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Abstract. When a shsdow of a threshold scheme is publicized, new 
shadows have to be reconstructed and redistributed in order to maintain 
the same level of security. In this paper we consider threshold schemes 
with dieenrollment capabilities where the new shadows can be created 
by broadcasts through a public channel. We establish a lower bound on 
the size of each shadow in a scheme that allows L disenrollments. We 
exhibit three systems that achieve the lower bound on shadow size. 

1 Introduction 

In safeguarding a secret, there are many situations where two or more guardians 
provide more security than only one. Common examples can be found in safe 
deposit boxes and in the control of nuclear weapons. In these cases, two keys 
are needed to  activate the control mechanism; the ability to exercise shared 
control is lost if either key is lost or either key’s owner is incapacitated. To guard 
against such a loss, copies of keys or instructions may be made and distributed to 
different parties. However, increasing the number of distributed copies increases 
the risk of some copy being compromised, thus reducing the security of the 
system. By distributing “shadows” of a shared secret (which can be used as a 
key),threshold schemes allow shared control without risking compromise of the 
secret. 

Let S be a secret which needs to be protected. The secret S is concealed 
among n different shadows in such a way that: 

1. For some threshold t,t 5 n, called the “threshold size”, any t shadows de- 

2. No t - 1 or fewer shadows uniquely determine the secret. 
termine the secret S. 

The secret S is secure against the collusion of any t - 1 or fewer owners of 
shadows, and the scheme is protected against the loss of any n - t shadows. 

Blakley[l] published a, ( t ,  n) threshold scheme using hyperplanes. Shamir[7] 
proposed a threshold scheme using polynomials over a finite field. Various other 
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schemes (using vector spaces, combinatorial designs, finite geometries and Reed- 
Solomon codes) exist [3,4,  6, 91. Schemes with the property that the disclosure 
o f t  - lor fewer shadows does not reveal any information about the secret are 
called perfect threshold schemes. 

The disclosure of a shadow decreases the security against collusion of a thresh- 
old scheme since every t - 1 remaining shadows, together with the disclosed 
shadow, determine the secret. Thus, the threshold is reduced from t to t - 1. 
In order to maintain the same threshold t ,  the key must be changed and the 
shadows modified. One way to do this is to design a new ( t ,n)  scheme where 
shadows are then distributed through secure channels. The security of the new 
system is not compromised if the new shadows are independent of the disclosed 
shadow. However, setting up the secure channels for distributing shadows can 
be expensive. 

This paper considers schemes which distribute modifications to existing shad- 
ows through insecure channels. Such a scheme is said to have a disenrollment ca- 
pability. Section 2 gives an information theoretic definition of threshold schemes 
with such a disenrollment capability and establishes a lower bound on the size 
of each shadow. Section 3 gives three examples of implementations that achieve 
the lower bound. The Brickell-Stinson Scheme[2] depends on the existence of a 
random number generator. The Nonrigid Hyperplane Scheme extends the orig- 
inal Blakley[l] Scheme to allow disenrollments. Finally, the Martin Scheme[5] 
makes use of threshold schemes with higher thresholds and reduces the cost of 
each public broadcast. 

2 Information Theory and Lower Bound 

A ( t ,  n) threshold scheme distributes partially redundant shadows SI, ..., Sn 
among n users so that any t or more shadows uniquely determine the secret 
K .  The random variable K representing the secret takes values in the space IK. 
The random variables S1, ..., Sn representing the shadows take values in a space 
S. Using the entropy or “uncertainty” function H(X) introduced by Shannon[$], 
we have the following definitions. 

Definitionl. A ( t ,n)  threshold scheme is a collection of random variables 
(I<, &, ..., Sn) such that for any 1 5 il < iz < ... < ij 5 n, 

H(I<ISi,, ..., Si j )  = 0 v.i 2 t ,  (1) 
H(KISi,,  ..., SIj) > 0 V j  < t .  (2) 

Condition (1) says that every set o f t  or more shadows determines the secret 
uniquely, whereas condition (2) indicates that the secret cannot be uniquely 
determined by fewer than t shadows. A ( t t n )  threshold scheme is said to be 
perfect if 
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Condition (3) says that knowledge of fewer than t shadows does not reduce one's 
uncertainty about the secret. 

Let us consider the case where one shadow, say S1, is disclosed or invalidated. 
In order to maintain the threshold level at t ,  a new secret key has to be chosen 
and new shadows have to be constructed. If information on the new shadows 
can be distributed through a public channel without compromising the secrecy 
of the new key, then such a (t,n) threshold scheme is said to have a 1-fold 
disenrollment capability. If L + 1 secrets can be chosen so that, while disenrolling 
L shadows successively, the broadcast public messages do not compromise the 
secrecy of the new key, then such a (t, n) threshold scheme is said to have an L- 
fold disenrollment capability. An information-theoretic model of such a scheme 
is given below. 

