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Abstract

We study a conjecture stated in [6] about the numbers of non-zeras of, res-
pectively, the auto-correlation {unction and the Walsh transform of the function
(=1)/*) where f(z) is any boolean function on {0,1}". The result that we obtain
leads us to introduce the class of partially-bent functions. We study within these
functions the propagation criterion. We characterize those partially-bent functions
which are balanced and prove a relation between their number (which is unknown)
and the number of non-balanced partially-bent functions on {0.1}" 7. Eventually,
we study their correlation immunity .

1 Introduction

The study of the properties of the substitution transformations of DES has resulted
in nonlinearity criteria for boolean functions. Perfect nonlinear boalean functions, also
called bent functions, are defined to be at maximum Hamming distance from affine func-
tions. Those functions. of great importance in cryptography, seem to be rare, and very
few are known. They are neither balanced nor correlation-immune. So, it seems useful
to define a larger class of boolean functions, containing balanced functions, and preserv-
ing a high level of nonlinearity. That is what this paper obtains through the proof of a
conjecture stated in [6]. The class of functions that we obtain is also a superclass of the
class of quadratic functions. It shares with this class all its nice properties relative to the
propagation criterion, the balancedness and the correlation immunity.

n is a positive integer, G = {0, 1}*.
The dot product on G is defined by :

Ve=(z,..,2.) s ={s...., sn)EG T-s=1risi+ ...+ zasn € {0, 1}

where the operations on {0, 1} are the usual operations on GF(2).
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Let f be a real-valued function on G. The Walsh (or Hadamard) transform of f(z)
1s the function on GG :

fls)=>" fla)-1=".

el

Let f be a boolean function on G. We will denote by F the Walsh transform of the
real-valued function F(z) = (—1)/(%) ;

F(s) = (-1ftrtes,

T€G

It satisfies the Parseval’s relation (cf.5], p.416, corollary 3 or the lemma below) :

D (F(s)® =2

3€G

f is kth-order correlation-immune if (cf.[1], [9]) :
F(s) =0 1< w(s) <k (where w(s) denotes the Hamming weight of s).
The auto-correlation function of F' is defined by :

Fs)= S (-1

TeG

f satisfies the propagation criterion PC(k) of degree & (1 <k < n)if:

There exists functions satisfving PC{n) if and only if n is even (cf.[4]). In that case,
any boolean function f satisfies PC{n) if and only if, for any element s of G, the number
F(s) is equal to : +27/% (cf.[4] or the lemma below). Such functions are cailed bent.
According to Parseval’s relation, the bent functions are those functions which are at
maximum Hamming distance from affine functions.

The definition of bent functions is invariant under any linear iscmorphism, and we
may define the bent functions on any GF(2)-space E of even dimension as the functions

satisfying -

Z(—l)f(r)”(x“) =0,Vs € £,5 # 0 or equivalently :
zeE

Y (1@ = 2 JIE] Vse £

TeE
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In [6], the authors conjecture that the numbers of zeros Ny and Nz of the functions
# and F associated with any boolean function satisfy :

(2" — N ) (2" - JVF“) > 2"

and that equality holds only for functions of order 2 (that are functions whose algebraié
normal forms have degrees at most 2 : we will call them quadratic) or satisfying PC(n)
or PC(n —1). At Las Vegas Conference on Finite Fields, they changed the second part
of their conjecture in : “equality holds only for functions of order 2 or satisfying PC(n)
(n even) or such that Ny = 2" — 2 (n odd)”.

In section 2, we prove that the first part of that conjecture : (27 — Nz )(2" ~ Np) > 27
is true. We characterize those functions for which equality holds. We call these func-
tions partially-bent for they are related to bent functions (cf. the theorem below). Any
quadratic function is partially-bent.

In section 3, we study those partially-bent functions which satisfy PC(k), those which
are balanced, kth-order correlation-immune (we deduce that both versions of the sec-
ond part of the conjecture are false). We prove that the number of partially-bent bal-
anced functions on G is equal to the number of partially-bent non-balanced functions on
{0, 1}"'1, times (27 —1). All the results of that section hold for quadratic functions, and
we deduce that there are more balanced quadratic functions than non-balanced quadratic
functions on G if and only if n is odd.

