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1 Introduction 

Reducing complexity assumptions for basic cryptographic primitives is a ma- 
jor current resea& program in cryptography. Characterizing the necessary and 
sufficient complexity conditions needed for primitives helps us develop the the- 
oretical foundations of cryptography, and further, reducing requirements for a 
primitive may imply more concrete underlying functions for its practical imple- 
mentations. 

Here we study the problem of secure transfer of the proof of ‘‘validity of an 
N P  msertion” in this perspective. We note that the ability to convey proofs for 
N P  in a secure way (i.e., in zero-knowledge (ZK) fashion, as defined by [GMR]) 
has a large variety of applications in cryptography and distributed computing. 

Informally, proving some fact in zero-knowledge is a way for one player (called 
“prover”) to convince another player (called “verifier”) that certain fact is true, 
while not revealing any additional information. In our setting, we assume that 
both players are polynomially bounded (thus N P  proofs where the prover has 
a witness, are the naturd setting). We must make complexity assumptions for 
implementing the above task since in our setting these protocols imply existence 
of a oneway function. The assumptions could be used in two different ways: 

1. Zero-knowledge proofs [GMR, GMW]: The prover can not convince the veri- 
fier to accept a false theorem, even if he gets help from an infinitely powerful 
computation; while the verifier (or anyone overhearing the protocol), if he 
ever breaks the assumption (say, after 100 years), can extract additional 
information about the proof (thus, the security is only ensured computa- 
tionally). 

2. Zero-knowledge arguments [CH, BC, BCC]: The verifier can not extract ad- 
ditional information even if he is given infinite time ( i.e., security is perfect); 
however, the prover (assumed to be polynomial-time) can cheat in his proof 
only if he manages to break the assumption on-line during the execution 
of the protocol. This is the reason to call it an ”argument” rather than a 
”proof”. 

In many practical settings, ZK-arguments may be preferable to ZK- proofs: 
the verifier must only be sure that the prover did not break the assumption 
during their interaction (which lasted, say, ten seconds or minutes). Notice that 
while assuring that the assumption can never be broken is unreasonable, the 
assumption that something can not be broken during the n& ten minutes can 
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be based on the current state of the art. On the other hand, the prover has 
absolute (i.e. information-theoretic) guarantee that no additional information is 
released, even if the verifier spends as much time as it desires trying (off-line) 
to extract it. (Thua, the notion of zero-knowledge arguments is useful if there is 
a need to maintain the secrecy for very long time independent of the possible 
future advance of cryptanalysis). 

So far the complexity. assumptions needed for perfect-zero-knowledge argu- 
ments were too strong - they required specific algebraic assumptions. This is in 
contrast with zero-knowledge interactive proofs, which can be based on any one- 
way function. In this work we finally dispose of specific algebraic assumptions 
for zero-knowledge arguments: 

Main result: If one-way permutations exist, then it is possible for polynomial-time 
players t o  perform a perfect zero-knowledge arguments for all of NP 

In our proof, we construct an information-theoretically secure bit-commitment 
scheme, which has additional applications like information-theoretically secure 
coin-flipping. We can implement the scheme (with almost-perfect security) based 
on k-regular one-way functions. One practical implication of our result is that 
secure arguments can now be based on functions which are DES-like ciphers. 

1.1 Background and organization 

Past successes in establishing basic cryptographic primitives on general assump- 
tions (initiated in p821) have shown that various primitives, which were orig- 
inally based on specific algebraic functions, can be based on the existence of 
general one-way functions or permutations. For example, Naor N showed that 
computationally secure bit commitments (i-e., bit commitments which can be 
broken off-line given sufficient resources) can be constructed from a pseudo- 
random generators (a notion originated and first implemented based on a dis- 
crete logarithm assumption in [BM]). The later, in turn (after a long sequence 
of papers) can now be based on any one-way function [ILL, HI. Another primi- 
tive that can now be based on any one-way function M well is digital-sigpature 
[NY, RO]. Furthermore these primitives (and primitives derived from them, e.g. 

identification) were shown to imply a one-way function (thus they are equivalent) 
[IL]. On the other hand, basing the primitive of oblivious transfer on a general 
one-way permutation which is not a trapdoor5 was shown to be “a seemingly 

’ a trapdoor implies that there is an information which enables easy inversion 
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hard task” [IR] - when based on black box reductions, it will separate P and 
NP (on the positive side, a trapdoor permutation is sufficient). 