Let K O ,  K1, ..., KL denote the L + 1 secrets. Let 4,  ..., S, represent the shad- 
ows, any t of which determine the original secret key KO.  Without loss of gen- 
erality we may assume that Sj corresponds to the shadow that is invalidated 
at the i-th disenrollment, i = 1, ..., L. Let PI, ..., PL denote the public messages 
that are broadcast successively at each disenrollment step. Note that each Pi 
may include informations obtained from the revealed shadows, SI , . . . , S; . 

Definition2. A ( t ,  n) threshold scheme with L-fold disenrollment capability is 
a collection of random variables (KO , K1 , .. ., KL,  Sl , . . . , S, , Pl , .. ., PL) such that 
for each i ,  i = 0, ..., L, 

Definition3. A ( t ,  n) threshold scheme with L-fold disenrollment capability is 
said to be perfect if 

H(KilAj(k),  PI, a.. ,  Pi, 5'1, ..., Sj) = H ( K i )  V k  < t .  (6) 

Let us assume that H ( K j )  = rn bits. For a perfect ( t , n )  threshold scheme 
with L-fold disenrollment capability, conditions (4) and (6) can then be expressed 
in terms of mutual information as 

I ( K i ; A j ( k ) , P l ,  ...,Pi) = m if k > t  ( 7) 
~ ( ~ i i A ~ ( k ) , ~ l , . . . , ~ i , S ~ ,  . . . ,Si) = 0 if k < t  (8) 

respectively, where we remind the reader that by definition, 

qx; Y) = H(X) - H ( X I Y )  = H ( Y )  - H ( Y  IX). 

In order to minimize the cost of distributing shadows through secure chan- 
nels, we wish to minimize the number of bits required to encode each shadow. 
It is conceivable that a ( t ,  n) threshold scheme with higher disenrollment capa- 
bility requires higher overhead for encoding the shadows. The following theorem 
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shows that this is indeed the case by establishing a lower bound on the number 
of bits required to encode a shadow that grows linearly with the number L of 
disenrollments. 

Theorem 4 .  Let  (KO, K 1 ,  ..., ICL, S1, ..., S,, PI , ..., PL) be a perfect  ( t ,  n) thresh- 
old scheme with L-fold disenrollment capability. If H ( K j )  = m, for  i = 0, ..., L,  
then 

H ( S j )  2 ( L  + 1)m V j  = 1, ...( n. 
To prove the theorem, we first establish that the knowledge of previous secret 

keys and the public messages, together with any t - 1 shadows, provides no 
information about the new secret. 

Lemma5. For L 2 i 2 0, 

I(Ki; KO, K1, ‘‘‘1 Ki-1, A,(k),  4, ..., Pi, S1, ..., Sj) = 0 if k 5 t - I. ( 9 )  

Pmof. Recall from information theory that conditional mutual information is 
defined as I ( X ; Y  12) = H(X1.Z) - H ( X I Y ,  2) = N ( Y I 2 )  - H ( Y  IX, 2) and 
satisfies the identity I ( X ,  Y ;  2) = I ( X ;  2) + I(Y;  Z l X ) .  Thus, 

I ( K j ; K o , K l ,  . . . , K j - 1 ,  Ai(lC),Pl, . + . I  Pi,S1, ...,Sj) 
= I (K i ;  A , ( k ) ,  Pi, ..., Pi, 4 ,  ..., Si) 

+I(Ki ; KO, ..., Ki-1 IAi(k), Pi, ..., Pi, S1, ..., Si). 

If we can show that I ( K j ;  KO, ..., Kj-llAi(k), PI ,  ..., Pi, S1, ..., Sj) = 0 when k 5 
t - 1, then (9) follows directly from (8). But 

I(Kc; KO, Ki-lIAj(k), P I ,  ..., Pj, 5’1, -.-, Si) 5 H(KiIAi(k),  P I ,  -..>Pi, 4, ---, Si) 

0 
and H(KjIA , (k ) ,  P I ,  ...! Pi,&, ..., Si) = 0 by (4), so the desired result follows. 

We next observe the following identiy. 

Lemma 6. For j 2 i + 1, 

I ( K i ;  Sj IAi(t - l), PI,  ..., Pi, KO, .., ICi-1) = m. 

Proof 

I ( K i ;  SjlA;( t  - l), Pi, ..., Pi, KO,  ..., Ki-1) 
= I (Ki ;  Sj, Ai(t - l), Pl1 ..., Pi, KO,  .., Ki-1) 

- I ( K i ; A ; ( t  - 1),Pll ..., Pi,Ko, . . ! K i - l )  
I (Ki ;  A j ( t ) ,  Pi, ..., Pi, KO,  ..., Ki-1) = 

= m. 

