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Abstract : The cryptographic strength of an SP network depends 
crucially on the strength of its substitution boxes (S-boxes). In this paper 
we use the concept of information leakage to evaluate the strength of S- 
boxes and SP networks. We define a n  equivalence class on n x n  S-boxes 
that is invariant in information leakage. Simulation results for a 16x 16 SP 
network suggest that after a sufficient number of rounds the distribution 
of the output XOR in the SP network looks random. We further present 
simulation results to show that the information leakage for a n  SP network 
diminishes more rapidly with the number of rounds when the S-boxes are 
cryptographically strong. 

1. Introduction 

The concept of “confusion” and “diffusion”, which led to the design of 
Substitution-Permutation Network (SPN) cryptosystems (e.g., DES [l]), was first in- 
troduced by Shannon [2] and was elaborated on in concrete and practical ways by 
Feistel [31 and Feistel, Notz and Smith [4]. The strength of an SP network depends 
highly on the strength of the substitution boxes (S-boxes). Work on the design and 
analysis of S-boxes has been presented in [5][61[71~811931101. 

Kam and Davida [ll] presented an approach to the design of S-boxes and SP 
networks which is guaranteed to satisfy completeness, a property which requires that 
each output bit depends on every input bit. Since then, very little work has been done 
on the design and analysis of a general SP network [12][13], even though many fully 
designed cryptosystems have been published [ 1411151. 

In this work we review some previously proposed evaluation criteria based on 
information leakage and extend them for an n x n  bijective S-box. We then define 
an equivalence class on S-boxes which will enable one to create cryptographically 
strong S-boxes more efficiently. We also present simulation results to show that 
cryptographically strong S-boxes improve the performance of an SP network. 

E.F. Bnckell (Ed.): Advances in Cryptology - CRYPT0 ’92, LNCS 740, pp. 260-279, 1993. 
Q Springer-Verlag Berlin Heidelberg 1993 
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2. Evaluation Criteria for a Cryptographically Strong S-box 
ForrC [91 presented a set of cryptographic properties of S-boxes based on 

information theory. Dawson & Tavares [lo] extended Forre’s ideas to define an 
expanded set of design criteria for cryptographically strong S-boxes. The authors 
viewed an S-box in two different ways : static view, which models an S-box when 
the inputs are steady and dynamic view, which models an S-box when the inputs 
change. Forrt’s criteria, however, apply to the static model only. In the Dawson & 
Tavares’ design framework both an S-box and its inverse were designed to have low 
information leakage. The expanded set of design criteria was developed at a “single” 
bit level, where information leakage between a single output bit and the input bits or 
between a single output bit and the rest of the output bits were computed. We extend 
the design criteria to a “multiple” bit level, where information leakage between one 
or more output bits and the input bits or between one or more output bits and the 
rest of the output bits are considered. We further show that some of the new design 
criteria defined in [lo] are redundant. We also introduce a useful information theoretic 
property, which we call “XOR Information Leakage” (XL[I;O]) for an S-box. The 
attractive feature of this property is that it uses a “single quantity” to compare the 
XOR dlstributions of S-boxes and SP networks. The n x n  S-box S considered in 
this section is a bijective S-box with an n-bit input X= (2, , z q ,  ..., zn}  and an n-bit 
output Y= {yl I yi ~ .... yn} ; where 2,  and y, ; 1 5 i 5 n are binary variables. 

2.1. Static Input-Output Information Leakage ( SL[I;O] ) 

Figure 1. Static view of an n x n  S-box 

The input-output mapping of an S-box is assumed to be known, i.e., the output 
is assumed to be known when the input is completely known (or vice versa). In an 
ideal S-box, however, partial information about the input bits should not reduce the 
uncertainty in the unknown output bits (or vice versa). 

The static view of the S-box is shown in Figure 1.  If Xk= { lj, x I 2 ,  . . , l  xJk} 
; where 1 5 k 5 n. - 1 : 1 < - j , ,  j,, ....jk 5 n, is a subset of the input bits and 
Yt= { y l l .  y12, ..., yl,} ; where 1 5 i 5 n - 1 ; 1 5 I l l  1 2 ,  ...! I t  5 n, is a subset 
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k 

of the output bits, then the Slatic Input-Output Information Leakage is the mutual 
information between Yt and Xk which is given by : 

DES S-box Dawson & Tavares S-box 

t t 

The averaged* SL[I;O] matriccs of a 4 x 4  DES S-box and one of the S-boxes found 
by Dawson & Tavares are given in Table 1. The detailed SL[I;O] matrices for these 
two S-boxes are given in Tables 2 and 3. In these tables, the information leakage is 
given in bits/input. The S-boxes considered in the example are as follows : 

1 

DES S-box : [ 0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8 ] 
Dawson & Tavares S-box : ( 7,9,1,1O,12,14,0,5,4,13,11,6,2,3,15,8 1. 