2 Partially-bent functions

Let f be any boolean function on G, let us recall that the functions # and F defined in
section 1 are related to each other the following way :

Lemma 2.1 The Walsh transform of the function 7 is equal to the function F? .

VEEG, Y Hs)(—1)" " = (F(1)*.

s€G

Proof: According to the definition of the autocorrelation function, we have :

VEEG, Y As) (1) = (Z(—l)”””(“”“ ) =3 (Z(—l)f(er(rH)MJ) ‘

SEG s€G \red re€G \s€G
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Since G is invariant under any translation, we may replace s by £ + s in the second sum.
We obtain :

Z Ae) (=1 = Z (Z(_1)}(::»~f(s_>’tv.:r+.«))) - (Z(_l)f(1)+t-r> (Z(_l)l(x)+t ,>

sE€G z€G \3€G e sE€EG

2

= (E(—uﬂf“"f) = (P :

reG

We now prove the first part of the conjecture stated in [6] and characterize those

functions for which equality holds :

Theorem 2.1 Any bhoolean function f on G satisfies (2% — N:)(2" — Nz) > 27,
Equality holds if and only if :

(i) there exists an element t in G such that for any s in G, #(s) s equal to 0 or to
(=1)*2" that 15 1f and only 1of :

(i) there exzists a linear form r — t-x on G, two subspaces £ and E' in G (E' of

even dimension), such that :

- G is the direct sum of E and E'
- the restriction of f 1o £’ 1s hent

-forallz in E, and all y m B/, f(z +y) 1s equal to : f(y)+1t .

Proof: - Since the values of the function 7 all are at most equal to 27, we have :

2T~ N; 227 R(s) = 277 (F(0)*
S€G
The number Ny clearly does not change when we replace the function f(z) by any of the
functions f(z) +z -t (t € G). Replacing f(z) by f(z) + ¢ - t, we change F(0) in F(t).
Thus :

N> 27N (E())? Ve G (1
We also have : )
Y (F()?
) -2'271
MmN 1€ . (.2)

- sup(}%(t))2 - SUP(F(t))g

Multiplying these two inequalities, we obtain :

(2% = N:)(2° — Np) > 27
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We now shall prove that if equality holds then (i) is true, if (i) is satisfied then so is (it)
and if (ii) is true then equality holds.

- If equality holds then, according to (1) and (2) :

n_Ns = 977 sup(F(0))? h N 2
2 sup(F(t))* (and 2 Np PO )

Let 7 be the auto-correlation function associated with the function f(z) + z -t where
(F(t))2 is maximal. By applying the previous lemma to the function f(x) + 2 -¢, we
obtain :
Z #(s) = (F(t))? and therefore : Z fle) =2M(2" — N¢) = }: 2"
s€G $€G S€G[7(2)20
Thus : Vs € G,7(s) = 0 or 2. We have : ¥s € G,7{(s) = (—1)"""#(s), and (1) is true.

- If (1) 1s true, then let £ be the set of all the elements ¢ of G such that :

rlz) = (=1 2" thatisVs € G, flz +s) = f(s) + = - ¢.

E is clearly a subspace of G. Let E’ be any subspace of G such that G is the direct sum
of E and E'. Then :

VwEE v£ 0= v E>r(v)=0=
Trer Lyep (~DIWHER S BT o (DI =0,

Thus (i1) is satisfied.

- Suppose (ii) is true. We may without loss of generality suppose that ¢ = 0 since chang-
ing the value of ¢ does not change Ns or Np. Then, the value of f(z +y) (r € E.y € E’)
does not depend on z, and we have :

0 ifs¢ £ (v#o)

Vs=u+vue E,v€E /s)=|E] Z(_l)f(y)ﬂ(wv) = { E||E'| = 27 otherwise

yEE’
~o sz n 5 0ifs¢ E+
M- Ny = {ElandVs € G, F*(s) = Z D=1 = Z (=1 = { inlgg itherwise
€6 T€E ‘

where E* = {s € G/¥Vz € E,5 -z =0},

Se, 2" = Nz = =|E*| and (2" = N#)(2" ~ Np) =27, o
REMARK :

1) Wehaveinfact : Ve € E.Vy € G, flz +y) = fy) +t =
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2) We have proved :

A\ 2
2" — N; F(t) 1
on ngp(?,. Z?"-—N,s’

which shows the trade-offs between the highest correlation to linear functions (in the
middle), a certain measure of correlation immunity (on the right) and the non-vanishing
of the auto-correlation function.

