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Abstract. The DARPA Agent Markup Language ontology for Services
(DAML-S) enables the description of Web-based services, such that they
can be discovered, accessed and composed dynamically by intelligent
software agents and other Web services, thereby facilitating the coordi-
nation between distributed, heterogeneous systems on the Web. We pro-
pose a formalised syntax and an initial reference semantics for DAML-S,
which incorporates subtype polymorphism. The semantics we describe is
derived from the semantics for Erlang and Concurrent Haskell. We con-
trast our semantics with an alternate semantics proposed for DAML-S,
based on the situation calculus and Petri nets.

Keywords: Agents, Services, Languages and Infrastructure, Ontologies.

1 Introduction

The DARPA Agent Markup Language Services ontology (DAML-S) is being
developed for the specification of Web services, such that they can be dynami-
cally discovered, invoked and composed with the help of existing Web services.
DAML-S, defined through DAML+OIL [4], an ontology definition language with
additional semantic inferencing capabilities, provides a number of constructs or
DAML+OIL classes to describe the properties and capabilities of Web services.
DAML-S will be used by Web service providers to markup their offerings, by
service requester agents to describe the desired services, as well as by planning
agents to compose complex new services from existing simpler services.

Other approaches to the specification of Web services from the industry in-
clude UDDI, WSDL, WSFL and XLANG, which address different aspects of
Web service description. UDDI (Universal Description, Discovery and Integra-
tion) [17], for instance, is primarily a repository technology and concerns itself
with the storage and retrieval of Web service descriptions. WSDL (Web Services
Description Language) [3] describes a Web service in terms how the interaction
with it takes place: the messages it understands; the ports on which it can receive
and send messages. WSFL (Web Services Flow Language) [11] and XLANG [16]
describe how services can be composed together, and the behaviour/interaction
protocol of a Web service. DAML-S is unique in that, due to its foundations
in DAML+OIL, it provides markup that can be semantically meaningful for
intelligent agents.
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An informal description of the semantics of DAML-S1 has been given in [1].
An interleaving, strict operational semantics for DAML-S is presented in [2].
In this paper, we extend the type system for DAML-S with subclass polymor-
phism, which captures the subsumption-based component of DAML inferencing.
Subclass polymorphism stems from object-oriented programming, where if an
object expects a value of class τ , it can also accept values of any subclass τ ′ of
τ . Similarly, an agent that accepts an input of class C1 and recognises that C1
is a subclass of C2, can also accept instances of C2, as inputs.

The next section, Section 2, presents the DAML-S ontologies and the process
model of a service. A core subset of DAML-S, referred to as DAML-S Core, is
modelled in [2], such that every service defined in DAML-S can be transformed
into a functionally equivalent service definition in DAML-S Core, stripped of
additional attributes that aid in service discovery or any quality-of-service pa-
rameters. The following sections 3 and 4 discuss some of the issues involved in
developing a formal model for DAML-S and present the syntax and semantics of
DAML-S Core. In the following Section 5, we extend the type system of DAML-
S Core with subclass. Subclasses in DAML-S with the help of type constraints.
Finally, in Section 6, we compare our approach to the definition of the semantics
of DAML-S with another approach using situation calculus and Petri nets [14].

2 The DAML-S Ontology

The DAML-S ontology consists of three parts: a service profile, a process model
and a service grounding. The service profile of a particular Web service would
enable a service-requesting agent to determine whether the service meets its re-
quirements. The profile is essentially a summary of the service, specifying the
input expected, the output returned, the precondition to and the effect of its suc-
cessful execution. The process model of a service describes the internal structure
of the service in terms of its subprocesses and their execution flow. It provides a
detailed specification of how another agent can interact with the service. Each
process within the process model could itself be a service, in which case, the
enclosing service is referred to as a complex or composite service, built up from
simpler, atomic services. The service grounding describes how the service can be
accessed, in particular which communication protocols the service understands,
which ports can receive which messages and so forth.