1 2 3 1 2 3 

0.0228 0.1060 0.3750 0.01 14 0.0786 0.3750 

2 

3 

I I I I 

0.0865 0.427 I 1.0938 0.0786 0.4284 1.1250 

0.3594 1.0885 2.0000+ 0.3750 1.1250 2.0391 

2.2. Dynamic Input-Output Information Leakage (. DL[I;O] ) 
In an ideal S-box information about a n y  changes in the input bits should not 

reduce the uncertainty in the changes in the output bits. 
The dynamic view of an S-box (delta S-box) is shown in Figure 2 in 

which the steady statc value of the input X, is assumed to be unknown. If 
 AX^= { A x J l ,  dz;, , ..., A x J k }  ; where 1 5 k 5 n : 1 5 j , , j , ,  ..., jk 5 n,  
is a set of changes in the input bits and 3Y,= { A J I ) ~ ,  L \ y 1 2 ,  _..,  d y l , }  ; where 
1 5 t 5 n : 1 5 l 1 ,  I ? :  .... I t  f: 72, is a set of changes in the output bits then 
the Dynamic Input-Output Information Leakagc is the mutual information between 
AY, and AXk which is given by : 

averaged means that for any k and t, the leakage is averaged over all the choices of Y t and XI,. 
In all the DES S-boxes, when t=k=3 h e  staric input-output infomation leakage is 2 bitslinput which 
is h e  minimum possible value for I ( Y , X , )  in a 4 x 4  S-box. 

t 
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Figure 2. An n x n delta S-box 

The averaged DL[I;O] matrices of the 4x4  DES S-box and the Dawson & Tavares 
S-box of the above example are given in Table 4. The detailed DL[I;O] matrix for 
the DES S-box is given in Table 5.  In these tables, the information leakage is given 
in bits/input change. 

DES S-box Dawson & Tavares S-box 

t t 

Table 4. Averaged DLlJ;O] marices for the DES and the Dawson & Tavares S-box 

In [lo] Output-Input Information Leakage, which is the same as the Input-Output 
Information Leakage, except that the input and the output are interchanged, has been 
defined as a separate property in both the static and the dynamic cases. But due 
to the symmetry in mutual information, i.e., I ( A ;  R )  = I ( B ;  A), the output-input 
information leakage mamx is simply the transposiuon of the input-output infomation 
leakage mamx in both the static and the dynamic cases for any bijective S-box. 
Therefore, the output-input information leakage i s  a redundant criterion for both the 
static and the dynamic conditions for any  bijective S-box. 
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2.3. Dynamic Ouput-Output Information Leakage ( DL[O;O] ) 

For any given change AX at the input, if AYk= (AyJ1 , A y j z , . . . ,  A y J k }  ; 
where 1 5 k 5 n - 1 ; 1 5 jl,jz1 ...,jk 5 n, is a set of changes in the output bits 
and OYt= {Ayl l ,  Ay12, ..., Ayr,} ; where 1 5 t 5 n - 1 ; 1 5 11,12] ..-] lt 5 n,  
is another set of changes in the output bits such that AYknAYt = {a}, then the 
Dynamic Output-Output Information Leakage (with respect to AX) is the mutual 
information between AYk and AYt which is given by : 

In any bijective S-box, under the static condition, for any given subset of output bits 
Yk, each of the 2‘ combinations of the bits from another subset of output bits Yt 
(such that Yk f l  Y ,  = (0)) occurs with equal probability over all the possible static 
states. Therefore, the mutual information between Yk and Yt must be zero. This 
may not be true under the dynamic condition where the correlation in the output bits 
could be exploited to gain information about the unknown changes in the output bits. 
Thus, this information theoretic property is cryptographically meaningful only under 
the dynamic condition for a bijective S-box. 

The averaged DL[0;0] matrices of the 4 x 4  DES S-box and the Dawson 22 
Tavares S-box of the above examples are given in Table 6. The detailed DL[O;Ol 
matrix for the DES S-box is given in Table 7. In these tables, the information leakage 
is given in bits/output change. 