Concerning secure proofs, Goldreich, Micdi and Wigderson showed that zero- 
knowledge proofs for AfP can be done and require secure encryption functions 
(the results of [N, ILL, HI give such functions under any one-way function); this 
applies to general TP proofs as well [IYJ. Further, zero-knowledge proofs and 
zero-knowledge arguments for non-trivial languages as well as non-interactive 
zero-knowledge proofs of [BFM, BDMP] imply the existence of one-way functions 

In contrast to computational zero-knowledge proofs, the primitive of perfect 
zero-knowledge arguments for NP wm much infehr in this respect: their con- 
structions were known only under specific algebraic assumptions [BCC, BKK, 
IY, BY, IN]. Our result gives the first general reduction: zero-knowledge NP- 
arguments can be constructed given any one-way permutation. 

[Owl. 

Our construction has two stages. First, we show how to design an information- 
theoretically secure bit commitment between two polpornid-time parties based 
on any one-way permutation (we employ a technique thaksan be called “interactive- 
hashing” introduced initially in a different model involving an all-powerful party 
[Owl]) .  Moreover, we do it in such a way that the conversations in the commit- 
ment protocol are sirnulatable (i.e. by an expected polynomial time algorithm). 
Then, we apply the reduction of “perfectly-secure sirnulatable bit commitment” 
to “perfect ZK-argument” . (A general scheme connecting various commitments 
to various ZK-systems was given in e.g. 

We note that this work differs from [OVYl] in that there the sender must 
be able to invert one-way functions, whereas here the sender is efficient (this is 
the traditional cryptographic model). In [OVYl] we deal with oblivious transfer 
and any technique succeeding in allowing a weak sender there, would be quite 
significant since it would implement oblivious transfer between polynomial time 
parties using one-way permutations (see [IR]). 

and can be used). 

1.2 Relation to recent work on bit-commitment 

Recently, models in which parties may have power beyond polynomial-time were 
investigated; it is worth while pointing out the differences between the cur- 
rent work and the recent one. By ’ 7 1 ? t - ~ ~  Strong to Weak BC”, we denote Bit- 
commitments (BC) protocols, in which even an infinitely-powerful ”Commiter” 
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can not cheat, (i.e. change the value of the committed bit) except with negligi- 
ble probability, but the polynomial-time ” RRceiver” can “see” the commitment, 
if he breaks the assumption. The result of [N] imply that under any one-way 
function, there is a (Strong-to-Weak) BC from a polynomial-time Commiter to 
a polynomial-time Receiver (that is, it is an efficient protocol and the underlying 
assumption in this case is optimal [IL]). 

The work in [OW21 investigated commitments between a strong and a 

polynomial-time players where the strong player actually uses its non-polynomial- 
time power. Thus, the main issue in that paper is how cryptographic assumptionc 
changes and can be relaxed when the power of players differs (rather than be- 
ing polynomial-time for both players, as needed in practical applications). It is 
shown that unless Distributional-NP=RP there is a (Strong-to-Weak) BC from 
a Commiter with an (NP union co-NP) power to a polynomial-time Receiver. 
Similarly, unless Distributional-PSPACE_=RP, there is a (Strong-to-Weak) BC 
from a (PSPACE) Commiter to a polynomial-time Receiver. Distributional-NP 
is defined by Levin in the theory of average-case NP, whereas Distributional- 
PSPACE is a complete (in Levin’s sense) problem for PSPACE under a uniform 
distribution. Thus, when allowing the commiter to use non-polynomial power 
this theoretical result relaxes the assumptions in [N]. 

By ”from Weak to Strong BC” we denote BC in which even an infinitely- 
powerful ”receiver” can not ”see” the commitment, but the polynomial-time 
commiter can not change the value of the commitment if a complexity assump- 
tion holds. In [OVYZ] it is also shown, baaed on an oblivious transfer protocols 
among unequal-power players introduced in [OVYl] (where interactive hashing 
wzts presented), that given any one-way function, there is a (Weak-to-Strong) BC 
from a polynomial-time Commiter to a (PSPACE) Receiver (and if the receiver 
is NP, the same holds under a one-way permutation). 