In this paper, we will only be considering the service process model, since it
primarily determines the semantics of the service’s execution. The formalisation
proposed here will however form the basis for an execution model. The inputs,
outputs and effects of a process can be instances of any class in DAML+OIL. The
preconditions are instances of class Condition. There are a number of additional
constructs to specify the control flow within a process model: Sequence, Split,
Split+Join, If-Then-Else, Repeat-While, Repeat-Until. The execution of a
service requires communication, i.e. interaction between the participants in a
1 DAML-S is currently under development and the language described here is the
DAML-S Draft Release 0.5 (May 2001).
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service transaction. The DAML-S grounding uses WSDL service descriptions to
specify the communication between participants of a service transaction. Since
modelling the communication within a service transaction is essential to describ-
ing the execution semantics of a service described in DAML-S, we will define a
set of what we consider to be basic communication primitives, for example, for
the sending and receiving of messages. These have close counterparts in WSDL.

In the next section, we first map DAML-S Core constructs onto a formal syn-
tax, based on a core concurrent functional language. We then define a semantics
for the DAML-S Core constructs in terms of the formal functional syntax.

3 Modelling DAML-S Core

The DAML-S class Process and its subclasses, representing services/agents2,
are modelled as functions. DAML-S agents essentially take in inputs and return
outputs, exhibiting function-like behaviour. A Web document, for example, is
an agent which has no input and as output, merely some HTML content. The
input to a Process is not restricted and could be a Process itself, resulting in
a ’higher-order’ agent, offering meta-level functionality. A simple example of a
higher-order service is an agent that, when given a task and an environment of
existing services, locates a service to perform the task, invokes the service and
returns the result. The functionality of the agent thus depends on the set of
services in the world that it takes as input.

Furthermore, agents can be composed together. This composition itself rep-
resents an agent with its own inputs and outputs. The composition could be
sequential, dependent on a conditional or defined as a loop. The composition
could also be concurrent, where the agents can interact with each other, repre-
senting relatively complex, distributed applications, such as chat systems.

DAML-S classes are defined through DAML+OIL, an ontology definition
language. DAML+OIL, owing to its foundations in RDF Schema, provides a
typing mechanism for Web resources [4], such as Web pages, people, document
types and abstract concepts. The difference between a DAML+OIL class and
a class in a typical object-oriented programming language is that DAML+OIL
classes are meant primarily for data modelling and contain no methods. We
model classes in DAML-S as type expressions and subclasses as subtypes with
the help of type constraints, presented in Section 5. At this stage, we do not
model the relations and properties between the classes in an ontology. More
formally,

Definition 1 (Type Expressions). A type expression τ ∈ T is either a type
variable α ∈ V or the application, (Tτ1 · · · τn), of an n-ary type constructor
T ∈ F to the type expressions τ1, . . . , τn.
2 Services have a description and an execution component and therefore, can be con-
sidered as active processes or agents. In the following, we do not distinguish between
agents and services. Note the agents described here are simply processes and do not
necessarily display any complex, autonomous behaviours.
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Type constructors in F are determined by DAML-S Core classes, such as
List, Book and Process. In addition to these, DAML-S Core has a predefined
functional type constructor →, for which, following convention, we will use the
infix notation. All type constructors bind to the right, i.e. τ1 → τ2 → τ3 is read
as (τ1 → (τ2− > τ3)).

DAML-S agents can be polymorphic with respect to their input and output.
An example of a polymorphic agent is one which simply returns its input of ar-
bitrary type, as output. Polymorphic types are type expressions containing type
variables. The expression a → b, for instance, is a polymorphic type with type
variables a and b, which can be instantiated with concrete types. The substitu-
tion [a/integer, b/boolean] applied to a → b results in the type integer →
boolean. Identical type variables in a type expression indicate identical types.
For the formalisation of polymorphism, we use type schemas, in which all free
type variables are bound: ∀α1, . . . , αn.τ , where τ is a type and α1, . . . , αn are
the generic variables in τ .

Although DAML-S Core agents can be functionally simple, they derive much
of their useful behaviour from their ability to execute concurrently and interact
with one another. The communication an agent is engaged in is a side-effect
of its functional execution. Communication side-effects can be incorporated into
the functional description of agents with the help of the IO monad. Monads were
introduced from category theory to describe programming language computa-
tions, actions with side-effects, as opposed to purely functional evaluations. The
IO monad, introduced in Concurrent Haskell [9], describes actions with commu-
nication side-effects.