I I DES S-box I Dawson & Tavares S-box I 

Table 6. The averaged DL[O;O] matrices for the DES and the Dawson & Tavares S-box 

In fact, there is an averaged DL[O;O] matrix for each value of AX (i-e., for 
each pattern of input change). In this paper, however, the average values of DL[O;Ol 
for each value of A X (from a single bit change to four bit change) are calculated 
and averaged again to form a single matrix. Note that due to the symmetry in mutual 
information the element aq is equal to the element a5 in the DL[O;O] matrix. 
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2.4. XOR Input-Output Information Leakage ( XL[I;O] ) 

The XOR distribution gives the probability distribution of the input XOR and 
the output XOR for an S-box. Biharn & Sharnir [16] first used the XOR distribution 
€or their differential attack on DES-like cryptosystems. The XOR distribution of the 
DES S-box of the above example is given in Table 8. 

If AX is the input XOR and AY is the output XOR, then the XOR Input-Output 
Information Leakage is the mutual information between AX and AY and is given 
by : 

XL[I; 01 = I (AY;  AX) = H ( A Y )  - H(dY I AX). 

In an n x n  S-box, for any given input XOR, if each output XOR occurs with 
equal probability,<the XOR distribution must have all identical entries. Such an XOR 
distribution is called a “uniform” or “flat” distribution. The “differential probability” 
corresponding to an entry in the XOR distribution is obtained by dividing that entry 
by 2”,  where n is the block size of the S-box (or SP-nehvork). Thus, in a uniform 
XOR distribution the highest differential probability is 1/?. For a uniform XOR 
distribution XL[I;O] is zero. However, due to the nature of the XOR operation, each 
output XOR either occurs an even number of times or d w  not occur at all. Further, 
in an S-box when A X  = 0, AY = 0. Thus, a zero input XOR and the corresponding 
output XORs are trivial. 

In the XOR distribution for an n x n S -box the sum of the envies in a row is 2”, 
and if the S-box is bijective the sum of the entries in a column is also 2n. Therefore, 
in the “best possible distribution” for an n x n  S-box, an entry corresponding to a 
non-zero input XOR can be either 0 or 2. Thus, for a non-zero input XOR half of 
the possible output XORs do not occur. For a 4x4 S-box with the best possible 
distribution, XL[I;O] will be 1.1875 bits/input XOR which is the minimum value of 
XL[I;O] for any 4x4  S-box. However, Adams [I71 showed that an nxn S-box with 
the best possible XOR distribution cannot be bijective when n is even. 

It should be noted that in an nxn S-box, XL[I;O] is the same as DL[I;OJ when 
t = k = n. Thus, XL[I:O] is not an independent evaluation criterion. However, 
XL[I;O] is useful in measuring how far an XOR distribution deviates from a uniform 
XOR distribution, using a single “quantity”. Further, due to the symmetry in mutual 
information, the XOR output-input information leakage is the same as the XOR input- 
output information leakage, i.e., XL[O;I]=XL[I;O]. 

XL[I;O] for the DES S-box and the Dawson & Tavares S-box of the above 
examples are 1.7541 bitshnput XOR and 1.4024 bits/ input XOR respectively (note 
that these values correspond to DL[I;O] in Table 4 when t = k = 4). The highest 
XL[I;Ol among the 4 x 4  DES S-boxes is 1.8438 bitshnput XOR. We note that using 
S-boxes with uniform XOR distribution does not necessarily increase the immunity of 
an SPN cryptosystem against a differential attack [18]. In order to develop resistance 
to a differential anack, other design criteria must also be taken into consideration. 
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3. An Equivalence Class on S-boxes 
Consider the nxn S-box S’ created by XORing X, and Y, with the input and 

the output respectively of thc nxn  S-box S as shown in Figure 3. X, and Y, are 
arbitraq fixed n-bit binary vectors. 

i i  s :xj -Y; s :xj-Yj 

Figure 3 .  Equivalent S-boxes S and S’ with invariant information leakage 

Since 
Prob(X, j  = Prob(Xj $ x,) = Prob(X,’) 

and 
Prob(Y,) = Prob(Yi  6 Y,) = P r o b ( Y j )  

the SL[I;O] of S is the same as that of S’. Also, since the properties related to the 
changes in the input and the output bits are invariant to the XOR operations at the 
input and the output, all the dynamic information leakages @L[I;OI, DL[O;Ol and 
XL[I;O]) will be the same for both S and S’. Therefore, in this fashion, we can 
generate 22” equivalent nxn S-boxes with invariant information leakage and with 
different input-output mapping. 

A new S-box S” can be generated by permuting the input and/or output bits Of 
the original S-box S. S” will have similar cryptographic properties to S. However, 
due to the bit permutation, the entries of the leakage matrices and the XOR distribution 
of S” may be located differently. Starting with S”, a new class of S-boxes can be 
generated using the above procedure. Hence, if a single S-box with low information 
leakage is found (possibly through a computer search), a large number of S-boxeS 
with similar information leakage can be created easily. 