Definition 2.1 A function f which satisfies the equality (2" — N;)(2" - Nz) = 2" is
called partially-bent.

Let f be a partially-bent function, £ and E’ two linear subspaces of G such that G is
the direct sum of E and E’, f is bent on £" and f(z +y) = f(y) +t.z,z € E,y € £".
Let oy be the function defined on G x G by : ¢s(u,v) = f(0) + f(u) + f(v) + f(u + v).
Then : Vz,2' € E\Vy,¥ € E',op(z + y,2' +¥/) = ¢s(y,¢'). Since f |p/ is bent , the
restriction of ¢y to E' x E' is non-degenerate, and :

(prlz+yv)=0 VWeEG) & (y=0).

E is the set of all the elements u of G such that ¢ (u,») =0 Vv eG.

Thus E is unique.

Clearly, E' is not.

If E has dimension n ~ 2h, then ¢t may take 22k yalues since the values of the linear form
r —t -z are fixed only on E.

Definition 2.2 Let f be a partially-bent function, p; be the function defined on G x G
by -

ey (u,v) = f(0) + flu) + f(v) + flu +v).
The linear space E = {u € G/ps(u,v) =0 Vv € G} is called the kernel associated with
f.

Any quadratic function is partially-bent (cf [6]) and the kernel associated with f is the
kernel of its associated symplectic form ;.

REMARK :

1) The definition and the linearity of the set E are valid for any boolean function

2) Since the degree of any bent function on a linear space of dimension 2p is at most
D, the degree of a partially-bent function is at most the half of the codimension of its
kernel.
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3) the set of partially-bent functions on  is not a linear space : for instance, if n = 6,
the non-quadratic partially-bent functions are the non-quadratic bent functions which
all are known (cf [7]) and it is easy to find two bent functions whose sum is neither bent
nor quadratic.

4) The number of partially-bent functions seems to be difficult to obtain : it depends on
the number of bent functions which is unknown (except for small values of n).

5) Let f be a boolean quadratic function on G and 1 an affine boolean function on the

same space, then the following boolean function on {0,1}**! :

(Il, .. -7In,xn+1) & {071}n+1 — f(xl,...:rn) +i'n+11(131y---;xn)

is quadratic and any quadratic function on {0, 1}"**! is of that type (thus, the number
of quadratic functions on {0, 1}**! equals the number of quadratic functions on {0, 1}7,
times 27*1). That is no more true if we replace “quadratic” by “partially-bent”.

3 Properties of partially-bent functions

Since the authors conjecture in [6] that, if n is even, the non-quadratic partially-bent
functions satisfy PC{n), let us begin with the propagation criterion :

Proposition 3.1 A partially-bent function f on G satisfies PC(k) (k=1,...,n) if and
only if its asseciated kernel E only conteins elements of Hamming weight > k, ar equal
to 0.

0

Proof: The proof is straightforward : #{z} =0 if and only if z ¢ E.

Thus, the second parts of the conjectures stated by B. Preneel in [8] and at Las Ve-
gas Conference on Finite Fields (which characterize the functions for which equality
holds) are false :

if n is even, suppose that E contains an element of weight 1, then f does not satisfy
PC(1),

if n is odd, 2" — N7 = |E| may be any odd power of 2, and if the codimension of £ is at
least 6, then f may be non-quadratic.

REMARK :

The number of partially-bent functions satisfying PC(k) seems to be even more difficult
to obtain than that of the partially-bent functions : it depends on the number of linear
spaces of minimum weights greater than &, which is unknown except for small values of n.
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The weight of a boolean function on G is the size of its support. A function f(z) is
called balanced if its weight is 27~1 that is if F(0) = 0.