The IO monad is essentially a triple, consisting of a unary type constructor
IO and two functions, return and (>>=). A value of type IO a is an I/O action,
that, when performed, can engage in some communication before resulting in a
value of type a. The application return v represents an agent that performs no
IO and simply returns the value v. The function (>>=) represents the sequential
composition of two agents. Thus, action1 >>= action2 represents an agent
that first performs action1 and then action2. Consider the type of (>>=):
∀a,b.IO a → (a → IO b) → IO b. First, an action of type IO a is performed.
The result of this becomes input for the second action of type a → IO b. The
subsequent execution of this action results in a final value of type IO b. The
expression on the right-hand side of (>>=) must necessarily be a unary function
that takes an argument of type a and returns an action of type IO b.

Although the communication an agent is engaged in can be expressed with
the IO monad, we still need to describe the means through which communication
between multiple agents takes place. We model communication between agents
with ports [8], a buffer in which messages can be inserted at one end and retrieved
sequentially at the other. In contrast to the channel mechanism of Concurrent
Haskell, only one agent can read from a port, although several agents can write
to it. The agent that can read from a port is considered to own the port. Since
we need to be able to type messages that are passed through ports, each agent
is modelled as having multiple ports of several different types. This conceptuali-
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sation of ports is also close to the UNIX port concept and is therefore a natural
model for communication between distributed Web applications. Agents and
services are modelled as communicating asynchronously. Due to the unreliable
nature of the Web, distributed applications for the Web are often designed to
communicate asynchronously. The initial proposal for the DAML-S grounding,
based on WSDL, also defines communication between services in terms of ports
and messages. As we shall see, however, our notion of ports is related to the
WSDL ports, but they are different abstractions.

Definition 2 (DAML-S Core Expressions). Let V arτ denote the set of vari-
ables of type τ . The set of DAML-S Core expressions over Σ, Exp(Σ), is defined
in Table 1. The set of expressions of type τ is denoted by Exp(Σ)τ .

In Table 1, the base constructs which represent a composition of agents are
cond, >>= (which is a binary service representing the sequential execution of its
subprocesses), spawn and choice. Other constructs such as Split+Join can be
defined in terms of these and we do not model them further.

Definition 3 (DAML-S Core Agents). Let xi ∈ V arτi , xi pairwise different
and e ∈ Exp(Σ)τ . A DAML-S service definition then has the following form

s x1 · · ·xn:= e

s ∈ S is said to have type τ1 → · · · → τn → τ . S denotes the set of services.

In the definition of Exp(Σ) in Table 1, we use partial application and the
curried form of function application. For a function that takes two arguments,
we use the curried type τ1 → τ2 → τ3 instead of (τ1, τ2) → τ3.

Port references are constructed with a unary type constructor Port ∈ F . A
send operation takes as argument a destination port and a message and sends the
message to the port, resulting in an I/O action that returns no value. Similarly,
a receive operation takes as argument a port on which it is expecting a message
and returns the first message received on the port. It thus performs an I/O
action and returns a message. To be well-typed, the type of the message and
the port must match. The spawn operation takes an expression, an I/O action,
as argument and spawns a new agent to evaluate the expression, which may
not contain any free variables. The choice operation takes two I/O actions as
arguments, makes a non-deterministic choice between the two and returns it as
the result. For the application of choice to be well-typed, both its arguments
must have the same type, since either one of them could be returned as the
result.

