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Abstract 

We study a conjecture s ta ted in [S] about  t h e  numbers of non-zeros of, res- 
pectively, the auto-correlation function and the Walsh transform of the  function 
(-l)'(zl, where f ( z )  is  any boolean function on  {0, I]". T h e  result t h a t  we obtain 
leads us to introduce the class of partially-bent functions. We study within these 
functions the propagation criterion. We characterize those partially-bent fiinctions 
which are  balanced and prove a relation between their number  (which is unknown) 
and the number of non-balanced partially-bent functions on { O ,  I}"-'. Eventiially, 
we study their correlation immunity , 

1 Introduction 

The s tudy  of the properties of t h e  substitution transfo:mations of DES has resulted 
in  nonlinearity criteria for boolean functions. Perfect nonlinear boolean functions, also 
called b e n t  firnctzons. are def ined to b e  at inaxiniurn €lamining ~ l i s t a n c e  from affine Func- 
tions. Those functions. of g r e a t  i m p o r t a n c e  in c r y p t o g r a p h y ,  seem to be rare: and  very 
few are known. They are neither balanced nor correlation-inimune. So, it seems useful 
to define a larger class of boolean  funct.ions. containing balanced funct,ions. and preserv- 

ing a high level of nonlinearit,y. That  is what this p a p e r  obtains through the proof of a 

conjecture stated in [GI. The class of functions that  we obtain is also a superclass of t h e  

class of quadratic functions. It shares  with this class all its nice proper t ies  re la t ive  to the 
propagation criterion, the balancedness and the correlation i m m u n i t y .  

n is a positive integer, C = {O! I}". 
T h e  dot product on G is defined by : 

where the o p e r a t i o n s  on (0, l} are the usual o p e r a t i o n s  011 G F ( 2 )  
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Let f be a real-valued function on G. The Walsh (or Hadamard) transform of f (z )  
is the function on G : 

Let f be a boolean function on G. \ZP will denote by F the IYalsh transform of the 
real-valued function F ( r )  = (-l)j(zl 

F(s) - y ( - l j f ( x ) + 2 .  
r E G  

I t  satisfies the Parseval's relation (cf :5j, p 416, corollary 3 or the lemma below) 

f is krh-order correlation-immune if ( C L [ ~ ] ~  ["I) : 

F ( s )  = 0 
The auto-correlation function of F is defined by : 

15 u:(s)  5 k (where w(s) denotes the Hamming weight of S )  

f satisfies the propagation criterion P C ( k )  of degree k (1 5 k 5 n )  i f :  

There exists functions satisfying P C ( n )  if and only if Ti is even (cf.[.i]j. In that  case, 
any boolean function f satisfies P C ( n )  if and only i f ,  for any element s of G, the number 
p ( s )  is equal to  : i . L n / ?  (cf.[4] or the lemma below). Such functions are called bent. 
According to Parseval's relation, the bent functions are those functions which are a t  
inaxiinum Hamming distance from affine functions. 

The definition of bent functions is invariant under any linear isomorphism. and we 
may define the bent functions on any GF(2)-space E of even dimension a s  the functions 
satisfying : 
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In [6], the authors conjecture tha t  the numbers of zeros S, and -Vp of the functions 
1' and F associated with any boolean function satisfy 

and tha t  equality holds only for functions of order 2 ( that  are functions whose algebraic 
normal forms have degrees a t  most 2 : we will call them quadratic) or satisfying P C ( n )  
or P C ( n  - 1). At  L a s  Vegas Conference on Finite Fields, they changed t,he second par t  
of their conjecture in : "equality holds only for functions of order 2 or satisfying P C ( n )  
( n  even) or such that  :Vf = 2" - 2 ( n  odd)". 

In section 2, we prove that  the first part of that  conjecture : (2" - :"J;j(2" - ! f p )  2 2" 
is true. We characterize those functions for which equality holds. We call these func- 
tions partially-bent for they are related to  bent functions (cf. the theorem below). Any 
quadratic function is partially-bent, 

In section 3. R e  study those partially-bent furicrions which satisfy P C ( k ) ,  those which 
are balanced, kth-order correlation-immune ('we deduce that  both versions of the sec- 
ond part of the conjecture are false). We prove that  the number of partially-bent bal- 
anced functions on G is equal to the number of partially-bent non-balanced functions on 
(0, l}"-'. times (2" - 1). A11 the results of t,hat section hold for quadratic functions, and 
we deduce that  t,here are more balanced quadratic functions t.han non-balanced quadratic 
functions on G if and only if 71. is odd. 