Proposition 3.2 A partially-bent function f on G s balanced if and only if its restric-
tion to its associated kernel is non-constant, that is if and only if there ezists an element
u in G such that :

Ve € G, flr+u)= flz)+ L.

Otherwise, its weight is equal to 27~ = 2°~1=*(h &N h < n/2).

Proof: Let f be a partially-bent function, E its associated kernel, and £’ a subspace

such that G is the direct sum of £ and E’.

F(0)is equal to : }:(—l)ﬂ—“:I = Z(—-l)t = Z (—1)7*%) and these two last sums satisfy :
ueG reE yeE'

Hy) 1 V‘ lft e EJ"
Z( 1) =+ /|E’| # 0 since f g is bent, and : (—l)

|E| otherwise.
yEE' tEp

Thus, f is balanced if and only if ¢ does not belotig to EL, that is if and only if f
1s non-constant on E.
In that case, let u be any element in E\t+. where t+ = {reG/r-t =0} Wehave:

Vee G flz+u)=flz)+tu=flz}+1

Conversely, if u satisfies that property, then f is non-constant on E.

If f is non-balanced, suppose E has dimension n — 2A, then the sum Z(—l)”“), which
ue@

is equal to 2™ — 2w(f), is also equal to : £|E|\/1E'| = =2"72h2h = £an-7

So, w(f) =27t g 2n-h-1

il

Proposition 3.3 The number A, of partially-bent balanced functions on G = {0,1}"
is equal 1o (27 — 1) times the number A, _
O (n> ).

1 of partially-bent non-balanced functions on

Proof: Let f be a partially-bent balanced function on G and E its associated kernel
(since f is balanced, E is not the trivial space {0}).

Let E' be a subspace of G such that & is the direct sum of £ and E’, t any element of
G such that f(x +y) = f(y) +tz, z € E, y € E' (t # 0 since [ is balanced) and H the
linear hyperplane t* = {z € G/z -t = 0}.

Let ¢ : {0,1}*~! — H be a linear isomorphism. Then the boolean function ¢ = fo ¢
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is clearly partially-bent of associated kernel ¢7(E). According to proposition 3.2, it 1s
non-balanced since :

Vze o HE), Yy € o E Y, gz + y) = 9(y).

Let us now calculate the number of (4. @, g) so associated with f :

suppose E has dimension n — 2A(2h < n), then the set of all the possible values of ¢ is
an affine set of direction E1, so its size (which is the number of possible H) is 22",

H being chosen, there exists (cf (5]) (277 = 1)(2771 = 2)...(2"~! —27~?) isomorphisms
¢ from {0,1}"" to H, and if H and ¢ are chosen, then g is unique. So the number of
(H,®,qg) associated with fis 22h(2"-1 — 1) . (2"~ —2n-2)

Notice that the dimension of the associated kernel ¢~ (E) of gisn — 1 — 2h > Q.

Let now g be any partially-bent non-balanced function on {0,1}"~*, suppose its as-
sociated kernel £ has dimension n — 1 — 2k, and let H be a linear hyperplane of {0, 1}"
and ¢ an isomorphism from {0,1}"~! onto M. Let us calculate the number of partially-
bent balanced functions f on G such that g = fo ¢.

The associated kernel £ of f necessarily contains #{ £*'), has dimension n— 2k, and is not
contained in H. So. it is equal to a linear space of the type : {u+v,u € of E”),v € {0,s}}
where s is any element outside /. The number of such E is equal to the number of such
elements s in {0, 1}"\H, divided by the size of 3(£"), since two elements s and 5" define
the same set £ if and only if s+ belongs to ¢( E”). The number of kernels E is therefore
92h

E being chosen, f is unique since the value of f on E\¢{E") must be equal to f(0)+ 1.
So the number of partially-bent balanced functions f on G corresponding to {H.d.g)
is 2°* and the number A, of partiallv-bent balanced functions on G equals the number
of ordered pairs (H.g) where H is any linear hyperplane and ¢ any partially-bent non-
balanced function on {0,1}"~!. The number of linear hyperplanes being 2™ — 1, we have
A= (27 = DAL 5

REMARK :

1) The previous proof is valid when we restrict ourselves to the quadratic functions since
f is quadratic if and only if g is quadratic.