4 Semantics of DAML-S

A formal semantics for DAML+OIL has been defined denotationally [18] and ax-
iomatically [6]. Although the DAML-S ontology is defined in terms of
DAML+OIL and therefore inherits its semantics, they are clearly inappropriate



Concurrent Execution Semantics of DAML-S with Subtypes 323

Table 1. DAML-S Core Expressions

Σ Σ ⊆ Exp(Σ)

var V arτ ⊆ Exp(Σ)τ

abs \x -> e ∈ Exp(Σ)τ1 → τ2 for x ∈ V arτ1 , e ∈ Exp(Σ)τ2

appl (e1 e2) ∈ Exp(Σ)τ2 for e1 ∈ Exp(Σ)τ1 → τ2 , e2 ∈ Exp(Σ)τ1

cond cond e e1 e2 ∈ Exp(Σ)IO τ for e ∈ Exp(Σ)boolean, e1, e2 ∈ Exp(Σ)IO τ

return return e ∈ Exp(Σ)IO τ for e ∈ Exp(Σ)τ

seq e1 >>= e2 ∈ Exp(Σ)IO τ2 for e1 ∈ Exp(Σ)IO τ1 , e2 ∈ Exp(Σ)τ1 → IO τ2

send e1!e2 ∈ Exp(Σ)IO () for e1 ∈ Exp(Σ)Port τ , e2 ∈ Exp(Σ)τ

rec e? ∈ Exp(Σ)IO τ for e ∈ Exp(Σ)Port τ

port newPortτ ∈ Exp(Σ)IO Port τ for τ ∈ T
spawn spawn e ∈ Exp(Σ)IO () for e ∈ Exp(Σ)IO τ

choice choice e1 e2 ∈ Exp(Σ)IO τ for e1, e2 ∈ Exp(Σ)IO τ

serv s e1 · · · en ∈ Exp(Σ)τ for ei ∈ Exp(Σ)τi , s ∈ Sτ1 → · · · → τn → τ

for a definition of the operational meaning of DAML-S constructs. Describing
the operational semantics of concurrent and distributed systems such as the
DAML-S environment is often far simpler and more natural than describing the
denotational semantics. Distributed systems tend to be non-terminating and
non-deterministic, making it difficult to describe them simply on the basis of
their input-output behaviour. Defining differing semantics for DAML+OIL and
DAML-S does not constitute a problem. The operational semantics of DAML-S
is layered on top of the denotational semantics of DAML+OIL, with the type
system mediating between the two.

In this section, we describe a formal operational semantics for Core DAML-S.
Our semantics is based on the operational semantics for Erlang [7] and Concur-
rent Haskell [9] programs, inspired by the structural operational semantics of
CCS [12] and the π-calculus [13].

In a Σ-Interpretation A = (A,α), A is a T -sorted set of concrete values
and α an interpretation function that maps each symbol in Ω, the set of all
constructors defined through DAML+OIL, to a function over A. In particular,
A includes functional values, i.e. functions.

Definition 4 (State). A state of execution within DAML-S Core is defined as
a finite set of agents: State := Pfin(Agent)

An agent is a pair (e, ϕ), where e ∈ Exp(Σ) is the DAML-S Core expression
being evaluated and ϕ is a partial function, mapping port references onto actual
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Table 2. Semantics of DAML-S Core - I

(FUNC) φ ∈ Ω
Π, (E[φv1 · · · vn], ϕ) −→ Π, (E[φAv1 · · · vn], ϕ)

(APPL) free(u) ∩ bound(e) = ∅
Π, (E[(\x -> e) u)], ϕ) −→ Π, (E[e[x/u]], ϕ)

(CONV) y is a fresh free variable
Π, (E[\x -> e], ϕ) −→ Π, (E[\y -> e[x/y]], ϕ)

(SERV) sx1 · · ·xn := e ∈ S
Π, (E[sv1 · · · vn], ϕ) −→ Π, (E[e′[x1/v1, . . . , xn/vn]], ϕ)

ports:
Agent := Exp(Σ) × {ϕ | ϕ :PortRef−→PortA

τ }
for all τ , where PortA

τ := (Aτ )∗ and PortRef is an infinite set of globally known
unique port references, disjoint with A. Since no two agents can have a common
port, the domains of their port functions ϕ are also disjoint.

Definition 5 (Evaluation Context). The set of evaluation contexts EC [5]
for DAML-S Core is defined by the context-free grammar

E := [ ] | φ(v1, . . . , vi, E, ei+2, en) | (E e) | (v E) | E>>= e

for v ∈ A, e, e1, e2 ∈ Exp(Σ), φ ∈ Ω ∪ S\{spawn, choice}.