The main results in [OVYl] yield oblivious transfer under one-way func- 
tion when players have unequal power. The cryptographic application of [OVYl] 
(when both parties are polynomial time), is basing tweparty secure computation 
with one party having information theoretic security under general trapdoor per- 
mutatioa assumption (whereas previously known under specific algebraic trap- 
door functions). This is done by applying the results for one-way permutation 
but by adding a trapdoor property to be useful in cryptographic scenarios (so 

that computations are in polynomial-time). 
In the current paper, we assume polynomial-time parties and do not use 

non-polynomial-time computations. We stress again that this is the model for 
cryptographic applications. hr ther ,  we make no use of trapdoor properties, as 
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BC’s and secure interactive proofs do not need decryptions, but rather displaying 
of pre-images (for decommitals). Our result here for BC can be stated as: given 
any one-way permutation, there is an efficient (Weak-tcdtrong) BC protocol 
from a polynomial-time Commiter to a polynomial-time Receiver (which may 
be stronger); the BC is simulatable and is a commitment of knowledge. 

1.3 Organization of the paper 

In section 2, we give the model, the formal definitions of the problem, and the 
assumptions. (Specifically, we present the model of interactive machines, the 
definitions of perfect zero-knowledge arguments, the notion of commitment, and 
the definition of one-way functions and permutations). In Section 3, we present 
the new method for basing a perfectly-secure bit commitment on a one-way 
permutation, and discuss its reduction to zero-knowledge arguments. In section 
4 we present additional applications of our methods. 

2 Model and Definitions < 

Let Alice (the prover) and Bob (the verifier) be interacting Turing machine 
[GMR, B] which share an access to a security parameter n, and a common 
communication tapes. Each has a private input and output tapes and a private 
random tape. When Alice and Bob’s programs are both polynomial time, we say 
that the protocol is “efficient” (we will assume this throughout), Alice usually 
has a private tape in which a “witness” to the correctness of the common input 
is written. We may consider Bob to be infinitely-powerful when he wishes to 
extract information from a protocol conversation, although he needs only poly 
time computations to execute the protocol. Both parties share an input tape of 
size k and and two “communication tapes”: tapes for Alice to write in and Bob 
to read and vice versa. Bob has a private history tape h. 

2.1 Perfect Zero-Knowledge Arguments 

An NP-proof protocol with polynomial-time prover is a protocol between 
two polynomial time parties: a prover Alice and a verifier Bob. The parties take 
turns being “active”, that is, reading the tapes and performing the computation, 
outputting a “message” on the corresponding communication tape. Both parties 
are probabilistic machines, (i.e., they have a read-only infinite tape of truly 
random bits which is private and read left-bright). Alice also has a private 
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input with a witness to the input. (Without lose of generality, we can assume 
that the input is a legal satisfiability (SAT) statement, since otherwise any N P  
statement can be translated first to SAT, and Alice can translate the witness to 
a witness to the SAT-statement). At the end of the protocol Bob moves to one 
of two states: ACCEPT or REJECT. 

Definition 1 A n  NP-proof protocol with polynomial-time prover is called an 
argument if: 

1. There exists a polynomial-time progmm (in the statement size which is a 
security pamrneter) for Alice such that given any statement in NP, Alice cun 
always convince polynomial-time Bob (that is make Bob move to ACCEPT 
at the end of the interaction). 

2. No polynomial-time Alice+ interacting with Bob can convince Bob to AC- 
CEPT, when the input is not true, except with negligible small probability 
(that is for a polynomial p for large enough input the e m r  becomes smaller 
than l / p ( n ) .  

For an input I and history h let CONVB,p(l,h) be the random variable 
(depending on the parties’ random tapes), which Bob’ produces throughout an 
interaction with Alice. 

We note that similarly an argument can be prove a possession of knowledge” 
in the sense that one formally shows that a machine employing the prover can 
extract a witness to the claimed NP statement [FFS, TW, BG]. (In the next 
version we describe this as well). 