The second equality is obtained because j 2 i + 1 and thus joining Sj with 
Ai(t - 1) gives a set Ai(t) for use in (7), and by noticing that the second term 
in the previous equation is 0 from Lemma 5 because mutual information is 
nonnegative and I ( X ;  Y )  5 I ( X ;  Y,  2). The last equality is obtained directly 
from Lemma 5. 0 
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Proof oftheorem. We first observe that for j = 1, ..., n, we may c h o w  Sj = 
SL+~. Thus H ( S j )  = H ( S L + ~ )  and we need to show only that H(Sc+l) 2 
(L + 1)m. Now, 

H(SL+1) 

2 H(st+llAL(t - 1)) 
2 H(SL+lIAL(t - 1)) - H(SL+~IPI, ..', PL,Ko,  ' - 1  KL, A L ( ~  - 1)) 
= 1(4, ..., PI,, KO, ..., KL; SL+IIAL(t  - 1)). 

We have shown that if a (t, n) threshold scheme can disenroll L participants, 
then each secret shadow must contain at least ( L  + l ) H ( K o )  bits. In the next 
section we exhibit three examples of such threshold schemes where each shadow 
contains exactly (L + 1)H(Ko) bits. 

3 Threshold Schemes with Disenrollment Capability 

In this section we will exhibit three examples of perfect (n, t) threshold schemes 
that allow disenrollments and achieve the lower bound on shadow size established 
in the previous section 

3.1 Brickell-Stinson Scheme[2] 

Let (K,S1,  ..., S,,) be a perfect ( n , t )  threshold scheme, where K represents 
the secret chosen from IK and Si represents a shadow chosen from S. We further 
assume that H ( K )  = m. An (n, t )  threshold scheme with L-fold disenrollment ca- 
pability (KO, . .., KL, 31, ... , .$,,, P I ,  . .. , PL) can be constructed from (K, S1, .. ., Sn) 
as follows: 

0 Each Ki represents a secret chosen uniformly from IK. 
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Each S j  represents a shadow S; = (Si,Ri,l, ..., &,L) where each R , , j  is a 
random binary string of length rn. 
When & is invalidated, a new key Kj is chosen and associated with it are 
the new shadows {Sj+l, ..., SA} that are formed as specified by the original 
(n,t) threshold scheme. The public message Pj that is broadcast through the 
public channel is the union of messages of the type 

{Ri+l,i + $+I, ~ i + 2 , i  + $+2 1 .-*, K,i + S, I- 
Note that each R.,,j is a random string and can be considered as a one- 

time pad that protects the shadow $; thus, H ( S j )  = H ( q ( P i )  and H ( K i )  = 
H(ICiIA;(k),  4, ..., Pi) for k < t .  Furthermore, it is easy to check that each 
shadow contains ( L  + l)m bits which is the lower bound given in Section 2. So, 
we have the following theorem. 

Theorem 7. The Brickell-Stinson scheme i s  Q perfect (n, t )  threshold scheme 
with L-fold disenrollment capability that achieves the lower bound, H ( S j )  = 
( L  + 1)m. 

3.2 Nonrigid Hyperplane Scheme 

For simplicity we first consider the case where L = t - 1; the cases where 
L # t - 1 can be similarly designed and will be discussed later. Let IEI be the 
collection of all hyperplanes in a t-dimensional vector space E over GF(4).  The 
n ’ perplanes represented by the rows of an n by t + 1 augmented matrix 

U l , l  a1,2 * ’ * q t - 1  1 b l  
a2,1 a2,2 . . . a2,t-1 1 bz 

an,l an,Z * a n , t - ~  1 bn 
.’ must be in general orientation, that is, the unaugmented n by t matrix 

must have the property that every one of its t by t submatrices is nonsingular. 
The intersection of the hyperplanes corresponding to any t or more rows of this 
matrix is a point v ,  whose first coordinate is the secret Kc,. The intersection of 
hyperplanes corresponding to any collection of fewer than t rows must intersect 
in an affine subspace consisting of points which do not all share a common first 
coordinate. Equivalently, the vector (10 ... 0) must never appear as a row in the 
row reduced echelon form of any j by t submatrix of U ( A )  given in (11) if j < t .  

Let Ki correspond to the first coordinate of an arbitrarily chosen point zli in 
the vector space E .  Corresponds to every point v’ in E ,  there is a translation 
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of hyperplanes such that the new point of intersection is the point v'. Each 
shadow Sj is given by the j-th row of the matrix A in (10). Clearly, every 
shadow consists o f t  log, p bits, which is the lower bound given in Section 2. On 
revealing Sj, the public information Pj is the collection of translations of the 
unrevealed hyperplanes, that is, { C j , j + l ,  c j , j + z ,  ..., c,,,,} such that the i-th newly 
translated hyperplane can be easily computed by converting the last entry in A 
to b; + ~ j , i .  