Definition 6 (Operational Semantics). The operational semantics of
DAML-S is −→⊂ State×State is defined in Tables 2 and 3. For (s, s′) ∈−→,
we write s −→ s′, denoting that state s can transition into state s′.

The application of a defined service is essentially the same as the application
rule, except that the arguments to s must be evaluated to values, before they
can be substituted into e. In a [SEQ], if the left-hand side of >>= returns a value
v, then v is fed as argument to the expression e on the right-hand side. That is,
the output of the left-hand side of >>= is input to e

Evaluating spawn e results in a new parallel agent being created, which evalu-
ates e and has no ports, thus ϕ is empty. Creating a new port with port descriptor
p involves extending the domain of ϕ with p and setting its initial value to be
the empty word ε. The port descriptor p is returned to the creating agent. The
evaluation of a receive expression p? retrieves and returns the first value of p.
The port descriptor mapping ϕ is modified to reflect the fact that the first mes-
sage of p has been extracted. Similarly, the evaluation of a send expression, p!v,
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Table 3. Semantics of DAML-S Core - II

(SEQ) −
Π, (E[return v >>= e], ϕ) −→ Π, (E[(e v)], ϕ)

(SPAWN) −
Π, (E[spawn e], ϕ) −→ Π, (E[return ()], ϕ), (e, ∅)

(PORT)

p new PortRef ϕ′(x) =

{
ε if x = p;
ϕ(x) otherwise.

Π, (E[newPort τ ], ϕ) −→ Π, (E[return p], ϕ′)

(REC)

p ∈ Dom(ϕ) ϕ(p) = v · w ϕ′(x) =

{
w if x = p;
ϕ(x) otherwise.

Π, (E[p?], ϕ) −→ Π, (E[return v], ϕ′)

(SEND)

p ∈ Dom(ϕ2) ϕ2(p) = w ϕ′
2(x) =

{
w · v if x = p;
ϕ2(x) otherwise.

Π, (E[p!v], ϕ1), (e, ϕ2) −→ Π, (E[return ()], ϕ1), (e, ϕ′
2)

(COND-TRUE) −
Π, (E[cond True e1 e2], ϕ) −→ Π, (E[e1], ϕ)

(CHOICE-LEFT) Π, (E[e1], ϕ) −→ Π ′, (E[e′
1], ϕ′)

Π, (E[choice e1 e2], ϕ) −→ Π ′, (E[e′
1], ϕ′)

results in v being appended to the word at p. Since port descriptors are globally
unique, there will only be one such p in the system.

The rules for (COND-FALSE) and (CHOICE-RIGHT) are similar to the rules
for (COND-TRUE) and (CHOICE-LEFT) given in Table 3. If the condition b
evaluates to True, then the second argument e1 is evaluated next, else if the
condition b evaluates to False, the third argument e2 is evaluated next. For a
choice expression e1+e2, if the expression on the left e1 can be evaluated, then it
is evaluated. Similarly, the right-hand side e2 is evaluated, if it can be evaluated.
However, the choice of which one is evaluated is made non-deterministically.

5 Subclass Polymorphism in DAML-S

Due to its roots in DAML+OIL, a distinguishing characteristic of DAML-S is
that it enables some measure of semantic inferencing to be made by an agent.
DAML+OIL enables many kinds of inferencing. Here, we model subsumption-
based semantic inferencing as subtype polymorphism. Our type system is similar
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to that of ObjectCurry [15]. In the case of ObjectCurry, subtype polymorphism
was present only for objects and messages. In our case, it can occur during
any service invocation. Additionally, subtype polymorphism is not restricted to
classes, it can also occur over functional types. Furthermore, DAML-S Core
supports multiple inheritance, which is not present in ObjectCurry.

Subtypes in DAML-S are expressed with the help of constraints on type
expressions. Type schemas are thus extended to constrained type schemas of the
form ∀α1, . . . , αn.τ |C, where ∀α1, . . . , αn.τ is a type schema and C is a set of
subtype constraints. A subtype constraint ‘τ1 is a subtype of τ2’ is written as
τ1 � τ2. Instead of τ |∅ we also write τ . For example, the class ∀a.a |{a � Book}
is a constrained type schema, representing a subtype of Book. An instantiation
of a constrained type schema yields a generic instance.