4. Differential Attack on SP Networks 
The differential attack developed by Biham & Shamir is a statistical chosen 

plaintext attack on DES-like block ciphers. I f  a pair of distinct plaintexts with known 
XOR lfference AX produces a pair of (r-l)h round ciphertexts Y,- 1 and Y:- such 
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that Y,- 1 CB Yi- = AYr- 1 ; then an r round cipher is vulnerable to the differential 
attack if and only if the following conditions hold 1191 : 
I. There exists a pair of (r-l)* round outputs Y,-i and Y:-l such that 

Prob(dY,-1 I AX) is greater than l /am,  where m is the cipher block size. 
11. Given some pairs of Y,-l and Yk-l it is possible to determine some key bits 

in the r* round. 
The effectiveness of this line of attack depends on how confidently the (r-1)* 

round XOR values (corresponding to the chosen input XOR) can be predicted in the 
SP network. In the cryptosystem, if XL[I;O] is zero after the (r-1)* round then the 
maximum differential probability reaches the ideal value which is l / a m  (m is the 
cipher block size). Hence, the first condition will be satisfied. However, due to 
the nature of the XOR operation, an SP network with even the best possible XOR 
distribution will have a differential probability of 1/2m- (i.e., 2/2m). 

In an SP network, keying can be introduced in one of the two ways shown in 
Figure 4. DES uses a combination of these two methods. In Figure 4 {a), the (r-1) * 

Figure 4. Two possible methods o f  keying 

round ciphertext C,1 is XORed with the r ' round key K, to form the actual input to the 
S-box. A given (AC,l,AC,) pair, where L I C , - ~  # 0,  restricts the possible values for 
the actual input to the S-box. Using the actual input and the value of C,.l (if known) 
the uncertainty in K, can be reduced. However, in an SPN cryptosystem using this 
keying arrangement, if the value of C,.l is not available (note that this condition is 
not satisfied in DES-like systems), a differential cryptanalyst cannot learn about the 
key using the knowledge or the input XOR and the output XOR of the S-box. 

In Figure 4 (b), one bit in K, is used to select one of the two S-boxes : S1 and 
SZ. In this arrangement, K, is not mixed with C,-I to form the actual input to the 
S-box in the r * round. Since in this illustration only two S-boxes are used, a single 
key bit is sufficient to select an S-box. This arrangement is vulnerable to a differential 
attack if the two S-boxes do not have identical XOR distributions 2131. It has been 
pointed out by Heys [20] that a differential attack is possible, even if the S-boxes 
have identical XOR distributions (i.e., if S1 and SZ are chosen from an equivalence 
class). This can be explained with the help of Figure 5.  
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Figure 5.  Differential attack o n  the arrangement shown in Figurc 4 (b) 

Assume that in Figure 5 the equivalent S-boxes S1 and Sz are derived by XORing 
the vectors XI and X2 respectively at the input of the S-box S. The knowledge of 
a (AG-1 ,AC,) pair, where ACr- I # 0, would suggest the actual values of the input 
of S. Using these suggested values and the values of C,.l (assumed to be known) we 
can obtain the possible values of the vectors X I  and X2, and compare them with the 
known values of X I  and XZ to get the keying information. Since only two S-boxes 
were used in this example, the described attack does not seem efficient. However, 
if a large number of S-boxes are used in this fashion, the differential attack would 
become more efficient. 

Therefore, an SP network using onc or a combination of the above keying tech- 
niques should be designed to minimize the maximum entry in the XOR distribution 
(i.e., maximum differential probability), in order to increase the immunity against 
differential attack. 

5. Analysis of a 16-bit SP Network 
In an r round SPN cryptosystem the substitution-permutation function is iterated 

r times so that the final product (ciphertext) is cryptographically stronger than the 
intermediate products. The number of rounds required depends strongly on the 
strength of the individual layers. If the individual layers are strong, the number of 
rounds required can be smaller which means that higher data encryption/decryption 
rates can be achieved. In order to study the influence of the S-boxes on the 
cryptographic properties of an SP network, a I 6 x  16 SP network (which is tractable) 
shown in Figure 6 was evaluated with respect to various criteria explained above. 
The DES, Dawson & Tavares and some randomly selectcd S-boxes were used for this 
analysis. We found that some of the DES S-boxes are relatively stronger than the 
others with respect to information leakage. Therefore, under each evaluation criterion, 
the DES S-boxes with relatively low information leakage @ES-L) and relatively high 
information leakage (DES-H) were analyzed separately. 
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Input Bits 
. .  2 1 0  15 . .  