We say that two distributions p1 and pa on (0, l}n are almost identical if for 
all polynomials p(n) , large enough n and for all A C (0, l}n, lpl (A)  - pz(A)I < 
W4. 
Definition 2 An argument is perfectly zero-knowledge if: for all verifier 
Bob*, there is a simulator which is a probabilistic expected polynomial-time ma- 
chine MBop,  such that for any input I ,  it pmduces a mndom variable s I M B o p  ( I ,  h) 
so that the distribution of SIMBop ( I ,  h) iS identical to that of CONVB,p ( I ,  h) .  

2.2 Commitment 

Definition 3 A bit commitment protocol consists of two stages: 

- The commit stage: Alice has a bi t  b on her input tape, to which she wishes 
to commit to Bob. She and Bob exchange messages. A t  the end of the stage 
Bob has some information that represents b written on its output tape. 
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- The reveal (opening) stage: Alice and Bob exchange messages (where their 
output tapes from the commit stage are serering as input tapes for this stage). 
A t  the end of the exchange Bob writes on its output tape b. 

Definition 4 To be perfectly-secure commitment, the protocol must obey 
the following: for all Thing machines Bob, for all probabilistic polynomial time 
Alice, for all polynomials p and for large enough security parameter n 

1. (Security property:) After the commit stage, when Alice follows the protocol 
Bob cannot guess b with probability greater than (even i f  Bob is 
given unbounded computational resources). 

2. (Binding property:) After the commit stage in which Bob follows the protocol, 
with probability at least 1 - $$ the polgnomial-time Alice can reveal only 
one possible value. 

+ 

Note that the security property does not rely on Bob being polynomial time. 
In addition, if Bob's algorithm can be performed in polynomial-time, we say that 
the bit commitment is "efficient"- we concentrate on this case. 

We say that a commitment scheme is polynomiaI-time sirnulatable (with re- 
spect to the receiver) if given a polynomial-time receiver Bob*, its history of 
conversations is a probability space simulatable by having Bob* taking part in a 
computation with an expected polynomial time machine S (as in the definition 
of zereknowledge) . 

We call a commitment a Commitment of knowledge if there is a polynomial- 
time machine X (extractor) interacting with the sender performing the commit 
stage, such that the probability that X outputs a bit b is close to the probability 
that the reveal stage outputs same bit b (assuming reveal ended successfully). 
(A formal definition, is postponed to the full version). 

In defining the properties that a bit commitment protocol must obey, we have 
assumed a scenario where Bob cannot guess b with probability greater than 4 
prior to the execution of the commit protocol. In the more general case, Bob has 
some auxiliary input that might allow him to guess b with probability q > f .  
The definition for this case is that as a result the commit stage the advantage 
that Bob gains in guessing b is less than &. All the results of this paper hold 
for this more general case as well. 

2.3 One-way functions and permutations 

We define the underlying cryptographic operations we assume. 
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Let f be a length preserving function f : {0,1}' + {0,1}+ computable in 
polynomial time. 

De0nition 5 [One-way function.] f is one-way if for every probabilistic poly- 
nomial time algorithm A, for all polynomials p and all suficiently large n, 

The above definition is of a strong one-wuy function. Its existence is equiv- 
alent to the existence of the weaker somewhat one-way function using Yao's 
amplification technique v82] or the more efficient method of [GILVZ] (which 
is applicable only to permutations or regular functions). (A somewhat one-way 
function has the same definition as above, but the hardness of inversion is smaller, 
i.e. its probability is inverse polynomially away from 1.) 

If in addition f is 1-1 then we say the f is a One-way Permutation. For 
the construction outlined in Section 3 we require a one-way permutation f .  (We 
note that we can also employ k-regular one-way functions in our protocol, since 
they can be converted into an "almost a permutation" [GKL]). 

3 Perfectly-Secure Simulatable Bit Commitment 

We present a perfectly-secure scheme and its proof of security. The polynomial 
commiter generates a bit encryption which comes from two possible distribu- 
tions. The commiter will be able to open the encryption only as a member of 
one distribution (even though the distribution are identical). 