A generic instance of a type schema ∀α1, . . . , αn.τ |C is a constrained type
τ ′|C ′, if a substitution σ exists, such that στ |σC = τ ′|C ′ where σ(αi) = τi for
all i = 1, . . . , n and σ(β) = β for all β /∈ {α1, . . . , αn}.

Thus, the type AudioBook |{AudioBook � Book} is a generic instance of the
constrained type schema ∀a.a |{a � Book}. To be well-typed, an expression
must be well-formed according to the rules in Table 1 and furthermore, it should
satisfy the type constraints on its stated type. Whether the type constraints in
a type expression are satisfied depends on whether the types in the constraints
do in fact possess the required subtype relationships. This can be verified by
checking the constraints against the class definitions in the specification and the
ontologies it references.

Definition 7 (Direct Subclass and subclass hierarchy). The direct sub-
class relation HS for a service specification S is defined as follows: (C1, C2) ∈ HS

if and only if there exists an ontology referenced by specification S, where class
C1 is a subClassOf class C2.3 A subclass hierarchy H∗ induced by a direct sub-
class relation H is formed by taking its reflexive and transitive closure. The base
DAML+OIL ontology defines a top Thing class and a bottom Nothing class.

Definition 8 (Satisfiability of Subtype Constraints). A substitution σ sat-
isfies a subtype constraint τ1 � τ2 with respect to a subclass hierarchy H∗ if
(στ1, στ2) ∈ H∗. We notate this as σ|=H∗ τ1 � τ2.4

The subclass hierarchy H∗ is defined over classes. However, subtype con-
straints can also involve functional type expressions and expressions involving
the type constructors Port and IO. Such constraints can be broken down into
simpler constraints involving solely classes, using the transformation described
in Table 4. If a port can accept values of type τ1, it can also accept values of
3 In the following, we omit the subscript S and simply write H instead of HS , since
we will usually be referring to a single specification S.

4 A substitution σ satisfies a set of subtype constraints C, if, for all c ∈ C: σ|=H∗ c.
Notation: σ|=H∗ C. A set of subtype constraints is satisfiable with respect to a
subclass hierarchy H∗, if there exists a substitution σ such that σ|=H∗ C. Notation:
|=H∗ C.



Concurrent Execution Semantics of DAML-S with Subtypes 327

Table 4. Simplifying Constraints with Type Constructors

[ Port ] {Port τ1 � Port τ2} ∪ C
{τ2 � τ1} ∪ C

if (τ2 � τ1) /∈ C

[ IO ] {IO τ1 � IO τ2} ∪ C
{τ1 � τ2} ∪ C

if (τ1 � τ2) /∈ C

[ → ] {τ1 → τ2 � τ3 → τ4} ∪ C
{τ3 � τ1, τ2 � τ4} ∪ C

if (τ3 � τ1), (τ2 � τ4) /∈ C

any subtype τ2 of τ1 and thus also has type Port τ2. Thus, a constraint of the
form Port τ1 � Port τ2 can be simplified to the constraint τ2 � τ1. Similarly,
an I/O action of type IO τ1 also returns a value of any supertype τ2 of τ1 and
thus also has type IO τ2. A function that accepts arguments of type τ1 can also
accept arguments of any subtype τ3 of τ1. A function that returns values of type
τ2 also returns values of any supertype τ4 of τ2. Thus, any function that has type
τ1 → τ2 also has type τ3 → τ4. This relationship holds even if the type variables
are themselves substituted with functional type expressions.

The satisfiability of the simpler constraints obtained through this transfor-
mation can then be checked against the subclass hierarchy H∗. The initial typing
environment used for typing DAML-S Core expressions will be denoted by ΓD.
Most DAML-S Core constructors can be considered to be pre-defined higher-
order agents and to simplify the typing rules, we will consider them as such. ΓD
can then be extended with their constrained type schemata, as summarised in
Table 5.