2 Partially- bent functions 

Let f be any boolean function on G,  let us recall tha t  the functions i. and F defined in 
section 1 are related t o  each other the following way : 

Lemma 2.1 The Lt7alsh transform of ihe  f u n c t i o n  I^. zs equal io the  functzon F 2  : 

vt E G, c ? (S) ( - l )*  * = (F(t))? 
s E G  

Proof: According to  the definition of the autocorrelation function. we have : 
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Since G is invariant under any translation, we may replace s by z + s in the second sum. 
We obtain : 

We now prove the first part of the conjecture stated in [6] and characterize those 
functions for which equality holds : 

Theorem 2.1 .4ny  boolean function f on G saizsfit5 (2" - .V..)(2" - .VF) 2 2" 
Eqnalzty holds if und only if 

( i )  there exists an element t zn G s u c h  ihat fo r  any s 211 G ,  r ( s )  z s  equa l  lo  0 or to 

( 2 1 )  there exists a linear form c - t G o n  G, l i ~ o  subspaces E and E' in G (E' of 

'2" that 2s if and only if 

even dzmension), such that 

- G is t h e  dzrect s u m  of E and E' 

- t h e  reslrzction off io E' is bent 

- for all x in E. and all y in E', f(z - I/) I S  equal t o  . f ( y )  t t 5 

Proof: ~ Since the values of the function i. all are at most equal to  2", we have ' 

The number il'? clearly does not change when we replace the function f ( x )  by any of the 
functions f(z) + x t ( 1  E G).  Replacing f(1) by f(x) + 1: . t ,  we change p ( 0 )  in F(t). 
Thus : 

(1) 
, n  2 - 2 2-"(P(t))' Vt E G 

\Ye also have : 

Multiplying these two inequalities, we obtain 
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iVe now shall prove that  if equality holds chen ( i )  is true. if (i) is satisfied then so is (ii) 
and if (ii) is true then equality holds. 

- If equality holds then, according to (1) and (2) 

Let i; be the auto-correlation function associated with the  function f(z) + z . t where 
(E'(t))' is maximal. By applying the previous lemma to the function f(z) + z . t ,  we 
obtain : 

?(s) = ( r ' ( t ) ) 2  and therefore : F(s) = Y ( 2 "  - X?) = c 2". 
3EG 3 E G  s E G / i ( s ) # O  

Thus : Vs E G ,  F(s)  = 0 or 2". We have : Vs E G, ?(s) = (-1)' '? is) ,  and (i) is ' true. 

- If (i) is true, then let E be the set of all the  elements 2 of G such that  : 

+(x) = (-l)$ '2" that  is Ys  E G, f(z I s) = f ( s )  + t ' t .  

E is clearly a subspace of G. Let E' be any subspace of G such that  G is the direct, sum 
of E and E'. Then : 

Thus (ii) is satisfied 

- Suppose ( i i )  is true. Lye may without loss of generality suppose that  t = 0 since chang- 
ing the value o f t  does not change IV, or .Vp. Then,  the value of f(z i y )  (z E E. y e E') 
does not depend on x, and we have : 

0 if s $ E (v f O) 
JEIIE'I = 2" otherwise 

0 i f s  $ EL 
2"(El otherwise 

Vs = u + u .  u E E, v E E', F(s) = /El 

2"-.Vf = /El and Vs E G, E '? (s )  = r ( x ) ( - I ) '  = 2"(-1)' ' = 

(-l)f(Y'+'cytsi = 
YE€' 

rEG Z E E  

where E l  = { s  E GIVx E E, s .  z = 0). 
So, 2" - iVp = /EL\ and (2" - :Vp)(%" - IVp) = 2*. 
REMARK : 

1) We have in fact : Vz E. E .  Vy E G: f(z + y) = f ( y )  + 1 z 

0 
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2) We have proved : 
2 

2n - N p  2 sup (9) 2 m, 1 
2" 1 

which shows the trade-offs between the highest correlation t o  linear functions (in the 
middle), a certain measure of correlation immunity (on the right) and the non-vanishing 
of the autecorrelation function. 

Definition 2.1 A function f which satisfies the equalify (2" - N+)(2" - N F )  = 2" is 
called partially-bent. 