3.1 The Scheme based on any one-way permutation 

Let f be a strong one-way permutation f on (0, l}n. Let S denote the sender 
Alice (as defined in 2.1) and R the receiver Bob (as defined). In the beginning 
of the protocol, S is given a secret input bit b. B(z,y) denotes the dot-product 
mod 2 of z and y. 

Commit Stage. 

Commit to a bit b. 

1. The sender S selects z ER (0, l}n at random and computes y t f (5). S 
keeps both z and y secret from R. 
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2. The receiver R selects hl, h2, , , . h n 4  E (0, l}n such that each h, is a random 
vector over GF[2] of the form Oi-11{071}n-a (i.e. i - 1 0's followed by a 
1 followed by an arbitrary choice for the last n.- i positions). Note that 
hl , ha, . . . h,-l axe linearly independent over GF[2] 

3. For j from 1 to n - 1 
- R sends hj to S. 
- S sends cj t B(hj ,p)  to R. 

4. At this point there are exactly two vectors y0,yl E {0,1}" such that for 
i E {O,l}, cj = B(yi ,hj)  for all 1 5 j 5 n - 1. yo is defined to be the 
lexicographically smaller of the two vectors. Both S and R compute yo and 
P l .  Let 

0 if y = Yb c =  { 
1 if y = 91-b 

5 .  S computes c and sends it to R. 

Reveal Stage. 

1. S sends b and 2 to R. 
2. R verifies that y = f (2) obeys C j  = B(hj ,y )  for all 1 5 j 5 n - 1 and verifies 

that if c = 0, then y = and if c = 1, then y = y1-b. 

end-commit-protocol 

It is clear that the protocol described above can be executed in polynomial 
time by both parties. In the next subsection we will see that it is indeed a 

perfectly secpe bit commitment protocol. 

3.2 Proof of security 

Theorem 1. Iff is a one-way pennutations exist, then the scheme presented in 
Section 9.1 is a perfectly-secure cornputationally- binding bit commitment scheme. 

Theorem 1 follows from the two theorems below, the security theorem and 
the binding theorem, respectively. 

Theorem2. For any receiver R', after the conimit stage the bit b is hidden 
information-theoretically. 

Proof : We can prove inductively on j ,  that for any choice of hl ,  h2,. . . hj 
the conditional distribution of y given hl,  h2,. . . hj c1, c2,. . . cj is uniform in the 
subspace defined by hl , ha,. . . hj and c1, Q, . . . cj .  Thus, at step 4 the probability 
that y = yo is exactly fr. Therefore giving away c yields nothing about b. 0 
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Theorem 3. Assume there exists a probabilistic polynomial time S'(n) that fol- 
lom'ng the commit stage can reveal to a honest meiver two different values for 
b with non-negligible probability (ouer its coin-flaps) e = ~(n). Then there ex- 
ists a pmbabilistic polynomial time algorithm A that inverts f on non-negligible 
fraction of the y 's in (0, l}n. 

Proof : Using such an S' we now construct the algorithm A to invert f. A has 
a fixed polynomial time bound and it aborts if its runtime exceeds the bound. 
By assumption, there exists a set Sa of ~ ( n )  fraction of strings such that if the 
tape of S' is initialized with w E R, S' succeeds in revealing two different values 
for b after the commit stage of n - 1 rounds. We may fix such an w and view S' 
as deterministic. This is true, since one can repeatdy run A with the random 
tape of S' initialized with w;, i := 1,. . . , m = 1 / ~ ~  and with probability 1 -e- f i  
some w; E 0. We treat S' as a deterministic algorithm from now on. 

The responses q of S' to the queries hi sent by R define a rooted tree T 
whose edges are labeled in (0,1}. A path from the root to a leaf is defined by an 
assignment to hl, h2,. . . h,-1 and it is labeled with c1, c2, . . . k-1. A node U at 
level i corresponds to a state of S' after i - 1 stages. It dehed by hl,  . . . , hi-1 and 
c1, . . . , q - 1 .  The outgoing edges of U correspond to R's 2'+' possible queries. 
These edges are labeled with the responses of 8'. Note that since S' may be 
cheating, his answers need not be consistent and that on the same query S' may 
give different answers depending on the previous queries. 