Theorem& The nonrigid hyperplane scheme is a perfect (n , t )  threshold scheme 
with t-fold disenrollment capability that achieves the lower bound, H(S j )  = 
t log2 9 -  

Proof. To show that the hyperplane scheme is a perfect (n, t )  threshold scheme, 
we need to show that every key in IK remains equally probable after each disen- 
rollment. Let L be a 1-dimensional subspace in E determined by t-1 hyperplanes 
in A ; ( t  - l), and let (210,. . . , q - 1 )  be the chosen points in E that correspond to 
the known secrets KO, . . . , K i - 1  as defined above. For each each j > i, the trans- 
lations of these chosen points given by V = { V O , V ~  - (0,. . . , C l , j ) , . .  . , w i - 1  - 
(0,. . . , ci-l,j)} must be contained in the hyperplane corresponding to partici- 
pant j. Since i 5 t - 1, for every point p E i? and every j > i, there exists a 
hyperplane Hj E M that contains the point p and the corresponding translated 
points in V .  In other words, every p E L can be the chosen point vi and every 
key can be the new secret. Thus, the entropy of every key remains the same and 
(6) is established. 0 

In the case where the number of disenroilment L is less than t - 1, we publish 
t - 1 - L columns of the matrix U ( A )  in (11) and still maintain the same perfect 
threshold scheme properties. If L is greater than t - 1 , then we use the additional 
columns to store informations about changing the orientation of each of the 
hyperplane after each disenrollment. Consider L = t + x, x 2 0 and the matrix 
in (10) representing the shadows is then given by 

After i disenrollments, each new hyperplane is then given by (aj,i,,, . . . , aj,it-2, 1, 
b j  + c ; , j )  where i, = l + ( i + m  mod t + z )  and ci,, isthe corresponding broadcast 
translation. Such a scheme can be shown to be perfect by using similar arguments 
as above. 

3.3 Martin Scheme[5] 

Every ( n , t  + i) threshold scheme, i 2 0, can be used as an ( n , t )  threshold 
scheme by publishing i additional shadows-from the shadow space S .  Thus, 
any t or more shadows together with the i published shadows can uniquely 
determine the secret. Based on the above notion, an (n,t)  threshold scheme 
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with L-fold disenrollrnent capability (KO, . . . , K L ,  31, . . , , sn, PI ,  . . . , PL) can be 
constructed from L + 1 randomly chosen perfect ( n , t  + L )  threshold schemes 
(K;, s;, . . . , Sk), i = 0,. . . , L as follows: 

0 Each Ki represents a secret chosen from the key space, IK. 
0 Each ,$ represents a shadow of the form (S:, Si, . . . , Sf) where each S{ is 

a shadow from the j-th (n ,  t + L )  threshold scheme, (Kj , S;, . . . , Si). 
0 When L?i is invalidated, the new key I f ,  is used and associated with it, L 

additional “new” shadows have to be published. Among these L additional 
shadows are the revealed shadows, S:, Si, . . . , $. 

Since all the L + 1 keys, KO,  K1, . . . , K L ,  are independent of one another, the 
disclosures of Kj and S$ , 1 2 1, give no information on K i ,  as long as i # j .  
However, the disclosed shadows, Si, . . . , Si, together with L+t-i  other shadows 
can uniquely determine the key K;. Thus, only L - i additional shadows from S 
are needed to be broadcast through the public channel, and we have the following 
theorem, 

Theorem9. The Martin scheme is a perfect (n, t )  threshold scheme with L-fold 
dasenrollment capability that achieves the lower bound, H(Sj) = ( L  + l ) H ( K ; ) .  

We can further modify the Martin Scheme to reduce the size of the public 
broadcast after each disenrollment . Specifically, we randomly choose an ( n ,  t + i )  
threshold scheme (instead of an ( n , t ~ )  threshold scheme), for 0 5 i 5 L .  After 
the i-th disenrollment, we use the i revealed shadows Sf, . . . , Si as the addi- 
tional shadows required to be published, thus reducing the size of the broadcast 
message. 

4 Conclusion 

We have established a lower bound on the initial overhead required for ( n , t )  
threshold schemes that allow disenrollments and have given three examples of 
such implementations. We further modify the Martin Scheme to reduce the cost 
of broadcasting the public informations. An interesting open question remained 
to be solved is “What is the lower bound on the entropy of the public broadcast”. 
We conjecture that the lower bound is given by 

Conjecture. For 0 5 i 5 L ,  
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