(r-1) th round 

r th round 

2 1  0 15 . .  . .  
Output Bits 

Figure 6. A 16 bit SP network 

We first studied how the maximum differential probability of the SP network 
varies with the number of rounds (for the purpose of this test DES S-boxes were 
ranked according to their XL[I;O]). We know that cven in the best case a non-zero 
minimum entry in the XOR distribution of the SP network is 2, Hence, for any non- 
zero input XOR, at least 50% of the output XORs do not occur. Since the S-boxes 
used are bijective, the l c b i t  SP network is also bijective. As in the case of an 
S-box, a bijective SP network with XOR distribution containing only 0’s and 2’s is 
not realizable when the block size is even, which is true for the 16-bit SP network. 
Therefore, we can expect some entries in the XOR dismbution which are greater than 
2. Figure 7 shows the variation of the maximum entry in the XOR distribution (for 
100 randomly selected non-zero input XORs) with the number of rounds. For all the 
S-boxes used, the highest entry in the XOR distribution convcrged to 14 (i.c., the 
maximum differential probability is 14/216) after 5 rounds. Further, after 3 rounds 
there was not much difference in the maximum differential probability regardless 
of the selection of S-boxes. However, the S-boxes with low XL[I;O] led to faster 
convergencc. In addition, we noted that for all the S-boxes the percentage of 0’s (in 
a row) was 60.7% of the number of possible output XORs, once the convergence was 
achieved. We and Heys 1201 observed that the distribution of entries in a b‘ w e n  row 
in the XOR distnbution, after a sufficient number of rounds, behaves like a random 
placement of n/2 balls in n bins, where each ball has a value of 2. The maximum 
entry in a row corresponding to the random placemcnts was observed to be less than 
or equal to 14. 

A well designed SP network can be rcgarded as a large strong S-box. Hence 
an ideal SP network should satisfy all the cryptographic properties of an ideal S-box. 
We then examined the 16-bit SP network on a round-by-round basis with respect m 
the four types of information ledages. For selected input and output bits the system 
was tested exhaustively, where feasible, or using a large number of randomly chosen 
inputs. The simulation results ate shown in Figures 8 through 11. 
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7. Conclusions 
We reviewed evaluation criteria for nxn  bijective S-boxes based on information 

leakage and i n l n d u d  Lhc; wmpl d XOR Information Leakage (XLF;O]), which is 
useful in comparing the XOR distributions of S-boxes. We then defined an equivalence 
class on n x n  S-boxes which have invariant information leakage. 'Ihe equivalm 
classes will reduce the search space for the design of cryptographically strong S- 
boxes with low information leakage. We also found that not al l  the DES $-boxes ~ I C  

equally strong with respect to information leakage. 
We s&died the impact of the choice of S-boxes on the cryptographic properties 

of a 16x 16 SP network using various S-boxes. Sample S-boxes were chosen fmm 
the DES, Dawson & lWares, and randomly consmcted ones. The vatlatlon of the 
maximum entry in the XOR distribution with the ngmber of rounds W w n  in Figure 
7. This experimental XOR distribution (comspon&%g to 100 randomly selected non- 
zero input XORs) closely approximates a random distribution of the output XORs 
after 5 rounds. After 3 rounds rhere is not much difference in the maximum entry in 
the XOR distribution regardless of the selection of S-boxes. However, the S-boxes 
with low XLtl;O] lead to faster convergence to the random XOR distribution. 

We finally studied the influence of the S-boxes on the information Ieakage of 
the SP network. The simulation results are shown in Figures 8 through 11. Here 
four types of information leakages are plotted against the number of rounds. After 3 
rounds there is not much difference in the infomation leakage of any kind, regardless 



of the selection of the S-boxes. However, the choice of the S-boxes influences how 
fast the information leakage achieves the minimum value. Using the S-boxes which 
produce the fastest convergence in the SP network will lead to a more efficient and 
faster implementation of a subs titution-permutation network cryptosystem. XL[I;Ol 
for the SP network is of special interest with respect to a differential attack because it 
is a good measure of how confidently an output XOR can be predicted from a known 
input XOR in the SP network. For all the S-boxes used, the minimum value of 
XL[I;O] achieved is 1.45 bits / input XOR after 5 rounds. The value of XL[I;O] for a 
random distribution of 16-bit XORs is also 1.45 bits / input XOR. These observations 
suggest that, after a sufficient number of rounds, the XOR distribution of the 16-bit 
SP network converges to a diswibution obtained by placing the output XOR pairs at 
random in the XOR distribution. 
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