Let f be a partially-bent function, E and E' two linear subspaces of G such that  G i s  

the direct sum of E and E', f is bent on E' and f(z + y) = f(y) + t . x ,  x E E ,  y E El. 
Let 'p, be the function defined on G x G by : p j ( u ,  u )  = f ( 0 )  + f(u) + f (u)  + f(u + u).  

Then : V r ,  T' E E,Vy, p' E E',p,(r + y, E' + y') = (pf(y, y'). Since f I E J  is bent , the 
restriction of 'pj to E' x E' is non-degenerate, and : 

(p j (++y ,v )  = O  Vv E G) (9 = 0). 

E is the set of all the elements u of G such that 'p j  (u,  u )  = 0 Vu E G. 
Thus E as anique. 
Clearly, E' is not. 
If E has dimension n - 2h, then t may take 22h vaIues since the values of the linear form 
x + t . z are fixed only on E. 

Definition 2.2 Let f be a pavtially-beni function, pj be the function defined on G x G 
by : 

(01 (u ,  4 = f(0) + f(u) + f ( 4  + f(u + .I. 
The linear space E = {u E G/poj(u, v) = 0 Vv E G }  is called ihe kernel associated with 

f, 

Any quadratic function is partially-bent (cf [S]) and the kernel associated with f is the 
kernel of its associated symplectic form pi. 

< 

REMARK : 
1) The definition and the linearity of the set E are valid for any boolean function 
2) Since the degree of any bent function on a linear space of dimension 2p  is at most 
p ,  the degree of a partially-bent funcqion is at  m a t  the half of the codimension of its 
kernel. 



3) the set of partiallybent functions on G is not a linear space : for instance, if rz = 6,  
the non-quadratic partially-bent functions are the non-quadratic bent functions which 
all are known (cf [ i ] )  and it is easy to find two bent functions whose sum is neither bent 
nor quadratic. 
4) The number of partially-bent functions seems to be difficult to obtain : it depends on 
the number of bent functions which is unknown (except for small values of T I ) .  

5 )  Let f be a boolean quadratic function on G and 1 an a s n e  boolean function on the 
same space, then ahe following boolean function on ( O , l } " + l  : 

(21: . .  . , ~ n : t n + l )  E { ~ , l } " + ' - f ( t l ~ . . . ~ ~ ~ )  i~n+ll(rl~.-.,~n) 

is quadratic and any quadratic function on (0, l}"+l is of that type (thus, the number 
of quadratic functions on {0,1)"+' equals the number of quadratic functions on (0,  
times 2""). T h a t  is no more true if we rep lace  uquadratic" by  "pari ial ly-bent: ' .  

3 Properties of partially-bent functions 

Since the authors conjecture in [S] that. if n is even the non-quadratic partially-bent 
functions satisfy PC(n) .  let us begin with the propagation criterion . 

Proposition 3.1 -4 par t ia l ly -bent  f u n c t z o n  f on G salisfi~s P C ( k )  ( k  = 1, .... n)  2.f and 
only if r t s  associotsd kernel  E only contains elements gf aammzng ueight > k, o r  equal  
t o  0. 

r Y Proof: The proof is straightforward : i ( r )  = 0 if and only if I: 6 E .  

Thus, the second parts of the conject.ures stated by B. Preneel in [6] and at Las Ve- 
gas Conference on Finite Fields (which characterize the functions for which equa1it.y 
holds) are false : 
if n is even, suppose that E contains an element of \\-eight 1, then f does not satisfy 

if n is odd, 2" - 3:~ = /El may be any odd power of 2, and if the codimension of E is at 
least 6, then f may be non-quadratic. 

PC(1), 

REMARK : 

The number of partially-bent functions satisfying P C ( k )  seems to be even more difficult 
to obtain than that  of the partially-bent functions : it depends on the number of linear 
spaces of minimum weights greater than k ,  which is unknog-n except for small values of n. 
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The weight of a boolean function on G is the size of its support. A function f ( x )  is 
called balanced if its weight is ?"-I, that is if c ( 0 )  = 0. 

Proposition 3.2 ..I partzaliy-bent f unc t ion  f on G zs balanced zf and only zf zts restrzc- 
tzon to  zts associated kernel zs non-consiant,  ihat 2s zf and only if there exzsts an element 
u zn G such tha t  . 