For a leaf u, let {yo(u), yl (u)} be the set consistent with S's answers; we say 
u is good if given that R's queries define u, then S' succeeds in opening the bit 
committed in two different ways: i.e. S' inverts on both yo(u) and gl(u). 
Description of A: A gets as an input a random image y in { O , l ) n  and it 
attempts to invert g. In order to compute f-l(y), A tries to find a good leaf u 
such that 9 E {yo(u),yl(u)}. Starting at the root, A develops node by node a 
path consistent with y. Fix j to be n - 8(logn/e + 1). For j rounds A does as 
follows: for 1 5 i < j at the i round the path so far is defined by hl, h2,. . . hi-1 
and the labels are c1, c2,. . . q - 1  such that Q = B(hi, y). Now, a random h of 
the O*-'l{O, l}n-i is chosen (note that h is linearly independent from hk, k < i 
is chosen. I€ the edge h is labeled with B(h,y) ,  then h; t h and the path is 
expanded by the new node. Otherwise, S' is reset to the state before its reply, 
and a new candidate for hi is chosen. This is repeated until either a success or 
until there are no more candidates left, in which case A aborts. If A reaches 
the j th  level, it guesses the remaining n - j queries hj, hj+l, .  . . h,-l and checks 
whether the path to the leaf is labeled consistently with B(y, hi). If it is and the 
leaf reached is good, then A has succeeded in inverting y. 
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The rest of this proof is devoted for showing that A as defined above has 
probability at least c1°/8e3n8 for inverting y. Note that A as described above 
does not necessarily halt after a polynomial number of steps. However, as we 
shall see at the end of the proof, we can limit the total number of unsuccessful 
attempts at finding a consistent h to 8n without decreasing significantly the 
probaiblity that A succeeds in inverting y. 

Before we continue we introduce some notation. Since we are dealing with 
several types of vectors of length n over GF[2] we will distinguish them by calling 
those vectors that are sent by R as queries and those vectors which may be the 
image that y attempts to invert as images. Let U be a node at the ith of the 
tree defined by hl, ha, . .  . h,-l and c1, cz, . . . &-I. We say that y E (0,l)" is an 
image in U if B(hk, y) = ck for all 1 5 k < i. We denote the set of images of U 
by Z(U). We know that IZ(U)l = 2n-iS1. We say that h E { O ,  1)'" is a query of 
U if it is of the form 0*-11(0, 1}"-'). 

Let A(U,g) = [{hlh is a query of U and B(h,y)  agrees with the label h of 

An image y is balanced in Uj, a node of the ith level if 
UI I 

An image y is jully balanced in U, a node of the j t h  level, if it is balanced in all 
the ancestors of U. Define 3 ( U )  as the set of all y E Z ( U )  and are fully balanced 
in U. For a set of queries H at a node U and an image y of U the discrepancy 
of p at H is the absolute difference between IH1/2 and the number of queries in 
H that agree with y. Finally, recall that j = n - 8(logn/& + 1). 

Lemma4. For any node U of level j at least 2'+j(l - p) for p = 2-3/4(n-j) 
of the images of U have the proper@ that 2"-j - 27/8(n-j)  5 A(U, y) 5 2n-j + 
2 7 i s b - j )  

Proof : First note that any pair of queries h', h" of U has the property that h" 
is linearly independent of h', hl, ha,. . . hj-1, Now suppose that an image p of U 
is chosen at random and consider the indicator ah which is 1 whenever B(h, y) 
is equal to U's response on h. For any h we have that Prob[ah = 11 = 1/2 and 
for every pair h', h" the events ah' and ah" are pairwise independent. We are 
essentially interested in 
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By Chebyschev's inequality 

V a r [ C ,  ah] is 2'+j and hence (1) is at most 2-3/4(n-j). 