Table 5. The DAML-S Core Type Environment ΓD

cond: ∀a,b,c.IO boolean → a → b → c

return: ∀a.a → IO a

>>=: ∀a,b,c.IO a → (b → IO c) → IO c

!: ∀a,b.Port a → b → IO ()

?: ∀a.Port a → IO a

newPort: ∀a.IO (Port a)

spawn: ∀a.IO a → IO (IO a)

choice: ∀a,b,c.IO a → IO b → IO c
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Table 6. Typing DAML-S expressions

[Axiom]
Γ,H∗ � x : τ |C if τ |C is a generic instance of Γ (x)

[Abstraction] Γ [x/τ |C],H∗ � e : τ ′|C′

Γ,H∗ � λx.e : τ → τ ′|C′

[Application] Γ,H∗ � e1 : τ1 → τ2|C1 Γ,H∗ � e2 : τ ′
1|C2

Γ,H∗ � e1e2 : τ2|C1 ∪ C2 ∪ {τ ′
1 � τ1}

Definition 9 (Well-typedness of Service Definitions). A service definition
s x1 · · ·xn:= e is considered to be well-typed with respect to a type environment
Γ and a subclass hierarchy H∗, if the following conditions are fulfilled:

– Γ (s) = ∀α1, . . . , αm.τ |C
– Γ,H∗ � λe1 . . . λem.e : τ |C can be derived from the typing rules in Table 6.
– |=H∗ C

Thus, for a service definition to be well-typed, the type derived for e must
match the constrained type schema of s in the type environment. Furthermore,
the constraints C on the type for e must be satisfiable with respect to the class
hierarchy H∗.

The typing rules [Axiom], [Abstraction] and [Application] are quite standard.
Note that the constraint set C ′ in [Abstraction] does not need to be extended
with the constraints in C. If the expression e already contains x in an application,
then the constraints C ′ already contain the constraints C, that is C ⊆ C ′. If
the expression e does not contain x, then the type of x and its constraints are
immaterial. In [Application], the type constraints on (e1e2) are the union of the
constraints on e1 and e2. The requirement that τ ′

1 must be a subtype of τ1 is
captured through the additional constraint τ ′

1 � τ1.

5.1 Type Inference for DAML-S

We present an algorithm for determining the type of a expression in DAML-S,
assuming the expression does not contain polymorphic data structures. Our al-
gorithm extends the algorithm described in [10] and [15] with the verification of
constraint satisfaction for type expressions with multiple inheritance. The algo-
rithm E , presented in Table 7, determines the type expression of an expression
in DAML-S. First, a type environment Γ and an inheritance hierarchy H∗ need
to be constructed. We let the initial type environment be ΓD. Given an ontology,
a corresponding inheritance hierarchy H∗ can be easily constructed. With the
definition of the inheritance hierarchy and the type environment, the function
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Table 7. Type Inference Algorithm for DAML-S

E [[x]](Γ,H∗) = (∅, τ |C)
if τ |C is a generic instance of Γ (x)

E [[λx.e]](Γ,H∗) = (σ, (σα) → τ |σC)
if there exists a substitution σ and α a fresh variable, such that
(σ, τ |C) = E [[e]](Γ [x/α],H∗)

E [[(e1e2)]](Γ,H∗) = (σ ◦ σ2 ◦ σ1, σβ|σC)
if there exist substitutions σ, σ1, σ2 and fresh variables α, β, such that
(σ1, τ1|C1) = E [[e1]](Γ,H∗)
(σ2, τ2|C2) = E [[e2]](σ1Γ,H∗)
σ = mgu(τ1, α → β)
C = σ2C1 ∪ C2 ∪ {τ2 � α}

E can now be used to determine the constrained types of the defined service
descriptions.

The function E determines the type of an expression e with respect to a
type environment Γ and an inheritance hierarchy H∗ as a pair, consisting of a
substitution σ and a constrained type expression τ |C. If e is a variable, then
E simply looks up its type in the type environment Γ and returns an empty
substitution.

