In CompEuro 
87, VLSI and Computers, pages 37-30, Hamburg, Germany, May 1987. 
J.V. Oldfield. R.D. Wdhams, and N.E.JViseman. Content-addressable memories for stor- 
ing and processing recursively-divided images and trees. Electronzcs Letters, 33(6):?6?- 
263, 1987. 
Robert Morris Sr. and Ken Thompson. Pasword  security: A case history. Communica- 
t ions of the ACM, 72:594-597, November 1979. 

Unix password security- ten years later. 

[VHVSCS8] Ingrid Verbauwhede, Frank Roornaert, Joos Vandewalle, and Hugo J .  De >fan. Security 
and performance optimization of a new des encryption chip. l E E E  Journal of Solid-State 
Circuits, pages 647-656, June 1988. 

[M'S89] John Wade and Charles Sodini. A ternary content-addressable search engine. IEEE 
Journal of Solid-state Circuits, 24(4).1003-1013, August 1989. 

[Zip901 Richard Zippel. Programming the da ta  structure accelerator. I n  Proceedings o f  
Jerusalem Conference o n  Information. Technoloyy, Jerusalem, Israel. October 1990. 

7 Appendix 





586 


	Content- Addressable Search Engines and DES-likeSystems
	1 Content-Addressable Memory Machines
	2 Implementing Plain DES
	2.1 Permuting the Bits
	2.2 Computing the S-boxes
	2.3 Handling the Key
	2.4 The Total Cost

	3 Exhaustive Attack on DES
	4 DES with Modified Chaining
	5 Conclusion
	6 Acknowledgements
	References