VX E G f ( ~  + U) = fix) - 1 

Otherwzse, zts uezght 2s equal t o  2"-' i 2"-'-' ( h  E N. h 5 n / 2 )  

Proof: Let f be a partially-bent function, E its associated kernel. and E' a subspace 
such that  G is the direct sun1 of E arid E' 
F ( 0 )  1s equal to  

C(-l)f'y' = 
YE€' X E E  

E(-l)"" = E(-l)' 
UEG T E E  Y E E '  

( - l ) f c s '  and these two last siirns satisfy 

O if t 4 E l  
o t h e m  ise . f 0 since f ,E l  is bent, and r ( - l ) t  L = 

Thus,  f is balanced if and only if t does noc belong to E l ,  that  is if and only if f 
is non-constant on E. 
In that case: let u be any element in E\,tL. where t l  = {z E G / x  t = 0). We have : 

tix E G. f(z + u )  = f(x) f l . u  = j ( s )  + 1. 

Conversely, if u satisfies that p rupe r t l ,  then f is non-constant on E 

I f f  is non-balanced, suppose E has dimensiun n - 2h ,  then the s u m  ~ ( - l j r c u ) !  which 

is equal to 2" - ?u;(f) ,  is also equal to  : ~ / E I , / F ~  = i ~ - ' * 2 '  = & ~ - n .  

so. w ( f )  = 2"-1 i 2 n - h - 1 ,  

uEG 

i 

Proposition 3 .3  T h e  number  A, o f  parizally-beni balanced junc izons  o n  C = {O, 1)" 
I S  equal t o  (2" - 1 )  lzmes t h e  number  o f  partially-bent non-balanced func2zons on 
( 0 , l ) n - i  ( T l  >_ 2) .  

Proof: Let f be a partially-bent balanced function on G and E its associated kernel 
(since f is balanced, E is not the trivial space {O}) .  
Let E' be a subspace of G such that  G is the direct sum of E and E', 1 any element of 
G such that  f(x + y) = f ( y )  + t . z !  I E E ,  y E E' ( t  f 0 since f is balanced) and H  he 
linear hyperplane t' = {z  E G / x  t = 0). 
Let 4 : (0, l}"-l --* H be a linear isomorphism. Then the boolean function y = f 0 d 
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is clearly partially-bent of associated kernel d-'(E). According to proposition 3 . 2 ,  it  is 
non-balanced since : 

Let us now calculate the  number of (H. 6 ;  9 )  so associated with f : 
suppose E has dimension n - 2h(M < n ) ,  then the set of all the possible values o f t  is 
an affine set of direction E L ,  so its size (which is the number of possible H )  is 2'h. 
H being chosen, there exists (cf j5j) ( Z n V 1  - 1)(2"-! - 2 ) .  . . (Y-' - Y-?)  isomorphisms 
4 from (0: l}n-l to H. and if H and b are chosen, then g is unique. So the number of 
( H ,  b ,  g) associated with f is 22h(2"- '  - 1). . . (2n-1  - 2*-'). 
Notice that the dimension of the associated kernel +-'(E) of g is n - 1 - 2h 2 0. 

Let now g be any partially-bent non-balanced function on (0,  l}>-', suppose its w- 
sociated kernel E" has  dimension n - 1 - 2h, and let H be a linear hyperplane of (0 .1 ) "  
and 4 an isomorphisni fro171 (0 ,  I}''-' onto H. Let  u s  calculate the number of part'ially- 
bent balanced functions f on G such that  g = f o 0. 

T h e  associated kernel E of f necessarily contains b( E " ) ,  h x  dimension n - 2h, and is not 
contained in H. So. i t  is equal to a linear space of the type : { U - Y ~ U  E o ( E " ) .  u E {O,s}} 
where s is any element outside H. The number of such E is equal to t!ie number of such 
elements s in (0. l ) " \H.  divided by the size of o(E" ) .  since twc elements s and s' define 
the same set E if and only if s l s '  belongs to c( PI. The number of kernels E is therefore 
Z ? h ,  

E being chosen. f is unique since the \value of f on E\>o(E") must he equal to f ( 0 )  + 1. 
So the number of partially-bent balanced functions f on G correuponding to  (H. 0. g) 

is 22h and the number A, of partlall?--bent balanced functions on G equals the number 
of ordered pairs (H.g) where H is any linear hyperplane and q any partially-bent non- 
balanced function on { O .  l}"-'. The number of linear hyperplanes being Zn - 1, we have 
A, = pn - l )A ; - l .  0 