Lemrna5. For any node U of level j and random image y of U the probabilaty 
that y is  fu l ly  balanced in U is  at least 1 - y for y = n2-5/8(n-j) 

Proof : Let Ul, U2, . . . Uj = U be the nodes on the path to U. For any 1 5 i 5 j 
we can partition the 2n-i queries of Ui into 2j-i subsets H I ,  Hz, . . . Hzj-i of size 
2n-j each such that for any 1 5 l 5 2j-' and h',h'' E Ht we have that h' 
is linearly independent of hi+1, ... hj, h". Therefore, similar to Lemma 4, we 
have that Prob[l ChEUt -E[ChEHc ah][ > 27/8(n-j)] 5 2-3/4(n-j). Therefore by 
Markov's inequality the probability that more than 2-1/8(n-j) fraction of the 
He's have a discrepancy larger than 27/8(n-i) is at most 2-5/8(n-j) .  Therefore 
with probability at least 1 - 2-5/8(n-j) the total discrepancy at node Ui is at 
most 

and hence with the probability at least 1 - 2-5/8(n-i) we have 

The probability that y is balanced in all the levels is therefore at least 1 - 
n2-5/8(n-j) = i7. 

Lemma 6. The probability that a node U of the j t h  level is reached by  an me- 
cution of A is at least ? of the probability that it U reached by  an execution 
of S' 

Proof : Let Ui, U2,. . . Uj = U be the nodes on the path to U's from the root. 
For any node Ui the probability that Ui is reached in S' is ij&. On the 
other hand 

Prob[U i s  reached by A] = Prob[y is chosen and U is  reached] 2 
U € W )  
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1 j-1 

A(Ui?Y) 
Prob[y is chosen and U i s  reached] = 1/2n 

Y E W 4  ar€J=P) i=l 

2n-j+1(1- r) 1 1 (1 - 7) j-l 1 j-1 

(1 + n -2 - n 9 
t=l i=l 2" 

Lemma7. The probability that the image A is trying to invert is fulls, balanced 
at the j t h  level i s  at least 

Proof : For every node of the j t h  level and every fully balanced image y of U 
we have that Prob[y is chosen and U is reached] 2: ?j$ n:z: 2,,-,-c. Hence, 

Prob[U is reached with a fully balanced y] 2 

{l-# 

1 

The number of nodes at the j t h  level is n!zi 2n-i and therefore the probability 
that the image chosen is fully balanced at the j t h  level is at least 

Call a node good if at least E of the leaves at the subtree rooted at U have the 
property that S' succeeds in cheating, i.e., inverting both images. By assumption, 
the fraction of good nodes U is at least E .  Hence, by Lemma 6 the probability 
that A reaches a good U at level j is at least y e .  

Lemma8. In any good node U of level j the fraction of the good leaves that 
have at least one image that as an 3 ( U )  i s  at least E /2. 

Proof : Any pair of images y1 # y2 in Z(U) can be together in at most 1/2'+j 
of the leaves: in any node U"along the way from U to the leaves and for random 
query h of U' we have Prob[B(h,y l )  = B(h,yz)] = 1/2. Since there are at most 
7Zn-j+l images that axe not fully balanced in U, then at most 

(1_7)2 . 

of the leaves have both of their images from the unbalanced. Therefore at least 

fully balanced at U. 
& - - L  22 2 ~ / 2  of the leaves are both good and have at l e a t  one image which is 

Lemma% For any good node U of level j and z E F(U>, given that U was 
reached with a f i l l y  balanced y, the probability that y = z is at least ea2"l_,+l 
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Proof : We would like to bound from below 
Prob[z is chosen and U is reached] 

Prob[U is reached and the image is fully balanced] 

We know that Prob[U is reached and the image is fully balanced] = 

(3) 

1 j-1 

A(Ui,Y) 
Prob[z is chosen and U is reached] = 1/2" n 

Z€F( U) U € m O  i=l 

As can be seen from the proof of Lemma 6 for any a E F(U) we have that 

1 j - 1  1 Prob[z is chosen and U i s  reached 2 gn-j+l r]: 2n-i 
i=l 

Therefore (3) is at least 

Lemma10. The probability that A is successfil is at least & 
Proof : Suppose that (a) A reaches a good node U at level j and the y is fully 
balanced and (b) that hj, h,+l,. . . h,-1 d e h e  a path to a good leaf that has at 
least one image in F(U). Call this image z .  Then by Lemma 9 we know that 
the probability that y = z is at least ea&j-. The probability that (a) occurs is 
at least E- by Lemma 7 and that (b) occurs given (a) is at least ~ / 2  by 
Lemma 8. Therefore the probability of success is at least ea &: 2 elo /4e3n8 