Therefore, the number u,, of balanced quadratic functions on G is equal to (2" — 1) times
the number u;,_, of non-balanced quadratic functions on {0,1}*~! (n > 2).

This result can be recovered by another way : the number mn is known (cf[3]) :

fa
' 3] agn n=-2h+1
o M) 4n+ 2" —1)...(2 -1)
= g(Bnsr g 9§ priaeny L
Hn Z (220 — 1)(22h-2 - 1) . (22 - 1)

h=1l
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(where { ] denotes the integer part), and therefore equality g, = (2" —1)ul,_, is equivalent

(3] . L,
2(3)+n+1 —Q—QZthhﬂ;( (27 ~1)...(2n 2+ _ 1) _
h=1

with :

2% _Y(2FR-T 1) (22 1)

=

(20 -1 f2+2 ) 2D
h=1

= (2r-t 1), . (2r* ~
(22h -1)...(22 - 1)

That last equality is checked in [2].

2) Proposition 3 would give us a chance to evaluate the number of partially-bent balanced
functions if the number of partially-bent functions was known.

That is not the case, but we have :

Proposition 3.4 The number of balanced quadratic functions on G is greater than that

of the quadratic non-balanced functions when n is odd and smaller when n s even.

Proof: Let pn (respectively ul ) be the number of quadratic balanced (respectively non-
balanced) functions on G.
Since the number of quadratic functions is 2("% J+? (f [5]),we have :

w2 2, = 20T n -

Let us prove by induction on n that -
. nhly L

Un < py, that is gl > 20T if nis even. n > 2
. 41y, .

Ha > ul, that is pf, < 20" if n Is odd, n > 3.

That is true for n = 2, 3 since po = 6, p, = 10, uz = 70, p§ = 38.

Suppose it is true for odd n > 2, then :

o <203 =5 208 - gnkt 10

=917 LT

S ey < 2T (222 (207 1))
=907 _ o1 o)
<207

And the proof is complete. S
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Proposition 3.5 A partially-bent function defined by : Ve € EVy € E' flz +y) =
fly) + t.z s kth-order correlation-immune (respectively kth-order correlation-immune
and balanced) if and only if t + EL only contains elements of Hamming weight greater
than k or equal to (0 (respectively greater than k).

Proof: We have :

F(S) = Z (_1)r.t+x's+f(y)+y s - Z(_l)z.(H—S) Z (__l)j(y)-}—y,s‘

r€E yeE! r€E yeE'

Since f is bent on £, the sum Z (=1)/9*¥5 is different from 0.
A yeE’
Therefore : F(s) #0< s+t E+. =

REMARK :

If f is non-balanced, then we may take t = 0 and the condition becomes :

E*\{0} only contains elements of Hamming weight greater than k.

According to the singleton bound (cf [5]), we then have : dim E+ < n — k and since the
degree of the restriction of f to a subspace £’ of G is bounded by dim E'/2 {cf [4]). the
degree of f is bounded by (n — £)/2.

So, there does not exist any function which would be partially-bent and kth-order cor-
relation immune of maximal degree : the maximal degree of the kth-order correlation
immune functions is n — & (cf [9]).

On the contrary, there does exist partially-bent balanced k-th order correlation-immune
functions of maximal degree (that degree is n—k —1) : see [1j or (2] for the case k = n—3.

4 Conclusion

The main interest of the class of quadratic functions is in its nice properties : we know
the weights of the functions and we can characterize the functions which satisfy PC{(k),
those which are balanced, kth-order correlation-immune. But the quadratic functions
are of a poor interest from a cryptographic point of view since they are too simple.

The class of partially-bent functions shares the same qualities since all the properties
of the quadratic functions can be generalized to the partially-bent functions (with three
exceptions : it is not a linear space, we are not able to calculate its size or to give the
general algebraic normal form of these functions).

The interest of this class of functions is greater from a cryptographic point of view be-
cause the partially-bent functions involve bent functions whose complexity may be great
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(clearly, a partially-bent function will have a high level of nonlinearity if its associated

kernel is small).
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