If e is an abstraction of the form λx.e′, we first assign the variable x a fresh
type variable α and determine the inferred type of e′ under the type environ-
ment Γ and the inheritance hierarchy H∗. The type of the abstraction is then
(σα) → τ under the constraints σC, where τ |C is the type inferred for e′ with the
substitution σ. Finally, if the type of an application (e1e2) is to be determined,
we first determine the inferred types of e1 and e2 individually. The inferred type
of e1 is then unified with a functional type α → β. The constraints of the inferred
type of (e1e2) is the union of the inferred types of e1 and e2 and a constraint
that the inferred type of e2 is a subtype of the argument type expected by e1.

The application of E can result in type expressions with subtype constraints,
which must also be satisfiable. An algorithm to test the satisfiability of such a
set of subtype constraints is presented in [15].

6 Related Work

Web services are modelled as processes in a distributed system in DAML-S. Al-
though the Web does introduce new concepts such as service advertisements,
service brokering, auctions and so on, these exist over the distributed model.
XLANG also takes the process-oriented approach and models Web services
through a process calculus. WSFL, in contrast, uses a workflow approach, which
is well-suited to define the composition of processes, but is less so for the precise
specification of processes themselves.
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An alternative semantics for the process model has been proposed by
Narayanan et al. [14], which uses the situation calculus to model a subset of
DAML-S, essentially processes and their inputs, outputs, preconditions and ef-
fects. Axioms in the situation calculus are mapped onto Petri net representations,
which are then used to describe the semantics of the DAML-S control constructs.

The situation calculus describes a state or situation in the world in terms of
propositions, which can be true or false in that state. Actions are described in
terms of the their preconditions and effects on the state: which propositions must
hold for the action to take place and which propositions hold true after the action
has taken place. In the case of multi-agent systems, however, every agent will
have its own set of propositions, its own view on the world. Not only does this
place a significant burden on the system designer to define the comprehensive set
of relevant propositions and axioms, it is also not clear how the differing world
views of the agents will be reconciled when they interact. How much does each
agent need to know about the knowledge of the other agent? Or even about the
world, to be able to perform an action?

An additional issue arises with respect to the composition of agents. Al-
though, one can represent and reason about the sequences of actions a single
agent can perform with the help of planning systems, the composition of agents
is a slightly different matter. For instance, when performing two actions a1 and
a2 in sequence, the agent’s knowledge about the world after completing the first
action a1 is the same as the agent’s knowledge before beginning the second ac-
tion a2. On the other hand, if the actions are performed by two separate agents,
the knowledge of the first agent after performing a1 cannot be guaranteed to be
the same as the knowledge of the second agent about to perform a2.

The Petri net semantics and the semantics described in this paper are equiv-
alent in most respects, but there are a couple of minor differences. The choice
agent described in this paper chooses a single agent for execution from among
a set S of agents, whereas in the Petri net semantics, it is defined as choosing a
subset of agents for concurrent execution. In our semantics, this alternate defi-
nition can be easily modelled as a choice between all the subsets of S that are
to be concurrently executed. Since S contains a finite number of elements, the
choice agent also has a finite number of arguments. The Petri net semantics of
the Concurrent class also does not explicitly model the possibility of interac-
tion between the concurrently running agents. Similarly, we do not describe the
Unordered class explicitly because it is equivalent to the Concurrent class.

Within our approach, the inputs, outputs, preconditions and effects of a
composite agent can be determined relatively easily from those of its component
sub-agents. Furthermore, the semantics we describe explicitly describes subclass
polymorphism and it is close to an execution model, since the grounding maps
easily onto our semantics.
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7 Conclusions

We have presented a formal syntax and semantics for the Web services spec-
ification language DAML-S, which can form a basis for the future DAML-S
execution model. A formal semantics facilitates the construction of automatic
tools to assist in the specification of Web services. Techniques to automatically
verify properties of Web service specifications can also be explored with the
foundation of a formal semantics. We extended the DAML-S formalisation with
subtype polymorphism, which captures certain aspects of DAML inferencing, in
particular subsumption. Since DAML-S is still evolving, the semantics needs to
be constantly updated to keep up with current specifications of the language.
Additionally, as DAML-S grows to incorporate service transactions and service
brokering, these notions can be formalised on top of the formal framework pre-
sented here.

This work was partially supported by DARPA/AFRL Contract No. F30602-00-2-
0592.
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