Note that we have only considered A succeasea when y was fully balanced at 
level j. However, given that y is fully balanced at level j, the probability that 
A had many unsuccessful candidates until he reached the j th  level is small: we 
know that y is balanced at Ui for all 1 5 i < j and therefore A(U, ~ ) / 2 ~ - '  > 1/4. 
Therefore the probability that A had to try more than 8n candidate for the 
hi's until reaching level j is exponentially small in n and we have that even if 
we bound the run time of A by 8na the probability of success is still at least 
E10/8e9n8. If E is non negligible, then this is non negligible as well. This concludes 
the Proof of Theorem 3. 

For our applications we need a simulatable bit commitment and commitment 
of knowledge (to be defined in the full version along the lines of [BG]). 
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Theorem 11. There is a perfectly-secure commitment scheme which is simulat- 
able, and is commitment of knowledge. 

Proof sketch: All actions of S are in polynomial time, so simulatability 
(generating the same distribution in polynomial time) is given. 

To achieve simulatable commitment of knowledge, one has to modify the 
basic protocol described above as follows. The protocol’s steps 1,2, and 3 will be 
first performed twice. At this point R asks S to open the chosen z which is the 
pre-image of y of one of the instances and continue the protocol with the other 
instance. Obviously, the security and binding properties are maintained. 

To get a commitment of knowledge, we have an extraction algorithm X which 
plays the steps 1,2, and 3 twice. Then, it decides on which instance to continue, 
it asks to open it and gets y, then the simulation is backtracked and the other 
instance is asked to be opened, and the actual commitment is done using the 
(by now known) 1 in step 4 and 5 (given the input bit b to the machine X). 
The probability that the commitment will be different is negligible assuming the 
hardness assumption as was shown above. tl 

Next, we can state the following known “reduction theorems” present in the 
works on computational (perfect) zero-knowledge proofs (arguments) [GMW, 
BCC, IYI. 

Theorem 12. If there is a (perfectly-secure commitment) [commitment] scheme 
which is simulatable by an expected probabilistic polynomial-time machine (“in- 
teracting” with the receiver) and the receiver is polynomial-time, then there is a 
(perfect zero-knowledge argument) [computationally zero-knowledge proof] for any 
statement in NP. 

The perfectly-secure simulatable bit-commitment protocol can be used in the 
general scheme above. In addition, the general proof system scheme can also be 
shown to give a “proof of possession of a witness“ (i.e., proof of knowledge) 
as was formalized [FFS, TW, BG]. Thus, combining the above, gives our main 
result: 

Theorem13. If any one-way permutation exists, then there exist perfect zero- 
knowledge arguments for proving language-rnem bership as well as for proving knowledge- 
of-wi tn ess. 
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4 Discussion 

There are various other applications to information-theoretically secure bit com- 
mitment. For example, another application of the bit commitment above is a 

" coin-flipping protocol" (introduced by Blum [B]), with perfect security, and 
assuming only a one-way permutations. 

For practical purposes consider the data encryption standard (DES) [Kon]. 
Given a k-regular [GKL] one-way function (i.e. the number of pre-images of a 

point is 5 k and is k on a significant fraction), one ca,n transform it into a 
one-way function which is 1-1 almost everywhere [GILVZ]. We apply this to the 
function DES(k, m) = y (k = key, m= message) where (actual used parameters 
are) k E (0, 1}66, m, 21 E (0, l}e4. Assuming that DES is not breakable on-line 
(say in 10 seconds), then it is a good candidate for our scheme. We explore this 
further in the full version of the paper. The security of the commitment is not 
perfect but rather almost-perfect (guessing the commitment is not exactly 1/2, 
but it is close to 1/2). We note that DES is available in many machines and 
usually on an optimized hardware circuit. 

It is an interesting question whether a general one-way function with no 
additional property suffices for zero-knowledge arguments. Fkducing the rounds 
(by more than the achievable logarithmic factor) is interesting as well. 
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