REMARK : 

1) T h e  previous proof is valid when we restrict ourselves to the quadratic functions since 
f is quadratic if and only if g is quadratic. 
Therefore, the number pn of balanced quadra t ic  functiwris on G is equal to (2" - 1) times 
the number pL(n--l of non-balanced quadratic functions on (0,  I}"-' 
This  result can be recovered by another way : the number mn is known (451)  : 

( n  2 2 ) .  
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(where [ j denotes the integer par t ) ,  and therefore equality p,, = (2n-1)pL-L is equivalent 
with : 

[a1 
( y  - 1) , , , ( 2 n - 2 h + l  - 1) - 2 ( ; ) t n t l  - 2 - 2 C 2hliirlj - 

( 2 3  - 1 ) ( 2 ? h - 2  - 1) .  . . (22 - 1) 
h=  1 

T h a t  last equality is checked in [2]. 
2) Proposition 3 would give us a chance to evaluate the number of partially-bent balanced 
functions if the number of partially-bent functions was known. 
T h a t  is not the case, but we have : 

Proposition 3.4 The number  o f  balanced quadratic func izons  on  G IS greater than  that  
of ihe  quadratic non-balanced func t ions  when n 2s odd and smuller when  n IS ez'en. 

Proof: Let pn (respectively p ; )  be the number of quadratic balanced (respectively non- 
balanced) functions on G 
Since the number of quadratic functions is 2(n;'1+1 (cf [5]),we have . 

yn > - 2+;,  = .2(?!+' - (2" - l)p;-l 

Lee us prove by induction on n tha t  . 

pn < p ; )  that  is pL > 2( 2 if n is even. n 2 2 
pn > ,uL, tha t  is p;, < 2(  2 ) if n is odd: n 2 3. 

n i l  

n + i  

That  is true for n = 2 ,  3 since p? = 6, pL = 10. p 3  = 70.  p i  = 58. 

< 2(":')). 

And the proof is complete. 3 
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Proposition 3.5 A partially-bent f i lnc l ion  defined by . Vx E E,Vy E E' f(x + y) = 
f ( y )  + t.x zs kth-order correlation-zmmune f r e s p e c t z c e l y  kth-order correlatzon-zmmune 
a n d  balanced) zf and only zf i + El only  contazns e l e m c n i s  of Hammzng w e t g h f  greater 
ihan  k or  equal l o  0 (respect iz le ly  greater than  k) 

Proof: \Ye have : 

Since f is bent on E'. the sum 
Y E E '  

Therefore : F(s) # 0 tj s 4 t E EL. 

(-l)J(y)fy ' is different from 0 

3 

REMARK : 

I f f  is non-balanced. then we may take t = 0 and the condition becomes : 

EL\{O} only contains elements of Hamming w i g h t  greater than k. 
According to the singleton bound (cf [5])> we then have : dim El 5 n - k and since the 
degree of the restriction of f LO a subspace E' of G is bounded by dim E' /2  (cf [a;)! the 
degree of f is bounded by ( n  - k ) / 2 .  
So: there does not exist any function xvhich would be partially-bent and kth-order cor- 
relation immune of maximal degree : the maximal degree of the kth-order correlation 
immune functions is n - k (cf [9j). 
On the contrary, there does exist partially-bent balanced k-th order correla.tion-immu~~e 
functions of maximal degree ( that  degree is n -k -1 )  : see [l] or [2j for the ca5e k = n-3. 

4 Conclusion 

The main interest of the class of quadratic functions is in its nice properties : we know 
the weights of the functions and we can characterize the functions which satisfy P C ( k ) ,  
those which are balanced. kth-order correlation-immune. But the quadratic functions 
are of a poor interest from a Cryptographic point of view since they are too simple. 

The class of partially-bent functions shares the same qualities since all the properties 
of the quadratic functions can be generalized to the partially-bent functions (with three 
exceptions : it is not a linear space, we are not able to  calculate its size or t,o give the 
general algebraic normal form of these functions). 

T h e  interest of chis class of functions is greater from a cryptographic point of view be- 
cause the partially-bent functions involve bent functions whose complexity may be great 
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(clearly, a partially-bent function will have a high level of nonlinearity if its associated 
kernel is small). 
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